
22 The superstring

The theories we have described were motivated by thinking of a picture of a string
moving in space–time. We arrived in this way at a description of strings in terms of two-
dimensional quantum fields. The theories, so far, are theories of bosons only. But, in this
more abstract picture, we can imagine adding two-dimensional fermionic fields as well.
This possibility was first considered by Ramond, Neveu and Schwarz and leads to the
superstring theories, Type I, Types IIA and IIB and the two heterotic string theories. We
first develop the theories in the light cone gauge, where their spectra are readily exhibited.
Then we discuss interactions.

22.1 Open superstrings

A priori there appears to be a great deal of freedom in how we introduce fermions: their
number, their representations under the (space–time) Lorentz group and possibly other
options. Various consistency conditions restrict these choices. In the case of open strings
we have to introduce one fermion ψ I for each coordinate X I. For the action of the fermions
we take

Sψ = 1
2π

∫
d 2σ iψ̄ I(∂αγ

α)ψ I. (22.1)

In two dimensions, a particularly simple choice for the γ -matrices is

γ 0 = σ2, γ 1 = iσ1 (22.2)

and the analog of γ5 in four dimensions is

γ3 = σ3. (22.3)

The Dirac equation in this basis is purely imaginary, so we can take the fermions to be real
(Majorana). We can work with eigenfunctions of σ3:

ψ I =
(
ψ I−
ψ I+

)
. (22.4)

In this way, if we again introduce light cone coordinates on the world sheet,

σ± = τ ± σ , (22.5)
319
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320 The superstring

the action becomes

Sψ = 1
2π

∫
d2σ(ψ I+∂−ψ I+ + ψ I−∂+ψ I−). (22.6)

We need to impose boundary conditions at the string end points. To determine suitable
boundary conditions, we vary the Lagrangian to obtain the Euler–Lagrange equations. The
surface terms which arise in the variation involve ψ+δψ+ −ψ−δψ−. So the boundary
terms vanish if ψ+ = ±ψ−. An overall sign doesn’t matter, so we can take the plus sign at
σ = 0:

ψ I+(0, τ) = ψ I−(0, τ) (22.7)

This leaves two choices for the boundary conditions at σ = π :

ψ I+(π , τ) = ±ψ I−(π , τ). (22.8)

Fermions which obey the boundary condition with the plus sign are called Ramond
fermions; those with the minus sign are called Neveu–Schwarz (NS) fermions. Corre-
sponding to the Ramond case are the mode expansions

ψ I− = 1√
2

∑
n∈Z

dI
ne−in(τ−σ), ψ I+ = 1√

2

∑
n∈Z

dI
ne−in(τ+σ). (22.9)

In the NS case we have

ψ I− = 1√
2

∑
r∈Z+1/2

bI
re

−ir(τ−σ), ψ I− = 1√
2

∑
r∈Z+1/2

bI
re

−ir(τ−σ). (22.10)

Now we quantize these fields:

{ψ I(σ , τ)±,ψJ(σ ′, τ)±} = πδ(σ − σ ′)δIJδ±± (22.11)

This gives, for the modes:{
bI

r, bJ
s
} = δIJδr+s,

{
dI

m, d J
n
} = δIJδm+n. (22.12)

The Hamiltonian in light cone gauge, for the Ramond sector, is

H = �p 2 + Nα + Nd. (22.13)

Here the Ns are the various number operators:

Nα =
∞∑

m=1
αI−mα

I
m, Nd =

∞∑
m=1

mdI−mdI
m. (22.14)

For the NS sector, Nd is replaced by Nb:

Nb =
∞∑

r=1/2
mb−rbr. (22.15)

Each of these Hamiltonian contributions has a normal-ordering constant. We will determine
these shortly. The states of the theory are the eigenstates of the fermion number operators
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321 22.2 Quantization in the Ramond sector: the appearance of space–time fermions

b†
nbn, d†

ndn etc. for non-zero n. The eigenvalues can take the values 0 or 1 in each case. The
zero modes, which arise in the Ramond sector, are special. They give rise to space–time
fermions.

