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TRANSIENT ELECTROMAGNETIC RESPONSE
OF A LAYERED CONDUCTING MEDIUM

AT ASYMPTOTICALLY LATE TIMES

D. M. O'BRIEN1 AND R. S. SMITH2
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Abstract

In this paper we consider a pair of horizontal conducting loops in the air above a
horizontally layered ground. The transmitting loop is driven by a current source which
rises from zero at time zero to a final constant value at time T. We first compute the e.m.f.
induced in the receiving loop and derive an asymptotic series for the e.m.f. at late times.
Secondly, we estimate the error in truncating the asymptotic series at N terms and design
a reliable numerical algorithm for summing the asymptotic series.

1. Introduction

In this paper we consider the transient electromagnetic (TEM) response of a
horizontally layered medium such as that shown in Figure 1, where the conductiv-
ities are independent of frequency and all layers have the same magnetic
permeability. This subject has been studied by many authors, in particular, by
authors interested in the application of electromagnetic techniques to the detec-
tion of minerals. An excellent guide to the literature is contained in the book on
geoelectromagnetism published recently by Wait [22]. In principle, the TEM
response is completely known, because the electromagnetic Green's tensor for a
layered conducting medium reduces to an elementary expression after Laplace (or
Fourier) transformation of the time variable and Hankel transformation of the
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FIGURE 1

racial cylindrical coordinate, but in practice the numerical inversion of the two
integral transforms poses a problem. Morrison, Phillips and O'Brien [16] gave an
early solution which used the trapezoidal quadrature rule for the inverse Hankel
transform and the fast Fourier algorithm for the inverse Fourier transform. After
the development of digital filters for the Hankel transform of arbitrary order v,
several new programs were written which used digital filters for the Hankel
transform and possibly also for the Fourier transform, since the latter can be
formulated as a Hankel transform with order v = \. These programs were
considerably more efficient. (Koefoed [10], Mallick and Verma [15], Anderson
[2].) Knight and Raiche [9] made a further significant improvement in efficiency
by reversing the order of the inverse integral transforms, and applied the
Gaver-Stehfest [6, 19, 20] algorithm to the inverse Laplace transform followed by
an adaptive version of Patterson's [17] algorithm for Gaussian quadrature to
evaluate the Hankel transform. The success of Knight and Raiche's strategy is
due to the gain in speed and accuracy of the Gaver-Stehfest algorithm when
applied to functions known analytically rather than numerically. After publica-
tion of their paper, Knight and Raiche replaced Patterson's integration with a
digital filter, and their modified algorithm is currently the best available.
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Complementary to these computer programs, which attempt to invert the
integral transforms numerically, is the work on asymptotic expansions of the
TEM response at both early and late times. Lee and Lewis [14] established that at
early or late times the TEM response approaches that of a half space whose
conductivity is equal to that of the top layer or the bottom layer, respectively. Lee
[13] also developed a two term asymptotic expansion valid for late times, which
subsumed earlier results by Kamenetski [7] and Kaufman [8]. In addition to their
simplicity and speed, the asymptotic expansions often have the useful property
that they work best when the more general computer programs are most costly.
For example, Knight and Raiche's algorithm seems to be slowest at late times,
precisely when Lee's asymptotic formula is applicable.

If the object were to compute the TEM response of a single layered medium,
then many of the refinements above would not be necessary, because even the
most basic algorithm will obtain the TEM response for relatively little cost.
However, in practice we want to infer the structure of a layered ground from
observations of its TEM response, and to do so we employ an optimisation
algorithm which adjusts the model in order to minimise a cost function which
measures the discrepancy between the actual data and the data predicted by the
model. The optimisation algorithm will be iterative and will proceed from an
initial guess for the model to a final 'solution', which is a local minimiser of the
cost function. The 'solution' is dependent upon the initial guess, so, in addition to
all the iterations of the optimisation algorithm, it is essential to experiment with
different initial guesses. If all this calculation is to be performed in real time, so
that a geophysicist can immediately interpret his survey data, then the computer
code which calculates the TEM response of the layered ground must employ every
known time saving device.

With this motivation, we now turn to the content of this paper.
We develop a late time asymptotic expansion for the TEM response of the

layered conducting ground depicted in Figure 1, and we establish the region of
usefulness of the expansion. The terms of the expansion are easily computed and
can be programmed on almost any microcomputer. The expansion may be used
on its own for a very rapid first interpretation of field data, or may be coupled
with existing software such as the TEM program of Knight and Raiche [9], to
produce faster inversion programs.

