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The linear dynamics of perturbations developing in an infinite channel with compliant
walls is investigated for pulsatile flow conditions. Two-dimensional modal perturbations
are considered for Womersley-type pulsating base flows and the wall motion is only
allowed in the normal direction. It is found that the flow dynamics is mainly governed by
four control parameters: the Reynolds number Re, the reduced velocity VR, the Womersley
number Wo and the amplitude of the base-flow modulation Q̃. Linear stability analyses are
carried out within the framework of Floquet theory, implementing an efficient approach for
removing spurious eigenmodes. The characteristics of flow-based (Tollmien–Schlichting)
and wall-based (both travelling-wave flutter and divergence) modes are investigated over
a large control-parameter space. It is shown that travelling-wave flutter (TWF) modes are
predominantly influenced by the reduced velocity and that the Reynolds number has only a
marginal effect. The critical reduced velocity (corresponding to onset of linear instability)
is demonstrated to depend both on the Womersley number and modulation amplitude for
a given set of wall parameters. Similarly to the steady flow case, the Tollmien–Schlichting
(TS) mode is also found to be only weakly affected by the flexibility of the wall in
pulsatile flow conditions. Finally, the classification given by Benjamin (J. Fluid Mech.,
vol. 16, 1963, pp. 436–450) is found to be too restrictive in the case of pulsatile base
flows. In particular, a new type of mode is identified that shares characteristics of two
distinct Floquet eigenmodes: TS and TWF modes. Due to coupling of the different
Floquet harmonics, a phenomenon specific to time-periodic base flows, this two-wave
mode exhibits a beating over the intracyclic dynamics.
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1. Introduction

Pulsating flows in pipe or channel flows are laminar provided that the Reynolds numbers
are sufficiently low, as is largely the case for vast parts of the cardiovascular system. In the
large arteries, however, blood flow may experience instability, generating large fluctuating
shear stresses, which are a possible cause for cardiovascular diseases (Chiu & Chien 2011).
The compliance of arteries plays a major role in blood transport, such as maintaining blood
pressure and regularising the flow rate (Ku 1997). The flexibility of the aorta is also a key
element in minimising pressure fluctuations of blood provided by the left ventricle and
distributing oxygen-rich blood through capillaries (O’Rourke & Hashimoto 2007). For
these reasons, both flexible walls and pulsatile flow are ubiquitous in the physiological
context. When a pulsatile flow interacts with compliant walls, a better analysis of the
development of instabilities is therefore required in order to improve our understanding of
the link between wall-shear-stress distributions and flow dynamics.

The theory of viscous flow interacting with compliant walls has come a long way from
Gray’s (1936) initial observations of the outstanding performance of dolphin skins in
delaying turbulence, to the recent review of Kumaran (2021) enlightening us on the various
instability mechanisms. In the 1950s, Kramer conducted pioneering tests in water by
towing a dolphin-shaped object covered with viscoelastic materials of varying compliance
(Kramer 1957). The author shows that the compliant coating leads to a significant drag
reduction and suggests that the dolphin’s secret originates in the laminarisation of the flow
due to its skin material.

On one hand, several researchers tried and failed to replicate Kramer’s experiments;
see Gad-el-Hak (1986, 1996) for reviews. On the other hand, theoretical results of
Carpenter & Garrad (1985) extend the first analytical studies developed by Benjamin
(1959, 1960, 1963) and Landahl (1962) and demonstrate that a suitable choice of wall
properties could control the onset of the primary instability mode of a flat-plate boundary
layer, the so-called Tollmien–Schlichting (TS) mode. However, it is also suggested that
the emergence of wall-based instability modes due to fluid–structure interactions (also
referenced as flow–structure instabilities, FSI) can limit the potential of laminarisation of
the flow (Carpenter & Garrad 1986). The FSI modes can be divided into two categories:
the travelling-wave flutter (TWF) modes and the (almost static) divergence (DIV) modes.
The onset of the DIV mode only occurs for a certain amount of wall dissipation (see
Lebbal, Alizard & Pier (2022) for a recent investigation). While the physics of TWF
modes is fairly well understood using an analogy with the onset of water waves (Miles
1957), scientists are still arguing about the physical mechanism behind the DIV mode
(either absolute or convective instabilities with a low phase velocity). The first successful
experiment to reproduce Kramer’s findings was given by Gaster (1988).

Several attempts to classify instability modes in the presence of fluid–structure
interactions were made since the seminal study of Benjamin (1963) for a boundary-layer
flow developing on either a wavy boundary or an elastic material with given stiffness, mass
and damping. In particular, three types of instability mechanism have been considered: TS
modes belong to class A, TWF modes are associated with class B and class C modes
correspond to almost steady waves, i.e. the DIV mode (see Davies & Carpenter (1997a,b)
for the channel-flow case). Apart from these modes, a transition mode is also found by Sen
& Arora (1988), resulting from the coalescence between a TS mode and a TWF mode. For
instance, Davies & Carpenter (1997a) have shown that the transition mode could develop
inside a flow between a compliant channel for a sufficiently high level of wall damping.
For the same flow case, we have recently shown that, while class B modes are mainly
driven by the reduced velocity, which corresponds to the ratio of characteristic wall and
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Linear instabilities of pulsatile plane channel flow

advection time scales, the class C mode is influenced by both the Reynolds number and
the reduced velocity (Lebbal et al. 2022).

Independently of studies assessing the optimal properties of wall coating to delay
transition to turbulence in wall-bounded flows, the stability of pulsatile flow with respect
to viscous shear instability modes has been theoretically addressed since the middle of
the 1970s (Davis 1976). In comparison with steady flows, pulsatile flows are governed
by additional control parameters: the pulsation amplitudes and the pulsating frequency,
of which the Womersley number Wo is a non-dimensional measure (see its definition in
(3.6a–c) below). In physiological situations, typical Womersley numbers for large blood
vessels are in the range 5–15 (Ku 1997). Within a Floquet theory framework, von Kerczek
(1982) shows that the sinusoidally pulsating flow developing between two flat plates is
more stable than the steady plane Poiseuille flow for Womersley numbers in excess of
Wo = 12. This result was confirmed by direct numerical simulations carried out by Singer,
Ferziger & Reed (1989). Using linear Floquet stability analyses and nonlinear numerical
simulations, Pier & Schmid (2017) explored a large parameter space for the same flow
configuration, confirming and extending the earlier results given by von Kerczek (1982).

On the other hand, several authors (Straatman et al. 2002; Blennerhassett & Bassom
2006) have found that the perturbations may experience a strong increase in kinetic energy
during the deceleration phase of the pulsatile base flow. This suggests that transient
growth mechanisms and nonlinear effects likely come into play during this part of the
pulsation cycle and that the flow could possibly break down to turbulence. Recently, such
a scenario has been further supported by non-modal stability analyses, experiments and
direct numerical simulations for both pipe and channel flows (Xu et al. 2020b; Pier &
Schmid 2021; Xu, Song & Avila 2021).

In spite of major successes achieved so far in the understanding of the dynamics
prevailing for either pulsatile base flows or wall flexibility, only few studies address
these two effects in combination. Among of them, Tsigklifis & Lucey (2017) investigated
numerically the asymptotic linear stability and transient growth for a pulsatile flow
in a compliant channel where both vertical and horizontal displacements are allowed.
Using Floquet stability analyses, Tsigklifis & Lucey (2017) show that wall flexibility
has a stabilising effect for the Womersley number varying from 5 to 50. The combined
effect of wall damping and Womersley number is illustrated by these authors for TS
and TWF modes. The authors also found that the tangential motion of the wall could
be neglected and that the most dangerous perturbation for the asymptotic regime is
always two-dimensional. The non-modal transient growth is shown to be increased by
wall compliance. However, the symmetry of the perturbation is not discussed by these
authors, and it is therefore not clear whether the sinuous or the varicose TWF modes
are investigated. In addition, the DIV mode was not considered by Tsigklifis & Lucey
(2017). For a steady channel flow and similar compliant walls, the DIV mode has been
characterised by Lebbal et al. (2022) and is therefore also expected to occur for the
pulsatile flow case.

Finally, the influence of the reduced velocity on TWF modes has not yet been considered
when the pulsatile base-flow component comes into play and it is not completely clear if
the classification made by Benjamin (1963) still holds for the pulsatile flow case.