22.2 Quantization in the Ramond sector: the appearance
of space–time fermions

Usually, we do field theory at infinite volume but here we are considering field theory at
a finite volume (0<σ <π ), and this has introduced some new features. For the bosonic
fields X I we have already seen that there are zero modes, which gave rise to the coordinates
and momenta of space–time. For the fermions we now have the new feature that there are
two sectors, with two independent Hilbert spaces. It is tempting to simply keep one sector,
but it turns out that when we consider string interactions it is necessary to include both:
even if we attempted to exclude, say, the Ramond states, they would appear in string loop
diagrams.

There is another feature: the appearance of fermion zero modes dI
0 in the Ramond

sector. These are not conventional creation and annihilation operators. They obey the
commutation relations {

dI
0, d J

0
} = δIJ. (22.16)

These are, up to a factor 2, the anticommutation relations of the Dirac gamma matrices for
a (D−2)-dimensional space, i.e. they are associated with the group O(D−2). Anticipating
the fact that D = 10, we are interested in the Dirac matrices of O(8). Before giving a
construction of the spinor representations of O(8), let us first simply state the basic result:
O(8) has two spinor representations, 8s and 8′

s, and a vector representation, 8v, all eight-
dimensional. So we can realize the commutation relations, not on a Fock space, but on
a space corresponding to one of the eight-dimensional representations of O(8). Labeling
these states a, ȧ, then 〈

ȧ
∣∣dI

0
∣∣a〉 = 1√

2
γ I

ȧa. (22.17)

We can construct an explicit representation for these matrices in various ways. A simple
and easy to remember construction is to think of O(8) as acting on eight coordinates x I.
Group these into complex coordinates:

z 1 = x 1 + ix 2, z 2 = x 3 + ix 4, z 3 = x 5 + ix 6, z4 = x7 + ix 8 (22.18)

and their complex conjugates. This defines an embedding of U(4) in O(8). Correspond-
ingly, we define

a1 = d1
0 + id2

0, (22.19)

etc. The ais obey the commutation relations

{ai, a j†} = δij, (22.20)
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322 The superstring

all others vanishing. These are just the conventional anticommutation relations of fermion
creation and annihilation operators (but remember that for this discussion they are just
matrices and should not be confused with the dns, which are genuinely creation and
annihilation operators). Among products of these operators we can distinguish two classes:
those built from an even number of as and those built from an odd number. In four
dimensions the analogous distinction corresponds to the eigenvalue (±1) of γ 5.

Now we define a state, |0〉, annihilated by the ais. We can then form two sets of
states, those with even fermion number and those with odd fermion number. The even
states are

|0〉, a i†aj†|0〉, a1†a2†a3†a4†|0〉. (22.21)

These states form one of the eight representations, say 8s. The second is formed by the
states of odd fermion number. States are now labeled |pI, a, {oscillators}〉.

What we have learned is that the states in the Ramond sector are space–time fermions;
the states in the NS sector are space–time bosons.

22.3 Type II theory

For closed strings we still have two-component fields ψ , but the possible choices of
boundary conditions are somewhat different. We still require that the fermion surface terms
vanish, but we also require that currents such as ψ I+ψJ+ be periodic. (These currents are
part of the generators of rotations in space–time.) So we impose the Ramond and Neveu–
Schwarz boundary conditions independently on the left and right movers. Recalling that
the Lagrangian for the fermions breaks up into left- and right-moving parts, we treat
the left- and right-moving fermions as independent fields. The fermions have the mode
expansions

ψ I =
∑
nεZ

dI
ne−2in(τ−σ), ψ I =

∑
nεZ+1/2

bI
re

−2ir(τ−σ) (22.22)

in the Ramond and NS sectors, respectively, and

ψ̃ I =
∑

d̃I
ne−2in(τ+σ)ψ̃ I =

∑
b̃I

re
−2ir(τ+σ). (22.23)

The light cone Hamiltonian is now

H = p2 + Nα + Ñα + Nd + Ñd − a. (22.24)

In constructing the spectrum, this must be supplemented with the condition of invariance
under shifts in σ ; in the covariant formulation this was the L0 = L̃0 constraint (see the
discussion after Eq. (21.84)).
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323 22.5 The spectra of the superstrings

22.4 World-sheet supersymmetry

Before considering the spectra of superstring theories, we consider the question of
supersymmetry. The theory we are considering is supersymmetric in two dimensions.
Just as we decomposed the fermions into left and right movers, we can introduce a two-
component anticommuting parameter θ :