The transmitting and receiving loops must be horizontal, but otherwise their
shapes and positions are arbitrary, although in practice we will require the loops
to be either circular or rectangular. In particular, the loops may be either
coincident or distinct. We assume that the transmitting loop carries a current
density

J(x,O = M(x)/(O, (1.1)

https://doi.org/10.1017/S0334270000004732 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004732


4 D. M. O'Brien and R. S. Smith [4]

where M is horizontal, divergence free and has compact support, and / is the
ramp function

/ 0 if t < 0,
(1.2)

Such a temporal variation models the UTEM prospecting system (Lair.cntagne,
Lodha, Macnae and West [12]), the PEM prospecting system (Crone [5]), and also
models SIROTEM (Buselli and O'Neill [3]) in the limit T -> 0.

It is worth noting that the extension of the analysis to receiving loops which are
not horizontal is straightforward, and only requires the introduction of a new
loop function. However, the extension to transmitters other than horizontal loops
requires more substantial changes. For such sources two complications arise:
firstly, the electric field intensity has a nonzero vertical component which is
discontinuous across the interfaces between the layers; and secondly, a tensor
rather than scalar Green's function is needed. Nevertheless, the analysis is the
same in principle, although more cumbersome in practice.

We will work exclusively with variables scaled as follows:

coordinates x -* x/l (dimensionless);

conductivity a -* o/on+1 (dimensionless);

time / -» t/(l2fian+1), (dimensionless);

permittivity e -» e/(/2jnan
2

+1), (dimensionless);

electric field E -* El (volts/unit scaled length);

current density J -» J/2 (amps./unit scaled area).

Here / denotes any typical length chosen as the unit of length, such as the radius
or side length of the transmitting loop. We will compute the dimensionless
quantity

Z(t) = lon+1V/Ip, (1.3)

where f i s the e.m.f. induced in the receiving loop, measured in volts, and Ip is the
peak value of the current in the transmitting loop, measured in amps. Z(t) is
clearly related to the mutual impedance of the transmitting and receiving loops
over the layered medium.

The key to the asymptotic analysis of the TEM response lies in the treatment of
the inverse Laplace transform. We examine the singularities of the function to be
transformed and show that the contour of integration may be deformed around a
cut along the negative real axis. Then Z(t) has the asymptotic form

Z(t) ~ [Bt(t) - B^t - r)]/r, (1.4)
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where

and

Asymptotic EM response

S(x) = x2 f1 dm{\ - m2)1/2mP(mx)/Q(m, x).

(1.5)

(1.6)

Here P is a function which we call the loop function, because it depends solely on
the disposition of the loops and not on the structure of the layered medium,
whereas the function Q has the opposite dependence. Watson's lemma (Copson
[4]) can be applied to JJ,-(O and we obtain the asymptotic expansion

B,(t) ~ A,(t) (1.7)
r - 0

where So, Sv... are the coefficients in a power series for S convergent for small
x:

00

S(x) Srx
r. (1.8)

The coefficients SQ, Sv... depend upon both the geometry of the loops and the
structure of the medium, but are independent of time. Consequently, the coeffi-
cients only need be computed once if the mutual impedance is required at several
times. If the time variation of the source current is a step rather than a ramp, then
the appropriate asymptotic expansion is obtained in the limit as T -» 0, namely

Z(/) ~ -A2(t). (1.9)

Listed in Table 1 are the times taken to compute the coefficients by the CYBER
173 machine at the University of Adelaide.

TABLE 1

Number of Layers

1
2
3
4
5

Time to compute S^,.. . ,S1 S

36 msec.
49 msec.
66 msec.
99 msec.
181 msec.

The extra time required to sum the asymptotic series is negligible, approximately
1 msec per time.

In all practical prospecting systems, the quantity that is actually measured is
not the mutual impedance at a particular time, but rather the average of this
quantity over a time channel
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Thus, the observed quantity is

Provided that both t0 and tx are sufficiently late, then the asymptotic expansion
may be substituted for Z(t) and integrated termwise to give

/ Av(t0) - Apji,) - A0(i0 - T) + A0(tl - T)

(>0l<l)"Mi0,)-^,) n
T = U.