To provide further understanding of the above points, the present study addresses the
linear stability properties of small-amplitude perturbations developing in pulsatile flows
through compliant channels. This paper is organised as follows. In § 2, we introduce
the coupled fluid–structure system, and the base flow and non-dimensional control
parameters are given in § 3. The mathematical formulation of the linear stability problem
is presented in § 4. The numerical methods to solve and reduce the generalised eigenvalue
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Figure 1. Channel flow with infinite spring-backed flexible walls. (a) Schematic diagram showing the
equilibrium state configuration and (b) wall deformation and coordinate system.

problem are explained in § 5. Section 6 is devoted to the results and constitutes the main
contribution of the paper: discussion of the spectra, influence of the control parameters
and spatio-temporal structure of the eigenmodes. In particular, specific attention will be
given to providing critical parameters for the onset of instabilities for the different types
of modes (TWF, DIV and TS) and symmetries (sinuous and varicose). In that respect, the
extension of the classification made by Benjamin (1963) for the steady flow to the pulsatile
flow case will be discussed. Finally, in § 7 the conclusions are summarised, an attempt is
made to assess the relevance of the critical parameter values in practical contexts, and
some prospects for future work are given.

2. Fluid–structure interaction model and interface conditions

In the present study, the analysis is restricted to the two-dimensional case. We introduce
the Cartesian coordinate system (x, y) with unit vectors (ex, ey) and consider an
incompressible Newtonian fluid with dynamic viscosity μ and density ρ between two
spring-backed deformable plates located at y = ζ±(x, t) which are allowed to move only
in the wall-normal direction (see figure 1). As suggested by previous theoretical analyses
carried out by Larose & Grotberg (1997) and Tsigklifis & Lucey (2017) for steady and
pulsatile flow cases, respectively, horizontal wall motion only plays a minor role in the
dynamics and is therefore not considered in the present investigation for simplicity of the
model.

The flow between the walls is governed by the incompressible Navier–Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + μΔu, (2.1)

0 = ∇ · u, (2.2)

where u = uex + vey is the velocity field, with streamwise (u) and wall-normal (v) velocity
components and p the pressure field.

The movement of the flexible plates obeys the following equations:

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+
(

B
∂4

∂x4 − T
∂2

∂x2 + K
)

ζ± = f ±, (2.3)
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Linear instabilities of pulsatile plane channel flow

where m denotes the mass per unit area of the plates, d their damping coefficient,
B the flexural rigidity, T the wall tension, K the spring stiffness and f ± represents the
y-component of the hydrodynamic forces acting on the plates. These forces are obtained
as

f ± = ey · f ± with f ± = ( ¯̄τ± − δp±I) · n±. (2.4)

Here, ¯̄τ± denotes the viscous stress tensor at the walls, δp± the transmural surface pressure
and n± = (n±

x , n±
y ) is the unit vector normal to the walls pointing towards the fluid. The

y-component of the normal forces acting on the plate then reads

f ± = μ

(
∂u
∂y

∣∣∣∣
y=ζ±

+ ∂v

∂x

∣∣∣∣
y=ζ±

)
n±

x + 2μ
∂v

∂y

∣∣∣∣
y=ζ±

n±
y − δp±n±

y , (2.5)

with

n±
x = ±∂ζ±

∂x
1√

1 +
(

∂ζ±

∂x

)2
and n±

y = ∓ 1√
1 +

(
∂ζ±

∂x

)2
. (2.6a,b)

Finally, since only vertical displacements are allowed, the no-slip conditions on both
walls lead to the kinematic conditions (Wiplier & Ehrenstein 2000)

u = 0 and v = ∂ζ±

∂t
for y = ζ±. (2.7)

The fluid–structure interaction problem is thus fully defined by the coupling of the fluid
equations (2.1) and (2.2), the wall equations (2.3) and (2.5) and the boundary conditions
(2.7).

3. Base flows and non-dimensional control parameters

A pulsatile base flow, of frequency Ω , is considered. Such a flow is driven by a spatially
uniform and temporally periodic streamwise pressure gradient and is obtained as an
exact solution of the Navier–Stokes equations, assuming a vanishing transmural pressure
difference for the unperturbed state. The base-state solution then consists of undeformed
parallel walls and of a velocity field in the streamwise direction with profiles that only
depend on the wall-normal coordinate and time. It can be expanded as a temporal Fourier
series

U( y, t) = U( y, t)ex with U( y, t) =
∑

−∞<n<+∞
U(n)( y) exp(inΩt). (3.1)

Similarly, the pressure gradient that drives the flow is expanded as

G(t) =
∑

−∞<n<+∞
G(n) exp(inΩt), (3.2)

and is associated with a pulsatile flow rate

Q(t) =
∑

−∞<n<+∞
Q(n) exp(inΩt). (3.3)

In the above expressions, the conditions Q(n) = [Q(−n)]�, G(n) = [G(−n)]� and U(n)( y) =
[U(−n)( y)]� ensure that all flow quantities are real (with � denoting complex conjugation).
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The velocity profile is analytically obtained for each harmonic component. The mean-flow
component U(0)( y) corresponds to a parabolic steady Poiseuille flow solution. For n /= 0,
the profiles U(n)( y) are obtained in terms of exponential functions (Womersley 1955).
Analytical expressions as well as the relationship between U(n)( y) and Q(n) are detailed in
the appendix of Pier & Schmid (2021). In this work, we focus on pulsatile base flows with
a single oscillating component: −1 ≤ n ≤ 1 in (3.1)–(3.3). Without loss of generality, Q(1)

may then be assumed real, and the flow rate is obtained as

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.4)

with the relative pulsating amplitude Q̃ defined as

Q̃ = 2
Q(1)

Q(0)
. (3.5)

The problem is then characterised by 11 dimensional parameters: the mean flow
rate [Q(0)] = m2 s−1, the half-channel width [h] = m, the fluid density [ρ] = kg m−3,
the viscosity [μ] = kg s−1 m−1, the mass of the plate per unit area [m] = kg m−2,
the damping coefficient of the wall [d] = kg m−2 s−1, the bending stiffness of the
plate [B] = kg m2 s−2, the wall tension [T] = kg s−2, the spring stiffness [K] =
kg m−2 s−2, the pulsation frequency [Ω] = s−1 and the amplitude of the oscillating flow
component [Q(1)] = m2 s−1. Hence, the present configuration may be described by eight
non-dimensional control parameters.

The base flow is characterised by three non-dimensional parameters

Re = Q(0)

ν
, Wo = h

√
Ω

ν
and Q̃ = 2

Q(1)

Q(0)
. (3.6a–c)

Here, the Reynolds number Re is based on the average fluid velocity, the channel diameter
and the kinematic viscosity ν = μ/ρ; the Womersley number Wo is a measure of the
pulsation frequency and can be interpreted as the ratio of the channel half-diameter h to
the thickness δ = √

ν/Ω of the oscillating Stokes boundary layers.
The parameters associated with the walls are non-dimensionalised with respect to the

spring stiffness K, which leads to

B∗ = B
Kh4 , T∗ = T

Kh2 and d∗ = d√
mK

. (3.7a–c)

Finally, two non-dimensional parameters account for the coupling between the fluid and
the compliant walls

VR = Q(0)

4h2

√
m
K

and Γ = m
ρh

. (3.8a,b)

The reduced velocity VR represents the ratio of the wall characteristic time scale τK =√
m/K, associated with the spring stiffness, to the characteristic flow advection time scale

τQ = 4h2/Q(0) (de Langre 2000). The parameter Γ is the mass ratio between the walls
and the fluid.

Unperturbed base configurations are thus completely specified by the 8 non-dimensional
control parameters (3.6a–c)–(3.8a,b). We further use ρ = 1, h = 1 and Q(0) = 1 to
uniquely determine dimensional quantities. Hereafter, to reduce the dimensionality of
control-parameter space, the mass ratio is kept constant at Γ = 2 and we consider walls
without tension T = 0.
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4. Linear stability analysis

For the stability analysis, the total flow fields are decomposed as the superposition of base
and small-amplitude perturbation fields

u(x, y, t) = U( y, t) + u′(x, y, t), (4.1)

p(x, y, t) = G(t)x + p′(x, y, t). (4.2)

The wall displacement is similarly written as

ζ±(x, t) = ±h + η±′(x, t). (4.3)

Since the base configuration is homogeneous in x, perturbation fields may be expressed as
spatial normal modes

u′(x, y, t) = ũ( y, t)eiαx + c.c., (4.4)

p′(x, y, t) = p̃( y, t)eiαx + c.c., (4.5)

η±′(x, t) = η̃±(t)eiαx + c.c., (4.6)

where α denotes the streamwise wavenumber and c.c. stands for the complex conjugate.
Introducing this decomposition into the governing equations (2.1)–(2.3) and neglecting
the quadratic terms leads to the following system of coupled linear partial differential
equations:

∂ ũ
∂t

= −iαU( y, t)ũ − ∂U
∂y

( y, t)ṽ − 1
ρ

iαp̃ + ν

(
∂2

∂y2 − α2
)

ũ, (4.7)

∂ṽ

∂t
= −iαU( y, t)ṽ − 1

ρ

∂ p̃
∂y

+ ν

(
∂2

∂y2 − α2
)

ṽ, (4.8)

0 = iαũ + ∂ṽ

∂y
, (4.9)

m
∂γ̃ ±

∂t
= −dγ̃ ± − (Bα4 + Tα2 + K)η̃± ± p̃( y, t)|±h ∓ μ

dṽ

dy

∣∣∣∣±h
, (4.10)

where we have introduced the additional functions γ̃ ± = ∂tη̃
± in order to reduce the

system to first-order differential equations in time. Note that the wall equations (4.10)
assume a pressure outside the channel walls always equal to the unperturbed pressure
G(t)x prevailing inside (see Lebbal et al. (2022) for further details). The same assumption
has been made by Davies & Carpenter (1997a,b), Tsigklifis & Lucey (2017) and many
others. The effect of the transmural pressure for collapsible channels has been investigated
by Luo & Pedley (1996) and Xu et al. (2020a) and is out the scope of the present study.