θ =
(
θ−
θ+

)
. (22.25)

Then we define the superfield

Y I = X I + θ̄ψ I + 1
2
θ̄ θB I. (22.26)

We will see shortly that BI is an auxiliary field, which in the case of strings in flat space we
can set to zero by its equations of motion. The supersymmetry generators are

QA = ∂

∂θ̄A
+ i(γ αθ)A∂α (22.27)

(we are using the capital letter A for two-dimensional spinor indices here to distinguish
them from lower case a, which we used for O(8) spinor indices, and from α, which we used
for two-dimensional vector indices). As in four dimensions, we can introduce a covariant
derivative operator which anticommutes with the supersymmetry generators:

D = ∂

∂θ̄
− iγ αθ∂α . (22.28)

In terms of the superfields, the action may be written in a manifestly invariant way:

S = i
4π

∫
d2σd2θ D̄YμDYμ

= −1
2π

∫
d2σ(∂αX I∂αX I − iψ̄ Iγ α∂αψ

I
μ − BIBI). (22.29)

Note that BI vanishes by its equations of motion.
Finally, note that, in the NS sectors, the boundary conditions explicitly break the world-

sheet supersymmetry; they map bosonic fields into fermionic fields and vice versa, and
these fields obey different boundary conditions. The Ramond sector is supersymmetric.

In the covariant formulation, this supersymmetry is essential to an understanding of the
full set of constraints on the states. But it is important to stress that it is a symmetry of the
world-sheet theory; its implications for the theory in space–time are subtle.

22.5 The spectra of the superstrings

We have, so far, considered first the world-sheet structure of the superstring theories. We
have not yet explored their spectra in detail. As in the case of the bosonic string, we will see
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324 The superstring

that these theories possess a massless graviton. We will also find that they have a massless
spin-3/2 particle, the gravitino. For the couplings of such a particle to be consistent requires
that the space–time theory is supersymmetric.

22.5.1 The normal-ordering constants

First, we give a general formula for the normal-ordering constant. This is related to the
algebra of the energy–momentum tensor we discussed in Section 21.4. For a left- or right-
moving boson, with modes which differ from an integer by η (e.g. the modes are 1 − η,
2 − η etc.), the contribution to the normal-ordering constant is

� = − 1
24

+ 1
4
η(1 − η). (22.30)

For fermions, the contribution is the opposite. So we can recover some familiar results. In
the bosonic string, with 24 transverse degrees of freedom, we see that the normal-ordering
constant is −1. For the superstring, in the NS–NS sector (see below) we have a contribution
of −1/24 for each boson and 1/24 − 1/16 for each of the eight fermions on the left (and
similarly on the right). So the normal-ordering constant is −1/2. For the RR sector, the
normal-ordering constant vanishes.

There are simple derivations of the above formula, whose justification requires careful
consideration of conformal field theory. The normal-ordering constant is just the vacuum
energy of the corresponding two-dimensional free-field theory. So we need

f(η) = 1
2

∞∑
1
(n + η). (22.31)

Ignoring the fact that the sum is ill-defined, we can shift n by one and compensate by a
change in η:

f (η) = f (η + 1)+ η

2
. (22.32)

If we assume that the result is quadratic in η, we recover the formula above, up to a
constant. We can “calculate” this constant by the following trick, known as zeta function
regularization. For η = 0 we need

∞∑
n=1

n = lim
s→−1

∞∑
n=1

n−s. (22.33)

The object on the right-hand side of this equation is ζ(s), the Riemann zeta function. The
analytic structure of this function is something of great interest to mathematicians, but one
well-known fact is that its singularities lie off the real axis. Using integral representations
one can derive a standard result: ζ(−1) = −1/12. This fixes the constant as −1/24. This
argument may (or should) appear questionable to the reader. The real justification comes
from considering questions in conformal field theory.
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325 22.5 The spectra of the superstrings