(1.11)

The asymptotic series in (1.7) above is divergent (except for the degenerate case
of a half space without overburden), but, for any fixed number of terms, will
provide any desired accuracy for sufficiently late times. However, before the
asymptotic series can be used successfully, the problems of choosing the number
of terms and of deciding how late is 'sufficiently late' must be addressed. We will
show that

\B,(t) - Bf(t)\ < K£20+1)F(N + 2(i + 1), it1'1), (1.12)

where B,N is the sum to N terms of the asymptotic series and

The number £ is computable exactly in principle, but in practice is given
sufficiently accurately by the following expression

- x<o,
x>o,

where

1 - 1

62 = d-2 £ ( 1 - a , ) dt{dx + • • • + d,_t - dl+l dn) (1.14)
i-i

and finally

d=idi. (i.i5)
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If | 2 / > 1, then the bound, regarded as a function of N, decreases at first, passes
through a minimum, and then diverges. If i-2t
The minimum of F(m, z) occurs when

1, the bound simply diverges.

(1.16)

where \p is the psi function, and typical values of F at the minimum are listed in
Table 2.

TABLE 2

z

2
3
4
5

m at minimum

9
19
33
51

F(m, z) at the minimum

2.27 x 10"2

1.03 X 10"4

7.03 X 10 " 8

6.95 x 10-'2

On the basis of these results, a reasonable strategy for truncating the asymp-
totic series might be as follows.

(1) Compute x and £ from formulae (1.14) and (1.13).
(2) Check whether

> 3. (1.17)

If not, set a warning flag to indicate that the time is too early.
(3) Find the closest integer N to the solution of (1.16). This is easily done as the

values of the psi function can be generated by recursion and then stored.
(4) Sum the asymptotic series to N terms.
We implemented this strategy and found it successful but too conservative, no

doubt because the estimate (1.12) is not sufficiently sharp. Instead we adopted the
following pragmatic strategy.

(1) Compute a running average of the moduli of two terms.
(2) Choose N corresponding to the minimum of the running average.
(3) Take the average of the moduli of the last term and the first omitted term as

a measure of the error.
We found the running average necessary because the odd and even order terms

occasionally had different orders of magnitude. The success of the strategy is
shown in Figure 2 where we plot contours of the error for a medium with a single
conductive layer with unit thickness above the basement. The prospecting system
is SIROTEM with coincident circular loops with unit radius and a step function
current source driving the transmitter loop. The variables in the plot are time and
the conductivity of the layer. The errors were computed by comparison of the
asymptotic series with the program of Knight and Raiche [9]. Also shown on the
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plot are the theoretical curve

[81

ft = 3 (1.18)

and the curve along which the pragmatic algorithm believes it has achieved an
accuracy of 1%. The algorithm clearly is reliable.
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2. Derivation of Z(s)

We begin the analysis with the following expressions for the Laplace transform
of the e.m.f. induced in the receiving loop:

= jdx-E(x,s),

d3x'g(x,x',s)J(x',s),

(2.1)

(2.2)

and

g(x,x\s) = (4W)~

• [exp(-A:0|z - z'\) + exp(-A:0(2 + z'))b/a]. (2.3)
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Here V and E denote the induced e.m.f. and the electric field intensity. The
variables k0, kv... ,kn+l are defined by

I / 1 1 • \ 1 \ / / ^ A \

lc = I £-5 T C-iS *r A I (2. 41

and a and b are elements of the matrix A defined as follows:

A = \a b
[c d

1 *n+1 1 [ 1 k 0

l - k n + 1\ - " • ' [ l -*

where

I cosh k.d, k, sinh k.d, 1
(2 6)

k^sinhk.d; cosh k,d, \

This result may be derived along the lines followed by Morrison, Phillips and
O'Brien [16]. Alternatively, one can prove that the special properties of the source
current density J, that it be horizontal and divergence free, imply that there are
no charge distributions on the interfaces between the layers and that Maxwell's
equations reduce to the telegraph equation for a single scalar field. The telegraph
equation separates in rectangular coordinates into ordinary differential operators,
whose spectral kernels can be constructed by standard techniques. Convolution of
these kernels yields the spectral kernel for the telegraph operator from which
Green's function g is constructed. The remaining steps which lead to V are then
trivial.