The boundary conditions at the perturbed interface are expanded in a Taylor series about
their equilibrium values at y = ±h (Domaradzki & Metcalfe 1986; Davies & Carpenter
1997a; Shankar & Kumaran 2002). At linear order, the flow velocities at the walls are
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obtained as

u(x, y = ζ±, t) = u′(x, y = ±h, t) + η±′(x, t)
dU
dy

∣∣∣∣
( y=±h,t)

ex. (4.11)

Thus, the boundary conditions (2.7) become

ũ( y = ±h, t) + η̃±(t)
dU
dy

∣∣∣∣
( y=±h,t)

= 0 and ṽ( y = ±h, t) = γ̃ ±(t). (4.12a,b)

Since the base flow is time periodic, the linear stability analysis proceeds by following
Floquet theory, where the eigenfunctions are assumed to have the same temporal
periodicity as the base flow. The perturbations are therefore further decomposed as

ũ( y, t) =
[∑

n

û(n)( y) exp (inΩt)

]
exp (−iωt), (4.13)

p̃( y, t) =
[∑

n

p̂(n)( y) exp (inΩt)

]
exp (−iωt), (4.14)

η̃±(t) =
[∑

n

η̂±(n) exp (inΩt)

]
exp (−iωt), (4.15)

γ̃ ±(t) =
[∑

n

γ̂ ±(n) exp (inΩt)

]
exp (−iωt), (4.16)

where the complex frequency ω = ωr + iωi is the eigenvalue, with ωi the growth rate and
ωr the circular frequency. After substitution of these expansions, the linearised equations
governing the dynamics of small perturbations take the following form, for each integer n:

ωû(n)( y) = [nΩ + iν(∂yy − α2)]û(n)( y) + α

ρ
p̂(n)( y)

+
∑

k

[
αU(k)( y)û(n−k)( y) − i

dU(k)

dy
v̂(n−k)( y)

]
, (4.17)

ωv̂(n)( y) = [nΩ + iν(∂yy − α2)]v̂(n)( y) + 1
ρ

dp̂(n)

dy

+
∑

k

[αU(k)( y)v̂(n−k)( y)], (4.18)

0 = iαû(n)( y) + ∂v̂(n)

∂y
, (4.19)

ωη̂±(n) = nΩη̂±(n) + iγ̂ ±(n), (4.20)

ωγ̂ ±(n) = nΩγ̂ ±(n) − i
d
m

γ̂ ±(n) − i
m

(Bα4 + Tα2 + K)η̂±(n)

± i
m

(
p̂(n)(±h) − μ

dv̂(n)

dy

∣∣∣∣∣±h

)
, (4.21)
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together with the kinematic wall conditions

û(n)(±h) = −
∑

k

dU(k)

dy

∣∣∣∣∣
±h

η̂±(n−k), (4.22)

v̂(n)(±h) = γ̂ ±(n). (4.23)

Note that, in (4.17), (4.18) and (4.22), the summation only involves −1 ≤ k ≤ +1 for
harmonically pulsating base flows.

The system of coupled linear differential equations (4.17)–(4.21) with boundary
conditions (4.22) and (4.23) forms the generalised eigenvalue problem that governs
the dynamics of small-amplitude perturbations developing in this time-periodic
fluid–structure interaction system.

5. Numerical methods

In this section, we outline the numerical strategy that has been implemented for
solving the generalised Floquet eigenvalue problem derived in the previous section. The
main objectives in this implementation are the elimination of spurious (non-physical)
eigenvalues and the reduction of the required computational effort. To that purpose, we
follow the general framework described by Manning, Bamieh & Carlson (2007), who have
also suggested an interest in the proposed method for handling fluid–structure interaction
problems.

The velocity and pressure components are discretised in the wall-normal direction using
a Chebyshev collocation method. To suppress spurious pressure modes, we consider the
(PN, PN−2)-formulation, where the pressure is approximated with a polynomial of degree
N − 2 while the velocity is discretised with a polynomial of degree N (Schumack, Schultz
& Boyd 1991; Boyd 2001; Peyret 2002). In classical fashion, velocity fields are therefore
represented by their values over N Gauss–Lobatto collocation points spanning the entire
channel diameter and including the boundary points, while the pressure fields use only the
N − 2 interior points. We note the vectors containing the unknown velocity and pressure
components at the interior points for each Fourier mode

VI
(n) = (û(n)

2 , . . . , û(n)
N−1, v̂

(n)
2 , . . . , v̂

(n)
N−1), (5.1)

PI
(n) = (p̂(n)

2 , . . . , p̂(n)
N−1). (5.2)

Similarly, wall displacements and wall velocities are denoted by

W (n) = (η̂
(n)
1 , η̂

(n)
N , γ̂

(n)
1 , γ̂

(n)
N ). (5.3)

The kinematic conditions (4.22) and (4.23) may be used to express the velocity
values at the boundaries in terms of the wall variables. As a consequence, the variables
û(n)

1 , v̂
(n)
1 , û(n)

N and v̂
(n)
N may be directly eliminated from the problem together with the

boundary conditions. Then, using

X̂ (n) = (VI
(n), PI

(n), W (n)) (5.4)

for each harmonic of the Floquet eigenvector, the system (4.17)–(4.21) is recast as a
generalised algebraic eigenvalue problem of the form

Â(n)X̂ (n) +
∑

k

Ŝ(k)X̂ (n−k) = iωB̂(n)X̂ (n). (5.5)

948 A15-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.658


S. Lebbal, F. Alizard and B. Pier

Here, the square matrices Â(n), Ŝ(k) and B̂(n) are of size (3N − 2)2 and may be written in
block structure as

Â(n) =

⎛
⎜⎝ Â(n)

V V ĜV ÂV W

D̂V 0 D̂W

ÂW V ĜW Â(n)
W W

⎞
⎟⎠ , Ŝ(k) =

⎛
⎝Ŝ(k)

V V 0 Ŝ(k)
V W

0 0 0
0 0 0

⎞
⎠ and

B̂(n) =
⎛
⎝IV V 0 0

0 0 0
0 0 IW W

⎞
⎠ . (5.6a–c)

Their decomposition in terms of square blocks along the diagonal and rectangular blocks
off diagonal reflects the structure of the vectors X̂ (n) (5.4), with 2N − 4 variables for
VI

(n), N − 2 variables for PI
(n) and 4 variables for W (n). Note that the wall equations

involve the pressure at y = ±h; since the pressure is represented on the N − 2 interior
collocation points, these boundary values are obtained by polynomial interpolation with
spectral accuracy, corresponding to two lines of the rectangular block ĜW . In the above
expressions, n may in theory take all integer values (positive and negative) but in practice
the Fourier series are truncated at |n| ≤ Nf for some cutoff value Nf (i.e. the number of
complex Fourier components is then 2Nf + 1).

Note also that the blocks for which the superscript (n) is not indicated in (5.6a–c)
do not depend on a specific harmonic and that the matrix B̂(n) only consists of two
identity blocks. The matrices Ŝ(k) account for the advection terms due to the pulsating
base-flow component U(k)( y) and are responsible for the coupling of the different Fourier
components of the Floquet eigenfunctions. Since we consider pulsating flows with only
a single oscillating component U(±1)( y), only the matrices Ŝ(k) with |k| ≤ 1 are here
non-zero. As a result, the eigenvalue problem (5.5) has block–tridiagonal structure, which
allows the use of efficient solution methods such as a generalised form of the Thomas
algorithm.