22.5.2 The different sectors of the Type II theory

In the Type II theory there are four possible choices of boundary condition: NS for both
left and right movers, Ramond for both left and right movers, Ramond for left and NS for
right and NS for left and R for right. We will refer to these as the NS–NS, R–R, R–NS
and NS–R sectors. Consider, first, the NS–NS sector. There are no zero-mode fermions,
so we just have a normal (unique) ground state for the oscillators. From our computation
of the normal ordering constants in the previous section, we see that a = −1/2 for both
left and right movers. The lowest state is simply the state | �p 〉. It has mass-squared −1 (in
units with α′ = 2). Since no oscillators are excited, the L0 = L̃0 condition is satisfied. Now
consider the first excited states; again, we must have invariance under σ translations, so
these are the states

ψ I−1/2ψ̃
J−1/2| �p 〉. (22.34)

Because a = −1/2 for both left and right movers, these states are massless. The symmetric
combination here contains a scalar and a massless spin-2 particle, the graviton; the
antisymmetric combination is an antisymmetric tensor field. At the next level we can create
massive states using four space–time fermions or two bosons or two fermions and one
boson.

Now let us turn to the other sectors. Consider, first, the R–NS sector, whereψ is Ramond
and ψ̃ is NS. Now, the left-moving normal-ordering constant is zero, while the right-
moving constant is −1/2. So we can satisfy the level-matching condition (invariance under
σ translations) if we take the left movers to be in their ground state and take the right-
moving NS state to be an excitation with a single fermion operator above the ground state,
i.e. ∣∣�I

a
〉 = ψ̃ I−1/2|a �p 〉. (22.35)

From the space–time viewpoint, these are particles of spin-3/2 and 1/2. In the NS–R sector,
we have another spin-3/2 particle.

Just as a massless spin-2 particle requires that the underlying theory be generally
covariant, a massless spin-3/2 particle, as we discussed in the context of four-dimensional
field theories, requires space–time supersymmetry. But now we seem to have a paradox.
With space–time supersymmetry we cannot have tachyons, yet our lowest state in the
NS–NS sector, | �p 〉, is a tachyon.

The solution to this paradox was discovered by Gliozzi, Scherk and Olive, who argued
that it is necessary to project out states, i.e. to keep only states in the spectrum which
satisfy a particular condition. This projection, which yields a consistent supersymmetric
theory, is known as the GSO projection. Note, first, that we have been a bit sloppy with
the fermion indices on the ground states. We have two types of fermion indices, a and ȧ,
corresponding to the two spinor representations of O(8). So we do the following. We keep
only states on the left which are odd under the left-moving world-sheet fermion number;
we do the same on the right but we include in the definition of the world-sheet fermion
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number the chirality of the zero-mode states. We take

(−1)F = exp (iπγ 9) exp

⎛⎝iπ
∞∑
1/2
ψnψ−n

⎞⎠. (22.36)

In the R–NS sector we make a similar set of projections. Here we have a choice,
however, in which chirality we take. If we project on states of opposite (−1)F then we
get the Type IIA theory; if we take the same chirality, we get the Type IIB theory.

Returning to the NS–NS sector we make a similar projection, keeping only states which
are odd under both left- and right-moving fermion number. In this way we eliminate the
would-be tachyon in this sector.

Somewhat more puzzling is the R–R sector in each theory. Here both the left- and right-
moving ground states are spinors. So, in space–time the states are bosons. We can organize
them as tensors by constructing antisymmetric products of γ -matrices, γ ijk···. As we know
from our experience in four dimensions these form irreducible representations, in this case
of the little group O(8). Thinking of our construction of the γ -matrices in terms of the as,
we can see that γ s with even numbers of indices connect states of opposite chirality while
those with odd numbers of indices connect states with the same chirality. Which tensors
appear depends on whether we consider the IIA or IIB theories. In the IIA case, only the
tensors of even rank are non-vanishing. These tensors correspond to field strengths (one can
consider an analogy with the magnetic moment coupling in electrodynamics, ψ̄γ μνψ). So,
in the IIA theory one has second- and fourth-rank tensors; the sixth- and eighth-rank field
strengths are dual to these. In terms of gauge fields there are a one-index tensor (a vector)
and a third-rank antisymmetric tensor. In the IIB theory, there are a scalar, a second-rank
tensor and a fourth-rank tensor. In string perturbation theory, because the couplings are
through the field strengths, there are no objects carrying the fundamental charge. Later we
will see that there are non-perturbative objects, D-branes, which do carry these charges.