The function g represents the effect at x of a source at x' and contains
geometrical optics terms which must be isolated and treated separately. To do so,
let x' represent the reflection of x' in the plane z = 0. Then

g(x,x', s) = go(|x - x'l, 3) +pgo(\x - x'l, s) + / (x ,x ' , s), (2.7)

where

go(r, s) = exp[-(e0*2 + <,os)l/1r]/{A-nr) (2.8)

and

/ ( x , x ' , , ) = ( 4 * ) " 1 / " d\(\/ko)Jo{\\r - r'|)exp(-*0(* + *'))[&/« ~ />]•

(2.9)

The first g0 term is usually called the primary field in the geophysical TEM
literature, and is the field that would remain if the earth were removed, whereas
the second g0 term is a reflection from the air-earth interface. The constant p is
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ultimately fixed by boundary conditions, but its actual value will not concern us
because it will cancel from the asymptotic expansion. The interpretation of g
becomes apparent after we compute its inverse Laplace transform:

exp(-//r0)
8(t - r/c) +

H{t -

(2.10)

where

'o = 2eoAo.

c = eo1/2, (2.11)

and H is the step function,

(0 if r < 0,
H(t)=U ift = O, (2.12)

11 if t > 0.

The case of most interest is that obtained by setting a0 = 0, so that the air is a
perfect insulator, for then

gQ(r,t) = 8(t-r/c)(4vr). (2.13)

Here c is the speed of light in air (in scaled variables!), so the first term in (2.7)
represents the passage of a wave front directly from x to x', whereas the second
represents the wave front reflected from the interface between the air and the
earth.

In the application to geoprospecting systems, the contributions from the gQ

terms occur at times too early to measure. Indeed, if Eo denotes the contribution
to E from g0, then

E0(x, /) = - ( / o ^ ) - 1 / ' dt'f d'x'go{r, t - /')J(x', /')

= -{lon + lryl f d3x'M(x')H(t - r/c)H(r -{t - r

(2.14)

Since the speed of light in air is so large compared with the separation of the
source and receiver, the terms involving c may be dropped to give

E0(x, 0 = -(lan+1r)-lH(T - t) j d3x'M(x')/(4irr). (2.15)

Consequently, Eo vanishes for times later than T. Since our aim is to analyse the
signal at late times, we may discard the g0 terms throughout the rest of the paper.
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If we combine formulae (2.1), (2.2) and (2.3), we obtain

Z(s) = -(4*ylsl(s) p d\{X/kQ)P(\)cxp[-(k0 - X)(z + z')][b/a - p]

(2-16)

where

P(X) = f dx- f rfV./0(A|r - r' |)M(x')exp[-\(z + z')\. (2.17)
JR JT

We call P the loop function, because all the geometric information concerning the
disposition of the loops is embodied in P. So far we have not restricted M, apart
from requiring M to be horizontal and divergence free, but we will now impose
the ' thin wire approximation' in which we assume that M is concentrated on the
axis of the transmitting loop. Thus, we now let T denote the axis of the
transmitting loop, rather than its volume, and parametrise T by the curve

q^x'(q), 0<<7< | r | .

where \T\ is the circumference of T. Then dx'/dq is a unit vector tangential to T
and

M = dx'/dq. (2.18)

Hence,

P{\) = f dx- j dqJ0{X\T - r ' |)exp[-\(z + z')\ dx'/dq. (2.19)
JR JT

An alternative expression for P can be obtained by repeated application of
Stokes' theorem to formula (2.19):

P{\) = / / \2/0(X|r - r' |)exp[-\(z + z')], (2.20)
JR JT

where the integrations are now over the areas of the loops. This form for P is
generally more convenient for calculation because it involves only scalar quanti-
ties. For example, when the transmitting and receiving loops are circular, with
radii a and b, and centres separated by a distance d, repeated application of the
addition theorem for Bessel functions gives

P{\) = 47r2a&/1(Xa)/1(\fc)y0(Xd). (2.21)

The TEM response of the layered medium is obtained from Z(s) by inverse
Laplace transform,

Z(t) = (2vi)~l f dsZ(s)exp(st), (2.22)
Jc
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where C is a contour parallel to the imaginary s axis and which lies entirely to the
right of the singularities of Z(s). Our strategy is to locate these singularities and
deform the contour about them in such a way that Watson's lemma can be
applied to the integral representation of Z(t).