The next step consists in eliminating the pressure by using the discrete version of the
divergence-free condition

D̂V VI
(n) + D̂W W (n) = 0. (5.7)

Hence, applying this divergence operator to the parts of the algebraic system (5.5)
corresponding to the momentum equations yields

−(D̂V ĜV + D̂W ĜW )P(n)
I = (

D̂V ĜV
) ( Â(n)

V V ÂV W

ÂW V Â(n)
W W

)(
V (n)

I
W (n)

)

+ D̂V
∑

k

(Ŝ(k)
V VV (n−k)

I + Ŝ(k)
V WW (n−k)). (5.8)

The operator (D̂V ĜV + D̂W ĜW ) is a square matrix of size (N − 2)2, independent of the
harmonic n and non-singular. By inverting it, the pressure components P(n)

I are obtained
as the result of linear operators acting on the components V (k)

I and W (k).
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Thus eliminating the pressure, the system (5.5) is recast as

A(n)X (n) +
∑

k

S(k)X (n−k) = iωX (n). (5.9)

Now, the components of the eigenvector

X (n) = (VI
(n), W (n)) (5.10)

contain 2N variables and the new matrices A(n) and S(k) are of size (2N)2. Note also
that, through the elimination of the pressure, the generalised eigenproblem (5.5) has been
transformed into a regular eigenproblem.

The system (5.9) may be further reduced when α /= 0. Indeed, using the discretised
version of the divergence-free condition ũ = (i/α)∂yṽ, allows us to eliminate the
longitudinal velocity components by expressing them in terms of the wall-normal
velocities. This leads to an eigenvalue problem of the same form as (5.9) where the
components of the eigenvector are of size N + 2, with N − 2 wall-normal velocity values
and 4 wall variables. In practice, this system is solved using an Arnoldi algorithm that
exploits the block–tridiagonal structure of the matrices.

The transformations that have led from the initial generalised eigenvalue problem of
size 3N + 2 to a regular eigenproblem of size N + 2 may appear tedious. However, it is
largely worth the effort: the final formulation is not only free of spurious eigenmodes,
it is also drastically more efficient in terms of numerical computations. Finally, the
method may be further improved by considering separately perturbations of sinuous or
varicose symmetries and using only half of the channel together with derivative operators
appropriate for the symmetry of each component of the different flow fields. Thus the
complete problem may be addressed by carrying out two eigenvalue computations (sinuous
and varicose) of half-size, which further speeds up the process and directly provides the
information about the symmetry of the different modes.

The numerical method has been validated using the results given by Pier & Schmid
(2017) for the pulsatile flow inside a rigid channel and those provided by Davies &
Carpenter (1997a) for the steady base flow between compliant walls.

6. Stability analysis

The purpose of the present study is to identify the effect of the pulsating base
flow on instability modes in the presence of compliant walls for a wide range of
flow and wall parameters. We first discuss how the eigenvalue spectra are modified
due to the time-periodic flow component. Then, the influence of the main control
parameters on the dominant modes is investigated, with special attention given to possible
cross-over between different mode types (i.e. TS, TWF and DIV modes). Finally, the
multi-dimensional parameter space is mapped out using a variety of critical curves for
instability onset.

6.1. The Floquet eigenspectrum
The linear stability properties of time-periodic flow configurations is addressed by
resorting to Floquet theory, as explained in § 4. In order to introduce the specific features
of Floquet eigenspectra that are essential to this entire investigation, we illustrate them for
a situation with small pulsation amplitude Q̃, and compare them with the corresponding
steady case.
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−1

0.49 0.58
0
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×10−3 sTWF
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0.51 0.61
3.1

3.3

Figure 2. Spectrum for Q̃ = 0.02, Wo = 10, VR = 1, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. The steady
case corresponds to Q̃ = 0. In the insets, small symbols correspond to eigenvalues computed with Nf = 6
and large symbols are obtained with Nf = 3.

Figure 2 shows the eigenvalue spectrum computed with α = 1 for a pulsating base
configuration characterised by VR = 1, Wo = 10, Q̃ = 0.02, Re = 10 000, B∗ = 4 and
d∗ = 0. In the figure, the corresponding steady configuration is also reported (i.e. Q̃ = 0).

This plot reveals the characteristic feature of any Floquet spectrum: multiple eigenvalues
of the same growth rate ωi and frequencies ωr separated by integer multiples of the
base frequency Ω . This is due to the fact that, if ω is a complex eigenvalue associated
with an eigenfunction of the form (4.13)–(4.16), then all frequencies ω� = ω + kΩ (for
any positive or negative integer k) are also among the eigenvalues and their associated
eigenfunctions are simply obtained by similarly shifting the Fourier components in the
Floquet expansion as, for example, û(n)

� ( y) = û(n−k)( y). In theory, the Fourier expansions
(4.13)–(4.16) are an infinite series, and the infinite number of eigenvalues ω + kΩ all
correspond to the same physical perturbation. In practice, however, the Fourier expansions
are truncated to a finite number of components, leading to a finite set of eigenvalues ω�.
These are then no longer exactly equal to ω + kΩ and the associated normal modes also
differ since they correspond to different truncations of the Fourier series. To illustrate
this truncation effect, two spectra are shown, computed with Nf = 3 and Nf = 6, thus
corresponding to 2Nf + 1 = 7 and 13 Fourier components, respectively, and associated
with sets of 7 or 13 eigenvalues each.

The superposition of flow cases Q̃ = 0 and Q̃ = 0.02 illustrates the close similarity of
steady and pulsating spectra and reveals that each of the steady eigenvalues is located very
near one of the Floquet eigenvalues (see insets). Here, the Floquet spectrum corresponds
to a weakly modulated base flow, for which the oscillating base-flow component U(±1)( y)
is much smaller than the Poiseuille component U(0)( y). Thus, the magnitude of the
off-diagonal blocks S(±1) in the Floquet eigenproblem (5.9) is small in comparison with
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Linear instabilities of pulsatile plane channel flow

the diagonal blocks and the adjacent Fourier components in the Floquet eigenfunction are
therefore only weakly coupled. As a result, the growth rates in the eigenspectrum here
closely follow those prevailing for the equivalent steady flow. For weakly modulated base
flows, as is the case in figure 2, it thus seems natural to choose the eigenvalue ω + kΩ
nearest its steady counterpart as the most representative frequency of the Floquet normal
mode.

Insets in figure 2 reveal slight variations in ωi for the eigenvalues towards the edges
(especially visible for the TS mode and to a lesser extent for the varicose TWF mode). This
indicates that the corresponding Floquet modes suffer from truncation errors, while the
eigenvalues sufficiently far from the edges are well resolved. Note also that the eigenvalues
nearest their steady counterpart are located in the central region and therefore the first to
be sufficiently well resolved when increasing Nf .

For larger pulsation amplitudes Q̃, however, this similarity with the steady spectrum
no longer holds and a more robust criterion is required to lift the formal degeneracy of
the Floquet eigenspectrum. It seems suitable to consider the frequency associated with
the most energetic Fourier component in the Floquet expansion. In order to identify this
most representative frequency among the multiple Floquet eigenvalues for each normal
mode, we consider the magnitude of the different Fourier components of the Floquet
eigenfunctions, defined as

En = ρ

∫ +h

−h
|û(n)

( y)|2dy

+ m(|γ̂ +(n)|2 + |γ̂ −(n)|2) + (Bα4 + Tα2 + K)(|η̂+(n)|2 + |η̂−(n)|2). (6.1)

By using this energy-based norm, it is possible to single out the dominant component
in the eigenfunction Fourier expansion and also to check if the truncation contains
enough harmonics for an accurate representation of the normal mode. This process
is illustrated in figure 3, for Nf = 100, where the magnitudes En are plotted for five
consecutive eigenvalues corresponding to the varicose TWF mode associated with α =
0.8, Re = 10 000, Q̃ = 0.2, Wo = 10, VR = 1, B∗ = 4 and d∗ = 0. It is observed that
the En-distribution peaks at n = 0 for the eigenvalue ω = 0.415 + 0.046i, while the
distributions associated with the surrounding eigenfrequencies ω + kΩ peak at n = k
since they correspond to similarly shifted Fourier components. It follows that ω =
0.415 + 0.046i is the dominant frequency of this eigenmode. Throughout this paper we
will therefore always consider that, for a given mode, the dominant frequency is derived
by this energy-based criterion and choose the eigenvalue for which the Fourier series is
dominated by the n = 0 component, i.e. for which E0 is largest. For the rigid wall case,
this method has been proven to be effective in recovering the TS mode frequency obtained
using linearised direct numerical simulation (results are given in Pier & Schmid 2017).
Note also that the plots in figure 3 demonstrate that we are using more than enough
harmonics to fully resolve the Floquet eigenfunctions, since the energy associated with
the higher harmonics is almost negligible.