22.5.3 Other possibilities: modular invariance and the GSO projection

The reader may feel that the choices of projections, and for that matter the choices of
representations for the two-dimensional fermions, seem rather arbitrary. It turns out that
the possible choices, at least for flat background space–times, are highly restricted. There
are only a few consistent theories. Those we have described are the only ones without
tachyons but with both left- and right-moving supersymmetries on the world sheet.

In the bosonic string theory, we saw that it is crucial that the theory be formulated
in 26 dimensions. One problem with the theory outside 26 dimensions is that it is not
modular invariant. This means that it is not invariant under certain global two-dimensional
general coordinate transformations. This world-sheet anomaly is correlated with anomalies
in space–time. As for the gauge anomalies in field theories, these lead to breakdown of
unitarity, Lorentz invariance or both.

For the superstring theories we will now explain why modular invariance demands a
projection like the GSO projection. The point is that modular transformations relate sectors
with different choices of boundary condition.
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327 22.5 The spectra of the superstrings

In our discussion of string theories up to this point, path integrals have appeared only
occasionally, but they are extremely useful in discussing string perturbation theory. The
propagation of strings can be described by a two-dimensional path integral over the string
coordinates, Xμ(σ , τ), weighted by e−S, where S is the string action. At tree level the
closed-string world sheet has the topology of a sphere. At one loop it has the topology
of a torus. So, at one loop, string amplitudes can be described as path integrals of a two-
dimensional field theory on a torus. Note that we need here the full path integral, not
simply the generator of the Green’s function for the field theory. The path integral on
the torus, with no insertion of vertex operators, yields the partition function of the two-
dimensional field theory. To understand this, let us consider the fermion partition function.
Actually, there are several fermion partition functions. We begin with a single right-moving
Majorana fermion and take, first, Neveu–Schwarz boundary conditions. There are two sorts
of partition function we might define. First,

Tr qL0 =
∞∏

r=1/2
(1 + q r). (22.37)

Alternatively,

Tr (−1)Fq L0 =
∞∏

r=1/2
(1 − q r). (22.38)

From a path integral point of view, the first expression is like a standard thermal partition
function. It can be represented as a path integral with antiperiodic boundary conditions in
the time direction. The second integral corresponds to a path integral with even boundary
conditions for fermions in the time direction. We can represent the torus as in Fig. 21.2.
Taking the vertical direction to be the time direction and the horizontal direction the space
direction, we can indicate the boundary conditions with plus and minus signs along the
sides of the square. Recalling the action of modular transformations on the torus, however,
we see that the modular group mixes up the various boundary conditions. Not only does it
mix the temporal boundary conditions, it mixes the spatial boundary conditions as well.

It will be convenient for much of our later analysis to group the fermions in complex
pairs. In the present case this grouping is rather arbitrary, say �1 = ψ1 + iψ2 and so on.
Then the partition functions can be conveniently written in terms of ϑ functions. These
functions, which have been extensively studied by mathematicians, transform nicely under
modular transformations:

ϑ

[
θ

φ

]
(0, τ) = η(τ)e2π iθφqθ

2/2−1/24
∞∏

m=1

(
1 + e2π iφqm+θ−1/2)

× (
1 + e−2π iφqm−θ−1/2). (22.39)

Under τ → τ + 1,

ϑ

[
θ

φ

]
(0, τ + 1) = eiθ2−θ−θφϑ

[
θ

φ − θ
]
(0, τ), (22.40)
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while, under τ → −1/τ ,

ϑ

[
θ

φ

]
(0, 1/τ) = e2π iθφϑ

[−φ
θ

]
(0, τ). (22.41)

These transformation properties have a physical interpretation. Returning to
Eqs. (21.125)–(21.127), the transformation τ → − 1/τ exchanges the time and space
directions of the torus. So these transformations interchange sectors with a given projection
(the multiplication of states by a given phase) with states with a twist in the space direction.
This is precisely what one would expect from a path integral, where boundary conditions
in the time direction correspond to the weighting of states with (symmetry) phases.