3. Singularities of A ( s)

We observe that sl(s) is an entire function of s, namely,

sl(s) = [1 - exp(-*T)]/(*T), (3.1)

so we can focus upon the functions a and b which appear in the matrix A.
Each factor T which appears in the expansion of A is an entire function of

kf = e,52 + o^ + X2, l < / < « , (3.2)

and so is necessarily entire in both 5 and X. Consequently A is a holomorphic
function of s except when

k2
0 = e0s

2 + X2 < 0 (3.3)

or

A short analysis shows that, for any fixed X, A is holomorphic in the variable s
throughout the plane cut as shown in Figure 3. Note that the endpoints shown for
the cut on the real axis are only correct asymptotically as en+1 -» 0.

Let us compute the discontinuity of b/a across the cut on the real axis. To do
so we establish the convention that the value of kt on its associated cut is taken to
be its boundary value from above. Let

s = u + iv,

and define for u on the cut

D(u) = (2iri)~l lim [{b/a - p){u - iv) -(b/a - p)(u + iv)]. (3.4)

Since the sign of kn+1 reverses when s crosses the cut, and since

b(-kn+1) = d(kn+1),

«(-*.+i) = c(kn+1),
 Ki*}

we find that

D(u) = (liri)'1 lim [d/c - b/a](u + iv) (3.6)
D->0+

= (27T/)"1 lim [(ad - bc)/(ac)\(u + iv). (3.7)
o+
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ad- be = det /I = (3.8)

D(u) = kn + l/{2mkoac), (3.9)

where the limit sign has been omitted on the understanding that all quantities are
defined on the cut by their boundary values from above.

The analytic structure of A simplifies if we now introduce the quasistatic
approximation which sets

e,. = 0, i = 0 , l , . . . ,n + l. (3.10)

The cuts parallel to the imaginary axis recede to infinity, as does the left hand
endpoint of the cut on the real axis. Thus, for fixed X, A is holomorphic in the
whole s plane, with the exception of a cut along the real axis from infinity to -X2.
The discontinuity of b/a across this cut is

£>(") = (X2 + uf/2/{2iri\ac) (3.11)
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since

A:o = A (3.12)

and

kn+l = (X2 + u)1/2 (3.13)

in the quasistatic approximation.
The quasistatic approximation is nearly always used in the analysis of geo-

prospecting systems because observations are made long after the wave fronts
have passed the observer. Under these circumstances, the fields evolve according
to a diffusion equation rather than a wave equation. We will now keep the
quasistatic approximation for the rest of the paper.

In addition to the singularities of Z(s) associated with the branch cuts of k0

and kn+l, there will also be poles at the zeros of a. Here we regard a as a function
of 5 with parameter A, and we denote the number of zeros by n(\) and their
positions by Sj(A),.. .,.sn(X)(A). These zeros correspond to eigenvalues of the
operator

L = -d 2/dz2 + q, (3.14)

where

q = es2 + as, (3.15)

on the Sobolev space H2(K). That this should be so emerges naturally from the
construction of Green's function g along the lines sketched at the beginning of
Section 1, but since most of the steps are fairly routine and would require us to
introduce extensive notation, we will omit them here. Instead, we will show that
the zeros must lie in the interval [-A2,0], and that w(A) is zero if A is sufficiently
small.

From the positivity of the operator -d2/dz2, it is easy to show that

(u2 - v2)(f, ef) + u{f,of) + A2 < 0, (3.16)

v[2u(f,ef)+(f,of)]=0, (3.17)

where s = u + iv and / is the normalised eigenfunction corresponding to the zero
of a. In the quasistatic approximation, these inequalities reduce to

«(/,©/) + A2 < 0, (3.18)

i>(/,o/) = 0. (3.19)

From (3.18) and (3.19) we conclude that the zeros of a lie on the negative real
axis. Since the point -A2 will lie in the continuous spectrum of L if s is in the
interval (-oo, -A2], and since L cannot have eigenvalues embedded in its continu-
ous spectrum, it follows that the zeros of a are confined to the interval [-A2,0].
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11 s 1 Asymptotic EM response 15

We obtain an upper bound on the zeros of a by comparing the spectrum of L
with the spectrum of a related operator L», whose conductivity function has only
a single layer above the basement.