The Floquet eigenfunctions correspond to either sinuous or varicose modes, depending
on the symmetry or antisymmetry of the different flow fields with respect to the mid-plane
y = 0. As explained in § 5, they may be efficiently computed by taking advantage of these
symmetry properties. In the spectrum of figure 2, the sinuous eigenfrequencies are given
in blue and the varicose frequencies in red. Despite the multiplicity of the eigenvalues due
to the time-periodic base flow, the spectrum still displays the familiar structure made of
a large number of Orr–Sommerfeld modes (as A, P and S branches) together with two
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4
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Figure 3. Fourier density for FSI varicose mode associated with α = 0.8, Re = 10 000, Q̃ = 0.2,

Wo = 10, VR = 1, B∗ = 4 and d∗ = 0. The numerical eigenproblem is solved with Nf = 100.

isolated TWF modes (one sinuous and one varicose). Note that the two DIV modes are
here out of the range of this plot.

6.2. Influence of some parameters on the spectrum

Figure 4(a) displays spectra for VR = 1, Wo = 10, d∗ = 0 and Q̃ varying from 0 (i.e. the
steady flow case) to Q̃ = 0.2. Figure 4(b) illustrates the effect of the base-flow frequency
by varying Wo from 10 to 20 for Q̃ = 0.8. Note that the significant increase in Nf
for figure 4(b) is required due to a broadening of the Fourier density distribution
when Q̃ increases. As discussed in the previous section, the figure shows modes that
exhibit equispaced eigenfrequencies where the gap between two successive frequencies
corresponds to the base frequency Ω , which scales as the square root of the Womersley
number. In figure 4, the bold eigenvalues are associated with the dominant frequency
for each mode, obtained by considering the magnitude of the Floquet harmonics, as
explained in the previous subsection. Concentrating on FSI modes, dominant frequencies
for both sinuous and varicose symmetries have finite ωr values. These FSI modes are
thus connected to TWF instability waves. They are referenced hereafter as sTWF (sinuous
TWF) or vTWF (varicose TWF) depending on their symmetry with respect to the
midplane y = 0.

For the flow and wall parameters that are considered and Q̃ = 0, the most amplified
TWF mode is of varicose type (see figure 4a). For this steady base-flow case, the sTWF
is seen to be marginally stable and the temporal growth rate of the TS mode is damped.
For Wo = 10, an increase of Q̃ tends to destabilise the TS wave (see figure 4a). This is
reminiscent of the results of Pier & Schmid (2017), where TS modes for a pulsatile base
flow between rigid walls have been computed. By contrast, the TWF modes exhibit distinct
behaviours whether the sinuous or varicose symmetry is considered. While an increase of
Q̃ up to 0.2 leads to a reduction of the temporal amplification rate for the varicose type,
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0

1

2

3
vTWF
sTWF
TS

0 0.1 0.2
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0

2
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(×10−2)(×10−2)
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ωrωr

ωi

Q̃ (b)(a)

Figure 4. Spectra with VR = 1, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. For each branch, 11 eigenvalues are
shown centred around the dominant frequency (large symbols). The numerical eigenproblem is solved with
Nf = 20 in (a) and Nf = 150 in (b); (a) Wo = 10 and (b) Q̃ = 0.8.

the opposite behaviour is observed for the sTWF mode. Figure 4(b) shows the effect of the
Womersley number Wo on TS and TWF modes for the same case at Q̃ = 0.8. An increase
of Wo has a stabilising effect on TWF modes for both symmetries. The opposite role of Wo
is seen for the TS mode. This reflects the richness of physical processes that are involved,
in comparison with the rigid wall case.

Finally, figure 5 shows the effect of wall compliance on TS and TWF modes for
Q̃ = 0.2, Wo = 10, Re = 10 000, B∗ = 4 and α = 1. Only Floquet modes that match the
dominant frequency for each mode are shown. As VR is approaching zero, the phase speed
of TWF modes tends to infinity, which is consistent with the rigid wall case. An increase
of VR has a stabilising effect on the TS mode. The opposite behaviour is observed for
TWF modes, whatever the symmetry considered. However, the figure suggests a preferred
varicose symmetry for large VR. Parenthetically, one can see in figure 5(a) that the phase
speed tends to a finite value (≈ 0.5) for both sTWF and vTWF as wall compliance
increases. The influence of the wall dissipation is illustrated in figure 5(b) for small values
of d∗. The figure shows that the temporal amplification rate of the TS mode is slightly
enhanced by increasing d∗. In contrast, growth rates of both sTWF and vTWF modes are
significantly reduced by wall dissipation.

When increasing the wall dissipation d∗, the onset of a DIV mode is expected as
documented for steady base flows (see Davies & Carpenter (1997a) and Lebbal et al.
(2022) for a recent investigation). The effects of the pulsatile base-flow components for
different values of d∗ are shown in figure 6. We restrict here the analysis to the varicose
case since the sinuous symmetry is much more complicated due to the competition
between the transition and DIV modes (Lebbal et al. 2022). The effect of Q̃, illustrated
in panel (a), shows that, for moderate values of d∗, the dynamics is driven by the TWF
mode (i.e. the phase velocity ωr/α is of the order of the mean base-flow velocity). As d∗
is increased, the TWF mode is temporally damped. For large values of d∗, we observe a
different regime for all Q̃. The most unstable mode is shifted towards lower frequencies
and its temporal growth rate increases again, a behaviour characteristic of the DIV mode.
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Figure 5. Spectra with Q̃ = 0.2, Wo = 10, Re = 10 000, α = 1 and B∗ = 4; (a) d∗ = 0 and (b) VR = 1.
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Figure 6. Spectra for the varicose symmetry with Re = 10 000, α = 0.5, B∗ = 4 and VR = 2; (a) Wo = 10
and 0 ≤ Q̃ ≤ 0.6, (b) Q̃ = 0.4 and 5 ≤ Wo ≤ 20 for d∗ = 0, 1, 5, 10, 15, 20 and 25. The mode trajectories are
displayed by dashed lines. The shaded region indicates the regime dominated by the DIV mode.

The critical value of d∗ for this regime change is seen to increase with Q̃: 5 ≤ d∗ ≤ 10 for
Q̃ = 0 and 15 ≤ d∗ ≤ 20 for Q̃ = 0.6. As soon as the regime is driven by the DIV mode,
its temporal amplification rate ωi is seen to increase with Q̃. The effect of Wo is illustrated
in panel (b). The figure shows that the onset of the DIV mode for the range of Womersley
numbers investigated occurs for 10 ≤ d∗ ≤ 15. It also shows that ωi and ωr increase with
Wo for the DIV mode.

Although the dynamics of the different modes is influenced by the pulsatile base-flow
parameters, the above discussion suggests similarities between the steady case and
our results. In particular, for the parameters that have been considered, the distinction
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made between class A and B modes by Benjamin (1963), Landahl (1962) and Carpenter
& Garrad (1985) still holds for our pulsatile flow case. However, we will see in the next
section that this classification is clearly too restrictive for pulsatile base flows.

6.3. Wave superposition for sinuous Floquet mode
The Fourier density distributions for a sinuous Floquet mode associated with VR =
1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 are shown in figure 7 together with
the associated eigenvalues for Q̃ = 0.349 and 0.350. Both series of eigenvalues have
positive growth rates. The figure shows the existence of two distinct peaks in the Fourier
density distribution. This suggests that two different mechanisms influence this mode. To
further illustrate this scenario, the different contributions of the total energy per Fourier
mode are also reported in figure 7. For the En-distribution at Q̃ = 0.349 (left curves),
the main peak is due to the fluid kinetic energy contribution, associated with a dominant
frequency of ωr 	 0.26. In contrast, for Q̃ = 0.350, the wall contributions take over,
leading to a dominant frequency of ωr 	 0.52. For both cases, the En-distributions are
very similar, but the exchange in dominant peaks due to a continuous modification of the
distribution results in a sudden jump of the dominant frequency. This behaviour indicates
that the intracyclic mechanism involves the interference between fluid-based (TS) and
wall-based (TWF) modes. By contrast with the steady base-flow case, we can therefore
no longer distinguish here between class A and class B modes. Moreover, figure 7 also
shows that for Q̃ < 0.35, the Floquet mode is mainly driven by its TS component. When
Q̃ is increased up to 0.35, the intracyclic growth is mainly due to its sTWF part. This new
type of mode will be called hereafter a two-wave mode. For the same set of parameters, the
influence of Q̃ on the stability of the system is shown in figure 8. For comparison purposes,
the rigid case is also reported. We restrict our analysis to the sinuous symmetry. For the
compliant wall case, the evolution of both temporal growth rates and circular frequencies
are displayed for the first and second most amplified Floquet modes. The dominant Floquet
frequency for each mode is selected using the methodology mentioned in the previous
section. The TS mode distribution is seen to closely follow its rigid wall counterpart up to
Q̃ = 0.3. When Q̃ exceeds this value, however, its En-distribution exhibits two peaks and
the mode consists of the superposition of TS and TWF waves (as illustrated in figure 7).
For Q̃ greater than 0.35 the energy peak is connected to the TWF wave. At this point, the
dominant frequency for this mode is associated with the wall dynamics, as shown by the
energy contributions in figure 7. For Q̃ up to 0.5, we observe the co-existence of TWF
and two-wave modes. For 0.5 < Q̃ < 0.6, the two-wave mode is seen to be temporally
damped. By contrast, the growth rate of TWF mode is increased for this range of Q̃. For
larger values of Q̃, the spectrum features a single unstable mode that shares the main
characteristics of TWF modes.