Setting

Zαβ (τ ) = 1
η(τ)

ϑ

[
α/2
β/2

]
(0, τ), (22.42)

the partition function for the eight fermions in the NS sector is (Z 1
0 )

4, for example. If we
include a factor (−1)F, this is replaced by (Z 1

1 )
4. We can work out similar expressions for

the Ramond sector. From our expression for the transformation of the ϑ functions, it is
clear that none of these is modular invariant by itself, as we would expect from our path
integral arguments. So it is necessary to combine them and include also the eight bosons.
When we do, we have the possibility of including minus signs (in more general situations,
as we will see later, we will have more complicated possible phase choices). There are a
finite number of possible choices. Two that work are

Z ± = 1
2

[
Z 0

0(τ )
4 − Z 0

1 (τ )
4 + Z 1

0 (τ )
4 ∓ Z 1

1(τ )
4
]

. (22.43)

These transform simply under the modular transformations; all the terms transform to each
other, up to an overall factor. There is a similar factor from the left-moving fermions (where
one need not, a priori, take the same phase). Recall that the bosonic partition function is

ZX(τ ) = (4πα′τ2)
−1/2|η(q)|−2. (22.44)

Here the η function comes from the oscillators. The τ2 factors come from the integration
over the momenta. There are two additional such factors, coming from the integrals over
the two light cone momenta. So the full partition function is

Z = C
∫ d 2τ

τ 2
2

Z 8
XZ +(τ )Z ±(τ )∗. (22.45)

It is not hard to check that this expression is modular invariant.
If we examine the partition function carefully, we see that we have uncovered the GSO

projection. Consider the first two terms in Z ±. They amount to just

Tr[1 − (−1)F]NS, (22.46)
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i.e. the physical states of the theory, in the NS sector, are only those of odd fermion number.
There is a similar projector in the Ramond sector. The two possible choices of left- relative
to right-moving Zs correspond precisely to the two possible supersymmetric string theories.
Our original argument for the GSO projector was consistency in space–time, but here we
have a more direct, world-sheet, consistency argument.

These are the only choices of phases which lead to supersymmetric strings in ten
dimensions. However, there are other choices which lead to non-supersymmetric strings.
These give what has come to be known as the Type 0 superstring. We will leave
consideration of these theories to the exercises.

22.5.4 More on the Type I theory: gauge groups

In our discussion of the bosonic string theory, we mentioned that one can obtain non-
Abelian gauge groups by allowing charges at the ends of the strings. There is an infinite
set of possibilities, which we have not explore, as all these theories have other problematic
features if one is trying to describe nature.

In the case of open superstrings, it turns out that the possible structures are quite
constrained. First, it is necessary to include closed strings as well, in order to obtain a
unitary theory. This can be seen by considering the scattering of four open strings. By
stretching the diagram of Fig. 22.1 one can see that closed strings appear in intermediate
states. These strings cannot be oriented. This leads to a different structure in the closed
string sector from what we saw in the IIA or IIB theories. It is necessary to require that
states be symmetric under the exchange of left- and right-moving quantum numbers. We
will discuss the required projection later when we talk about D-branes and orientifold
planes.

Second, it turns out that the absence of anomalies fixes uniquely the gauge symmetry
as O(32). From the point of view of our experience with four-dimensional anomalies this
is somewhat surprising, but it turns out that in ten dimensions supergravity by itself can
be anomalous, and this is the case for the open string. Allowing for charges at the end
of the string leads to a set of additional mixed gauge and gravitational anomalies. Almost
miraculously, if one takes the ends of the string to lie in the vector representation of O(32),
all anomalies cancel.

Fig. 22.1 Deforming the diagram for open-string scattering reveals an intermediate closed-string state.
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22.6 Manifest space–time supersymmetry: the Green–Schwarz
formalism

In the Ramond–Neveu–Schwarz formalism, space–time supersymmetry is obscure. It only
arises after imposing the GSO projector. The supersymmetry operators must connect
the different sectors, which are essentially different two-dimensional field theories. Such
operators can be constructed, although we will not do that in this text. Instead, we
consider in this section a different formalism, the Green–Schwarz formalism, in which
the space–time supersymmetry is manifest. This formalism is best understood in the light
cone gauge.