LEMMA. Let a denote the maximum value of a, and suppose that a is greater than
1. Then n{\) is zero if

\2 < M = <!r2/[4d2(o - 1)]. (3.20)

Any zeros of a must satisfy

sf(\) < -M. (3.21)

PROOF. We will restrict 5 to be real and negative, and show that, when \s\ is less
than M, L cannot have any eigenvalues. Consequently, a cannot have any zeros.
Equivalently, any zeros of a must satisfy the inequality (3.21). Since all zeros of a
lie in the interval [-\2,0], then \s\ < M whenever (3.20) is true, so n(X) must be
zero.

Let qm denote the 'potential' with a replaced by the function

(1, z<-d,
o,(z)=lo, -d^z^O, (3.22)

U, 0 < z ,
and let Ln denote the differential operator with q replaced by qt. Then L and L*
have the same essential spectrum, namely, the interval [s, 00) (Schechter [18],
Theorem 5.8.1), and, if L* does not have any eigenvalues, then neither can L.
Indeed, if L has an eigenvalue f below the essential spectrum, with normalised
eigenfunction/, then

Since q — q+ is both bounded and positive, it follows that

which implies that L* also has an eigenvalue (Schechter [18], Corollary 4.4.1), and
we have a contradiction. Lastly, it is a standard result from quantum mechanics
that L« does not have any eigenvalues if \s\ < M (Schechter [18], Corollary 3.3.1).

Finally, we note the special case of a resistive overburden, for which

a ( z ) < l f o r z < 0 .

Then

(/,o/)<l

and so (3.18) implies that

u < -X2.
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This is a contradiction and so the function a cannot have any zeros if the
overburden is resistive.

The conclusion of the analysis is that the singularities of b/a consist of a
square-root branch point at the point -X2 and a finite number of simple poles in
the segment [-X2,0]. The branch cut for the square root lies along the segment
(-oo, -X2] of the negative real axis. Consequently, the contour C for the inverse
Laplace transform can be any vertical line in the right hand s plane.

In the next section we will deform the contour C around the negative real axis
of the s plane. It is interesting to note here the role of the quasistatic approxima-
tion, without which the three cuts would pinch on the origin of the s plane as
X -» 0. Whether or not the contour C could be deformed would become quite a
delicate question.

4. Derivation of Z(t)

The TEM response of the layered medium is

Z{t) = -{%ir2i)'1 f dsexp(st)sl(s) f ° d\P(X)[b/a - p](X, s). (4.1)Jc Jo

With the contour C in the right half plane, we may interchange the order of
integration. Having done so, we deform the contour C around the negative real
axis. Then

Z(t) = -(tv2*)'1 r dXP(X)Jo

l dsexp(st)sl(s)

. lim [[b/a — p](u — iv)—[b/a — p](u + iv)]
v-> 0+

+ (2iri) £ r e s i d u e [ e x p ( st )sl(s)(b/a - p)]\. ( 4 . 2 )
,_1 s-s,(.\) j

Because the zeros s,(X) are strictly negative for all X and are bounded away from
zero, it follows that the contributions of the pole terms are all exponentially
damped in time. In fact, the second term in (4.2) is bounded by

(4ir)"1exp(-M0 (°° dX P(X)Y. residue [sl(s){b/a - p)]
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Since we are interested in late times, we discard these terms and obtain

Z(t) = -(47T)"1 J°° d\P(\)f'X2 dsexp(st)sl(s)D(s). (4.3)

Reverse the order of integration again and substitute

5 = -x2 and A = mx. (4.4)

Then

Z(t) = [5 a (0 - Bx(t - T ) ] / T , (4.5)

where

Bi{t) = <n'2( dxexp(-x2t)x2°~l)S(x), (4.6)
•'o

S(x) = x2 C dm{\ - m2)1/2mP(mx)/Q{m, x), (4.7)
Jo

and

Q(m,x) = 4\2ac. (4.8)

In the limit as T - • 0, we find

Z(t) = -B2(t). (4.9)

5. Asymptotic analysis of B, (t)

We now apply Watson's lemma (Copson [4]) to (4.6) to obtain an asymptotic
expansion for .8,(0 at late times. We develop S as a convergent power series for
small x,

S(x) = x 2 £ Srx
r, (5-1)

substitute this into (4.6) and integrate termwise to obtain

B,(t) ~ At{t) = (2*2)-1 £ SrT((r + l ) /2 + /),-«'+1>/2+'>. (5.2)
r-0

In this section we will develop two expressions for the Taylor coefficients Sr, the
first of which will be a convenient tool for the analysis but unsuited to numerical
computation, whereas the second will have the opposite properties.