In the next section, we will describe the spatio-temporal behaviour of Floquet
eigenfunctions, for TWF, TS and two-wave modes.

6.4. Spatial structure of eigenmodes
The structure of TS and FSI Floquet modes are investigated in more detail by monitoring
the wall-normal distribution of their flow kinetic energy. To that end, we define the fluid
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Figure 7. Energy per Floquet modes (red for total energy, blue for fluid kinetic energy, green for the
wall potential and kinetic energy) at Q̃ = 0.349 (left) and Q̃ = 0.350 (right) with VR = 1, Wo = 10, Re =
10 000, α = 1, B∗ = 4 and d∗ = 0. The frequency associated with the dominant peak is indicated by •.
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Figure 8. Spectra for different Q̃ with VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0.

kinetic energy of the Floquet mode (4.13)–(4.16) as

Ê( y, t) = 1
2
ρ

∣∣∣∣∣
∑

n

û(n)( y) exp (inΩt)

∣∣∣∣∣
2

, (6.2)

which is periodic in time and may be used to characterise the intracyclic dynamics, since
it does not contain the long-term exponential growth (or decay) part.

First, we will discuss the temporally averaged energy distribution, obtained as

Ē( y) = 1
T

∫ T

0
Ê(t, y) dt. (6.3)

In figure 9(b), Ē( y) is shown for the TS mode for Wo = 10, Q̃ = 0.2, Re = 10 000, α =
1, B∗ = 4, d∗ = 0 and VR = 1. For comparison purposes, the rigid wall and steady
base-flow cases are also reported in figure 9(a).
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Figure 9. The wall-normal distribution Ē( y) of averaged kinetic energy for the TS perturbations with Q̃ = 0,
0.2, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. The critical layer position is indicated by blue dashed
lines. (a) Rigid channel and (b) compliant channel with VR = 1.

We recall that, for the case of a Poiseuille flow between flat rigid walls, Ē( y) should
peak around the critical layer, i.e. the wall-normal position where the phase speed equals
the base-flow velocity (Drazin & Reid 1981), as shown in figure 9(a). For compliant walls
and the steady flow case, a similar behaviour is observed (Davies & Carpenter 1997a), see
figure 9(b). However, a slight shift near the wall is observed for the peak in kinetic energy
as a consequence of the stabilising effect of the compliant wall on TS modes.

The distribution of Ē( y) for the time-periodic base flow exhibits a double peak structure
for both the rigid wall and compliant wall cases (see red curves in figure 9). This behaviour
has also been observed by Singer et al. (1989) for the same flow case by using linearised
direct numerical simulations and assuming rigid walls. They have shown that, in a certain
moment of the cycle, the mean-flow profile exhibits an inflection point. These authors
came to the conclusion that this second peak is a consequence of changes in the base-flow
profile during the cycle. Interestingly, figure 9 shows that the wall compliance favours the
first peak over the second one. More recently, Tsigklifis & Lucey (2017) have observed
that both peaks are enhanced during the cycle by wall compliance. However, since the
eigenfunction does not vanish at y = ±h for a compliant channel, comparisons between
rigid and compliant configurations are not straightforward. We also observe that the inner
peak is shifted closer to the wall due to wall compliance (figure 9). This suggests that the
stabilising effect of elastic walls on TS modes still holds for pulsatile base flows.

The wall-normal distributions of Ē( y) for both varicose and sinuous TWF modes are
shown in figure 10 for the same set of parameters. While for the sinuous symmetry, the
TWF mode exhibits no significant changes in comparison with the steady flow case, the
vTWF mode displays clearly a different structure near the walls. Indeed, the amplitude
of vTWF mode peaks near y = 0.9 for the pulsatile base-flow case, while it exhibits its
maximum at the wall for the steady case. The consequences for the stability properties
will be discussed in the next sections.

6.5. Temporal dynamics of Floquet eigenmodes
In this section, we investigate the intracyclic dynamics of the perturbations for the same
configurations as in the previous section. For that purpose, we consider the instantaneous
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Figure 10. The wall-normal distribution of energy for TWF modes are shown for Q̃ = 0 and 0.2,
VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. (a) The sTWF mode and (b) the vTWF mode.

total perturbation energy, defined as

Ẽ(t) = 1
2h

∫ h

−h
Ê( y, t)dy + ẼWK(t) + ẼWP(t). (6.4)

This quantity Ẽ(t) is the sum of the instantaneous fluid kinetic energy and the kinetic and
potential energies of the walls

ẼWK(t) = m

∣∣∣∣∣
∑

n

γ̂ ±(n) exp (inΩt)

∣∣∣∣∣
2

, (6.5)

ẼWP(t) = (Bα4 + Tα2 + K)

∣∣∣∣∣
∑

n

η̂±(n) exp (inΩt)

∣∣∣∣∣
2

. (6.6)

Recall that all these quantities are temporally periodic (with period Ω) since the complex
exponential term exp(−iωt) has been removed. We first consider the TS mode. Figure 11
shows the different contributions to Ẽ(t) for Wo = 10, Q̃ = 0.2, Re = 10 000, B∗ =
4, d∗ = 0 and α = 1 for both the rigid case and compliant walls with VR = 1. As noted by
Pier & Schmid (2017) for the rigid case, the growth of Ẽ(t) occurs in the deceleration phase
of the base flow (indicated by regions hatched in red along the t-axis), while decay occurs
during the acceleration phase (hatched in blue). This remains true for the compliant wall
configuration (figure 11b). Here, the definition of base-flow acceleration or deceleration
phases is based on the sign of dQ/dt. In particular, the dynamics of the perturbation
is mainly driven by the flow kinetic energy while the wall energy is almost negligible.
A similar behaviour has also been observed by Tsigklifis & Lucey (2017), who have shown
that the kinetic energy of the flow mostly contributes to the total energy of the system for
the TS mode.

The intracyclic dynamics associated with TWF disturbances exhibits a markedly
different behaviour, as shown in figure 12. In contrast to the TS mode, the growth in
total energy occurs during the acceleration phase of the base flow for both symmetries.
In particular, walls mainly contribute to the total energy growth whatever the symmetry
that is considered. However, the contribution to the total perturbation energy of the fluid
kinetic energy is lower for the varicose case than the sinuous one.
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Figure 11. The intracyclic modulation of energy for the TS perturbations with Q̃ = 0.2, Wo = 10, Re = 10 000
and α = 1. Colours: blue for the fluid kinetic energy, green for the wall kinetic energy, red for wall potential
energy. (a) Rigid channel, (b) compliant channel with B∗ = 4, d∗ = 0 and VR = 1.
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Figure 12. The intracyclic modulations of energy for the TWF perturbations with Q̃ = 0.2, VR = 1,

Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. (a) The sTWF mode and (b) the vTWF mode.

6.6. Interaction between TS and sTWF waves
As mentioned earlier, a two-wave mode (i.e. where both sTWF and TS waves interact)
may emerge for a given set of parameters.

Here, we will further investigate the occurrence of this Floquet mode. For that purpose,
the parameters Wo = 10, B∗ = 4, d∗ = 0, VR = 1 and α = 1 are considered, and the
Reynolds number is fixed at Re = 10 000.