In the Green–Schwarz formalism one still has the bosonic coordinates X I, but the
eight fermionic coordinates ψ I in the vector representation of O(8) are replaced by eight
fermionic coordinates in a spinor representation of O(8) (we have already seen that O(8)
possesses two spinor representations, of opposite chirality). These are usually written as
Sa(σ , τ). Their Lagrangian is

Lgs = i
2π

S̄ aρα∂αS a, (22.47)

where we have written the Ss as two component fermions and ρα denotes the two-
dimensional γ -matrices. The Sas can be taken as real (Majorana). They can be decomposed
into left and right movers, S±. Unlike the case of RNS fermions, for both closed and open
strings one has only one boundary condition. As in the case of the RNS fermions, for open
strings the boundary conditions relates the left and right movers:

S a+(0, τ) = S a−(0, τ), S a+(π , τ) = S a−(π , τ). (22.48)

For closed strings one simply has a periodicity condition,

S a±(σ + π , τ) = S a±(σ , τ). (22.49)

The mode expansions, in the case of closed strings, are

S a+ =
∞∑

−∞
S a

n e−2in(τ−σ),

S a− =
∞∑

−∞
S̃ a

n e−2in(τ+σ). (22.50)

The Sns obey the anticommutation relations{
S a

n , Sb
m
} = δabδm+n,

{
S̃ a

n , S̃b
m
} = δabδm+n. (22.51)

For non-zero n these are canonical fermion creation-and-annihilation-operator anticommu-
tation relations. Because of their quantum numbers, the Ss, acting on space–time bosonic
states, produce fermionic states and vice versa.
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331 22.6 Manifest space–time supersymmetry

The light cone Hamiltonian, in terms of these fields, takes the form:

H = 1
2p+ [(pI)2 + N + Ñ], (22.52)

where

N =
∞∑

m=1

(
αI−mα

I
m + mS a−mS a

m
)
, Ñ =

∞∑
m=1

(
α̃I−mα̃

I
m + mS̃ a−mS̃ a

m
)
. (22.53)

Note that there is no normal-ordering constant; more precisely, the normal-ordering
constants associated with the left- and right-moving fields vanish, because the contributions
of the bosonic and fermionic fields cancel (as they do in the Ramond sector of the
superstring).

As in the Ramond sectors of the superstring theories, the anticommutation relations of
the zero modes are important and interesting:{

S a
0 , S b

0
} = δab. (22.54)

Again they are similar to the anticommutation relations of Dirac γ -matrices, but now the
indices are different from the RNS case. The solution is to allow S0 to act on 16 states,
eight of which carry spinor labels, ḃ, and eight of which carry O(8) vector labels, I. Then〈

I
∣∣S a

0
∣∣ḃ〉 = γ I

aḃ. (22.55)

We will leave the verification of this relation for the exercises and proceed directly to the
identification of the massless states of the closed-string theories. The IIA and IIB theories
are distinguished by the relative helicities of the S and S̃ fields. In the IIA case they are
opposite; in the IIB case, the same. The massless fields are obtained just by tensoring the
left and right states of the zero modes. The states

εIJ|I 〉|J 〉 (22.56)

are the graviton, B-field and dilaton; the states where I → a or J → a are the two gravitini
of the theory; those where both I and J are replaced by spinor indices are the states that we
discovered in the Ramond–Ramond sector of the superstring theories.

In this formalism the space–time supersymmetry is manifest. There are two sets of
supersymmetry generators. One generates not only space–time supersymmetries, but
world-sheet supersymmetries as well. This is as it should be; the world-sheet Hamiltonian
in the light cone gauge is also the space–time Hamiltonian,

Q ȧ = 1√
P+ γ

I
a,ȧ

∞∑
−∞

S a−nα
I
n. (22.57)

The second set is built of the zero modes alone:

Q a = √
2P+S a

0 . (22.58)
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332 The superstring

The supersymmetry generators obey the commutation relations:

{Q a, Q b} = 2P+δab, (22.59)

{Q a, Qȧ} = √
2γ I

aȧP I, (22.60)

{Q ȧ, Q ḃ} = 2Hδȧḃ. (22.61)

The manifest supersymmetry and the close connection between world-sheet and space–
time supersymmetries make the Green–Schwarz formalism a powerful tool, both concep-
tually and computationally, despite its lack of manifest Lorentz invariance.

22.7 Vertex operators

Because there are more world-sheet fields in the superstring than in the bosonic string,
the vertex operators are more complicated. In the RNS formalism, the supersymmetry on
the world sheet is a relic of a larger, local, supersymmetry, much as conformal invariance
is a relic of the general coordinate invariance of the two-dimensional supersymmetry.
The resulting superconformal symmetry provides constraints on vertex operators beyond
those of the Virasoro algebra. These constraints can be implemented in a variety of ways,
depending on how one treats the superconformal ghosts. In the simplest version, the vertex
operators must be supersymmetric. In the case of the Type II theories, the vertex operators
must respect both the left- and right-moving supersymmetries. For the massless fields of
the Type II theory, for example,

V = εμν(∂̄Xμ − ikρψρψμ)(∂̄X ν − ikσ ψ̃σ ψ̃ν)eik·x. (22.62)

Here ε is subject to the constraint kμεμν = 0. Depending on the symmetries of ε, the vertex
operator describes the production of gravitons, dilatons or antisymmetric tensor fields. It
is straightforward to check that the coupling of three gravitons is that expected from the
Einstein Lagrangian.

In the Green–Schwarz formalism, it is Lorentz invariance which governs the form of
the vertex operators. As in the covariant formulation, the vertex operators in the Type II
theory are products of separate vertex operators for the left and the right movers, with eik · x

factors. These products have the structure

VB = ζμνBμB̃νeik · X, (22.63)

where

B I = ∂X I − R IJk J, B+ = p+ (22.64)

and, from the light cone gauge condition, ζμ+ = 0. Here

R IJ = 1
4
γ IJ

abS aS b. (22.65)
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In the Green–Schwarz approach, it is no more difficult to deal with vertex operators for
fermions than those for bosons. The polarizations ζμν are replaced by polarizations with
one or two spinor indices. Then, as appropriate, one replaces the Bμs with fermionic
operators, Fa and Fȧ. We will not give these here, as we will not need them in the text,
but they can be found in the references. In the covariant approach, more conformal field
theory machinery is required to construct fermion emission operators.

Suggested reading

The superstring is well treated in various textbooks. Green et al. (1987) focuses heavily
on the light cone formulation; Polchinski (1998) focuses on the RNS formulation. Both
provide a great deal of additional detail, including the construction of vertex operators and
S-matrices in the two formalisms. A concise and quite readable introduction to the problem
of fermion vertex operators in the RNS formulation is provided by the lectures of Peskin
(1987).

Exercises

(1) Consider the R–R sectors of the IIA and IIB theories, and study the objects

ūγ IJK···u.

Show that, in the IIA case, only even-rank tensors are non-vanishing while in the IIB
theory only the odd-rank tensors are non-vanishing. Phrase this in the language of ten
dimensions rather than the eight light cone dimensions. To do this consider a particle
moving along the direction x9, and show that the Dirac equation correlates chirality in
ten dimensions with chirality in eight. To do this, you may want to make the following
choice of �-matrices:

�0 = σ2 ⊗ I16, �i = iσ1 ⊗ γ i, �9 = iσ3 ⊗ I16. (22.66)

(2) Write down the Green–Schwarz Lagrangian in a superspace formulation. Show that
Qȧ is the supersymmetry generator expected in this approach. Construct the symmetry
generated by Qa, and show that this has the structure of a non-linearly realized
(spontaneously broken) supersymmetry. Can you offer some interpretation?

(3) Verify that, with the choice of Eq. (22.55), the zero modes of the Green–Schwarz
operators S a obey the correct anticommutation relations.

(4) Verify the expression for the partition function for the Type II theories. Show that it is
modular invariant. Consider a different choice, which defines the type-0 superstring,∣∣Z 0

0
∣∣8 + ∣∣Z 0

1
∣∣8 + ∣∣Z 1

0
∣∣8 ∓ ∣∣Z 1

1
∣∣8. (22.67)
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334 The superstring

Attempt to verify that this is also modular invariant, but at least show that the spectrum
does not include a spin-3/2 particle.

(5) Verify that the operator product of two graviton vertex operators in the RNS formalism
yields the correct on-shell coupling of three gravitons. Remember the gauge condition
in this analysis. The three-graviton vertex in Einstein’s theory can be found, for
example, in Sannan (1986).
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