In figure 13, the variations with Q̃ of the temporal growth rates ωi and the circular
frequencies ωr for TS, sTWF and two-wave modes are shown. For the two-wave mode,
the variation of ωr is displayed for the two frequencies associated with the two peaks, as
illustrated in figure 7. Figure 13(a) shows that the temporal growth rates of TS and sTWF
follow similar paths for Q̃ = 0.25–0.45 until their divergence beyond Q̃ = 0.46. Within
the range 0.28 ≤ Q̃ ≤ 0.46, indicated in light blue, the TS Floquet mode exhibits a second
peak in its Fourier energy density distribution, which signals a transition to a two-wave
mode. In particular, it is observed in figure 13(b) that one peak displays a characteristic
frequency in continuity with the sTWF mode, while the second peak follows the value of
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Figure 13. Evolution of (a) temporal growth rates ωi and (b) circular frequencies ωr with Q̃ for VR = 1, Wo =
10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 (blue for sTWF, red for TS/two-wave mode). The shaded area
represents the region where the two-wave mode exists.

ωr closely corresponding to the TS mode. For Q̃ ≥ 0.46, the two-wave mode vanishes and
only a single peak survives, corresponding to ωr matching the sTWF mode.

To better illustrate the temporal dynamics associated with the two-wave mode, we show
in figure 14 the intracyclic evolution of the total perturbation energy Ẽ(t) for different
pulsation amplitudes Q̃ and the sinuous symmetry. On the one hand, the TWF mode
exhibits almost no effect as Q̃ is increased in the range 0.38–0.48 for both Reynolds
numbers. On the other hand, the two-wave mode presents an interesting intracyclic
dynamics.

At Q̃ = 0.38, growth occurs for both the acceleration and deceleration phases of the base
flow. This is consistent with the fact that this Floquet mode shares common features with
both TS and TWF waves. When increasing Q̃, the growth associated with the acceleration
phase increases. On the contrary, figure 14 shows that the energy peak in the deceleration
phase is damped with Q̃. It means that the two-wave mode is mainly driven by its TWF
contribution as Q̃ is increased from 0.38 to 0.48. In particular, beyond Q̃ = 0.46, the
TS wave contribution is negligible, consistent with results reported in figure 13. As a
consequence, at Q̃ = 0.46, the variation of Ẽ(t) for TWF and two-wave modes are almost
indistinguishable. Beyond Q̃ = 0.46, this mode shows the same characteristics as the
TWF instabilities, namely, a growth of energy in the acceleration phase of the base flow.
The intracyclic behaviour associated with the two-wave mode displays a low-frequency
beating during the deceleration phase of the base flow for 0.28 ≤ Q̃ ≤ 0.46 (see figure 14).
This phenomenon results from an interference between two waves of slightly different
frequencies associated with the two peaks in the spectral energy distribution, as shown
in figure 15(a) for Q̃ = 0.38. The difference between the two peaks indeed corresponds
exactly to the frequency beating observed in figure 15(b). To further illustrate this point,
Ẽ(t) has been computed by filtering the Fourier components in the neighbourhood of either
the TS wave or the sTWF wave, using components from the ranges hatched respectively
in fuchsia or orange in figure 15(a). The plots of figure 15(b) show that intracyclic
dynamics pertaining to either the TS wave or the sTWF wave is recovered and the beating
phenomenon is then suppressed.

6.7. Influence of Q̃ and Wo on temporal growth rates
In this section, we investigate the combined effect of wall flexibility and pulsatile base-flow
parameters (Q̃ and Wo) on the temporal growth rates of TWF and TS Floquet modes.
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Figure 14. Intracyclic evolution of the total perturbation energy Ẽ(t) with
VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0 (cyan for sTWF and fuchsia for TS).
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Ẽ(t)En

n

�n �n
−1

t/T

(b)(a)

Figure 15. (a) Fourier density distribution and (b) filtered intracyclic total energy for the two-wave mode with
Q̃ = 0.38, VR = 1, Wo = 10, Re = 10 000, α = 1, B∗ = 4 and d∗ = 0. Blue, full dynamics; fuchsia, TS wave
dynamics; and orange, sTWF wave dynamics.

Results are conveniently summarised by monitoring the growth rate ωmax
i associated with

the most unstable streamwise instability (i.e. ωmax
i = maxα ωi) for a given set of fluid and

wall parameters. For illustration purposes, B∗ = 4 and d∗ = 0 are fixed.
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Figure 16. The TS Floquet mode. Maximum temporal growth rates ωmax
i for different amplitudes Q̃ =

0, . . . , 0.1 and frequencies Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4 and d∗ = 0. (a) Rigid wall and
(b) VR = 0.2.

Figures 16(a) and 16(b) show the variation of the maximum temporal growth rates with
Q̃ and Wo of the TS mode for both the rigid case in (a) and compliant walls (VR = 0.2)
in (b).

The TS Floquet modes exhibit a similar dynamics whatever the case considered (either
rigid or compliant walls). For Wo ≥ 14, the temporal growth rate decays with Q̃ for both
rigid and flexible cases while it increases for Wo ≤ 13. One may recall that a similar
behaviour is observed for the rigid case (Pier & Schmid 2017).

Figure 17 illustrates the effect of Wo and Q̃ on TWF Floquet modes for VR = 1. The
temporal growth rate for the varicose vTWF mode presents two distinguishable phases
(figure 17a). For small and moderate values of Q̃, ωmax

i is damped. Then, one may observe
a growth of ωmax

i as Q̃ increases. The turning point depends on the Womersley number. In
particular, the corresponding Q̃ is seen to increase with Wo.

The distribution of ωmax
i for the sinuous symmetry exhibits a different behaviour. For

weakly pulsatile base flows (Q̃ < 0.2), the sTWF mode is destabilised whatever the Wo
considered. In particular, this instability is strongly enhanced for the small frequencies
of modulation Wo. For moderate values of Q̃(0.2 < Q̃ < 0.5), a more complex behaviour
is observed. For this range of amplitudes, the sTWF mode interacts with the TS Floquet
mode, and we can no longer distinguish between these two waves. Beyond this point, ωmax

i
strongly increases and reaches similar values as its varicose counterpart. An intracyclic
modulation amplitude Emax

min , defined as the ratio of the maximum to the minimum of Ẽ(t),
is computed for the same parameter range as in figure 17, for TWF Floquet modes only. For
the varicose symmetry, the plots in figure 18(a) show that Emax

min increases for all Wo under
consideration. The evolution of Emax

min for the sinuous symmetry is displayed in figure 18(b).
The figure shows that the sTWF Floquet modes exhibit smaller-amplitude variations than
their varicose counterparts. In addition, for Q̃ > 0.5, a saturation of Emax

min is observed. Such
a behaviour occurs beyond the collapse of TWF and TS Floquet modes. One may thus
suggest that it is a consequence of the emergence of a transition mode. Comparison with
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Figure 17. Maximal temporal growth rates ωmax
i for different amplitudes Q̃ = 0, . . . , 0.7 and frequencies

Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4 and d∗ = 0; (a) vTWF VR = 1 and (b) sTWF VR = 1.
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Figure 18. The amplitude of the modulation ratio Emax
min for different amplitudes Q̃ = 0, . . . , 0.7 and

frequencies Wo = 10, . . . , 20, with Re = 10 000, B∗ = 4, d∗ = 0 and VR = 1; (a) vTWF modes and (b) sTWF
modes.

figure 12 also reveals that the very large values of Emax
min observed for the vTWF modes

(figure 18a) are mainly due to the fact that Ẽ(t) drops to extremely low levels during the
acceleration phase of the pulsating cycle (figure 12b).

6.8. Critical parameters for onset of instability
A complete two-dimensional instability analysis is now performed by exploring a wide
range of wall and flow parameters. In a effort to summarise the different results, only
critical Reynolds numbers (Rec) and critical reduced velocities (Vc

R) are monitored
(corresponding to the onset of TS or TWF and DIV Floquet modes, respectively).
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Figure 19. Critical Reynolds number Rec for TS mode with B∗ = 4 and d∗ = 0; (a) VR = 0.2 and
(b) VR = 0.6.

The variations of Rec for the TS mode are computed for VR = 0.2 and VR = 0.6
for different pulsatile flow parameters in figure 19. Beyond Wo = 13, the TS Floquet
modes are stabilised by the pulsatile flow component. For lower frequencies, the opposite
behaviour is observed. For example, at Wo = 20, the critical Reynolds number for Q̃ =
0.10 is already approximately 50 % larger than the value found for the Poiseuille flow
case (Q̃ = 0). The dynamics including compliant walls is thus found to be very similar
to the rigid walls case (see Pier & Schmid 2017). The critical reduced velocity Vc

R for the
TWF modes are shown in figure 20. The varicose TWF displays two phases. For moderate
pulsation amplitudes (Q̃ < 0.4), the instability is weakly stabilised. For higher pulsation
amplitudes, the vTWF mode is destabilised for all the frequencies studied. Unlike the
vTWF, the sTWF mode shows a monotonic destabilisation as the pulsation amplitude is
increased. The Womersley numbers considered here have almost no effect on the critical
curves. Note that even for highly pulsatile flows, onset of TWF instability is always due to
the varicose symmetry.

In order to systematically study the linear stability over the entire parameter space, the
critical reduced velocity Vc

R is also computed for various wall dissipations d∗ (figure 21),
flexural rigidities B∗ (figure 22) and Reynolds numbers Re (figure 23).

According to the energy classification of Benjamin (1963) and Landahl (1962), the
dissipation has a stabilising effect on the TWF instabilities. The plots in figure 21 show
the variation of the critical reduced velocity with wall dissipation d∗. For a Poiseuille base
flow (Q̃ = 0), the critical Vc

R is almost multiplied by a factor 2 when d∗ is varied from 0
to 0.02.

An increase in Q̃ leads to stabilisation of the flow for all values of d∗ that have been
considered (see figure 21). In particular, the overall behaviour is quite similar for d∗
varying from 0.005 to 0.04. The critical Vc

R is nearly constant for Q̃ up to 0.05. Beyond
this value, Vc

R decreases almost linearly with Q̃ at a similar rate of change. Interestingly,
the symmetry of the Floquet mode appears to have a negligible effect on Vc

R for this range
of parameters.
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Figure 20. Critical reduced velocities Vc
R for TWF modes and different Wo. The other parameters are:

Re = 10 000, B∗ = 4 and d∗ = 0; (a) vTWF and (b) sTWF.
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Figure 21. Critical reduced velocities Vc
R for TWF modes for different d∗. The other parameters are:

Wo = 20, Re = 10 000 and B∗ = 4; (a) vTWF and (b) sTWF.

The effect of flexural rigidity is illustrated in figure 22. Increasing B∗ results in
stabilisation of the TWF Floquet modes for all Q̃ that are considered. However, the overall
shape of these curves is almost unaffected by B∗ for both sinuous and varicose cases.
For the varicose case, a nearly constant value of Vc

R is observed up to Q̃ = 0.3. Beyond
Q̃ = 0.4, the critical Vc

R is seen to decrease almost linearly with Q̃ for all flexural rigidities
that have been investigated. In particular, the slope seems to be independent of B∗.

The sinuous case appears to be more stable than its varicose counterpart. As for the
varicose symmetry, the overall tendency is not affected by B∗. A slight decrease in Vc

R is
observed for Q̃ up to 0.1. Beyond Q̃ = 0.4, Vc

R exhibits an almost linear behaviour with Q̃.
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Figure 22. Critical Vc
R for TWF modes for different B∗. The other parameters are: Wo = 20, Re = 10 000 and

d∗ = 0; (a) vTWF and (b) sTWF.
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Figure 23. Critical Vc
R for TWF modes for different Re numbers. The other parameters are: Wo = 20, B∗ = 4

and d∗ = 0; (a) vTWF and (b) sTWF.

The influence of the Reynolds number on Vc
R is shown in figure 23. The onset of Floquet

TWF modes is almost unchanged by the Reynolds number for both the varicose and
sinuous TWF modes. The insensitivity to Re is more pronounced when Q̃ is increased
to large amplitudes. This weak influence has already been reported for the steady case
(Lebbal et al. 2022).

Finally, in an effort to summarise the influence of the pulsatile base-flow parameters on
the DIV mode, we show in figure 24 the critical reduced velocity as a function of Wo for Q̃
varying from 0.0 to 0.6 for d∗ = 15 and Re = 10 000. The existence of the DIV mode has
been documented in figure 6 for this wall dissipation. The figure shows that, for low values
of the Womersley number, Vc

R increases with Q̃. This suggests that the pulsatile base flow
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Figure 24. Critical Vc
R for the varicose DIV mode for different Wo and Q̃. The other parameters are:

Re = 10 000, B∗ = 4 and d∗ = 15.

has a stabilising effect on the DIV mode for this range of parameters. For Wo beyond 10,
the opposite behaviour is observed for all Q̃ that are investigated.

7. Conclusions and discussion

In this paper, we have investigated the dynamics resulting from perturbations developing
in harmonically pulsating flows between two compliant walls. The stability analysis is
restricted to the time-asymptotic behaviour of the perturbation and to the two-dimensional
case within the framework of Floquet theory. A numerical solution strategy has been
implemented that is free of spurious modes and greatly reduces the computational effort.

When accounting for wall compliance, we show that the most relevant control parameter
is the reduced velocity VR for TWF Floquet modes. In particular, the Reynolds number
appears to have a negligible influence on these modes. As already observed for the steady
case (Lebbal et al. 2022), the most unstable modes are associated with the varicose
symmetry. For the pulsatile flow configurations, we show that the instability onset for
these modes is mainly driven by the amplitude of the pulsation rather than its frequency.
For Q̃ in the range 0−0.4 and varicose perturbations, the pulsatile base flow is seen to
weakly stabilise the TWF Floquet modes (i.e. the critical reduced velocity increases) with
respect to the steady flow case. The opposite behaviour is observed for Q̃ larger than 0.4.
For the sinuous symmetry, we always observe a flow destabilisation with an increase of
Q̃. When accounting for the wall dissipation, we show that a slight increase of d∗ tends
to stabilise the TWF Floquet modes for both symmetries whatever the value of Q̃, in
agreement with Benjamin’s classification (Benjamin 1963). For the TS Floquet modes,
the intracyclic dynamics exhibits strong similarities with the pulsatile flow case in a rigid
channel (Pier & Schmid 2017). However, a stronger stabilisation is observed when wall
flexibility comes into play. For a significant amount of wall dissipation (d∗ ≥ 10), the onset
of the DIV mode is also observed. Although restricted to only the varicose symmetry, we
have shown that, for low values of Wo (≈ 5), an increase of Q̃ stabilises the DIV mode,
whereas the opposite behaviour is observed for larger values of Wo.
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On the one hand, it has been shown that Benjamin’s classification still holds for a wide
range of parameters. In particular, for fluid–structure interaction modes, similar general
trends are observed for steady and pulsatile flow configurations. However, on the other
hand, this study has also revealed a more complex flow dynamics that is not found when
wall flexibility or pulsating base flows are studied independently. In particular, for some
range of Wo and Q̃ a new type of mode has been discovered that shares characteristics
of two distinct Floquet modes. This two-wave mode combines properties of both TS and
TWF modes. It leads to an interference that generates a beating during the intracyclic
dynamics.

To address the practical or experimental relevance of the present findings, we consider
the analogy derived by Carpenter & Garrad (1985) for a Kramer-type compliant wall,
using the test case detailed by Wiplier & Ehrenstein (2000) for a boundary-layer flow.
Using the parameter values used in these papers, corresponding to natural rubber,
a non-dimensional reduced velocity of approximately VR = 0.4 is obtained when
considering the characteristic flow advection time scale based on the free-stream velocity
and the δ99 boundary-layer thickness (where the velocity reaches 99 % of the free-stream
value). For such a configuration, Wiplier & Ehrenstein (2000) observed the onset of a
TWF mode. In order to estimate the value of VR prevailing in physiological configurations,
an approximate value of the equivalent spring stiffness K is required. Considering that
a diastole–systole pressure difference of 40 mmHg produces a 2 mm deformation of
the main arterial walls (Nichols, O’Rourke & Vlachopoulos 2011), this leads to K 	
3 106 kg m−3 s−2. Then, with typical values for blood flow rate and arterial diameters,
reduced velocities VR in the range 0.1–0.2 are obtained. These values are slightly below
those required to trigger the different unstable modes that we have investigated here, but
they are nonetheless of the same order of magnitude. Also, we recall that the Womersley
numbers explored here are in the range of those encountered in blood flow. Thus, we
conclude that it is plausible that the instability modes studied here indeed participate in
the dynamics of practical configurations.

Extension of the present study to non-modal stability analyses can be considered in a
future work, continuing the investigations of Tsigklifis & Lucey (2017) and Pier & Schmid
(2021). Finally, it would also be interesting to generalise our analyses to pipe geometries
which cover more biologically significant settings. The theoretical developments and
numerical tools that have been used in the present investigation can be easily adapted
to a formulation in cylindrical coordinates, following the same approach used by Pier &
Schmid (2021). A Kramer-type wall could be implemented for cylindrical configurations,
using the shell theory developed by Demyanko (2021) for the stability of flows in compliant
pipes.
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