The first step is to develop Q in power series for small x, which we achieve by
expanding the factors in the matrix A in series and then multiplying the series
together. Next we develop P in series and compute the ratio P/Q. Finally we
integrate over m.
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The matrix Tr has the series representation
00 (k d )2'r

r ^ (2i V r ' ^ '

where

. [ 1 2ir/dr]
T1' = d A\
Ir [dAVr+V 1 J" ' }

I f w e l e t X = TnTn_l ••• Tx, t h e n

X = Y,Xrx
2r, (5.5)

r = 0

where

Xr= E^-^.- .^-^'X (5.6)
1*1 —-r

*' {2il)\---{2in)\
T" Tl' (5"7)

and

' = ( ' i » - • • . ' « ) .

| / | = / 1 + ••• + /„. (5.8)

Let

A short calculation yields that

Q = (a\ + /?)2 + x2(l - m2)(y\ + S)\ (5.10)

so we obtain the series for Q by further multiplication.

(oX + j8) = m £ a,x2r+l + £ y3rx
2' = £ M,*'+\

r=0 r=0 f-0

(yX + 5) = m £ Yrx
2'+1 + £ 6rx

2' = £ Vfx
r (5.11)

where

Hence,

r - 0
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where

Qr= E

Note that Qo = 1 and hence is independent of m. Since Xr is a polynomial in m of
degree 2r, it follows trivially that

degree(/i2r) = 2r + 1, degree^,) = 2r,

degree(/i2r_1) = 2r, degree(f2r+1) = 2r + 1,

and hence that the degree of Qr does not exceed r + 2. In fact,

degree^,) = r. (5.15)

To prove this, firstly observe that ar, Br, yr and 8r are polynomials in m2, and then
establish by induction on r that Q2r and w"1g2 r + 1 must also be polynomials in
m2. Thus, Qr will have degree r if the coefficient of mr+1 is zero. But this
coefficient is independent of ax,..., ar, so we set

CTj = o 2 = • • • = an = 1

and find that

Q{m,x) = x2,

which clearly demonstrates that the coefficient of wr + 2 is always zero if r > 0.
It is quite apparent that formulae (5.6) and (5.7) are unsuited to numerical

computation, because the number of terms in the summation for Xr becomes
extremely large for more than two layers and the cost of computing the partitions
of r and the matrix products is excessive. Fortunately, it is not difficult to prove
by induction that

cosh Be kY sinh Be 1

e2.
c . - i . ; , „ , , ; , . ! \ „ i (5-i6)(enkny

lswhBe

where

Bt=k1dl + e1k2d2+ •••+enkndn,

Ct = 2J-"(1 + £2A:2/A:1)(1 + e3k3/e2k2) •••(! + e^Jz^k^). (5.17)

The summation is over the signs e, = ± , so the number of terms in the
summation is 2""1.

The ratios kl+l/kt which appear in Ce are independent of x, so it is only
necessary to expand the hyperbolic functions in order to obtain the series
development of X. A short calculation gives

X= t*2'Zxl'\ (5.18)
r-0 e
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where

(5.19)
' (2r)\[Ke/(enPn(2r+l)) P,/{*nPn)\

and

p.= (m2- (T.)1/2, (5.20)

Ke = P\d^ + £2/^2^2 "̂  • • • + £npndn. (5.21)

Note that the earlier expression for Xr indicated that its elements were poly-
nomials in m, but the present formula does not even show clearly that the
elements are real! Nonetheless, formula (5.18) is well suited for computation for
the following reason. Let

**-[£ £]' ("2)
and define

^ " m ° r
w ' "(1)+1 ~̂ Yr ' (5-23)

so that

M,= 2>(re)> ", = E" , W - (5-24)
£ e

Then /x(
r
£) and ><r

(c) satisfy the following recursion formula,

+ "^ ^ ' (5.25)

with the initial values

„ r{e> = CeKtm/{enPn).

This recursion formula is easy to program and fast in execution.
The loop function is also an entire function and from the representation (2.20)

it is clear that it has a series development of the form

P(mx) = m2x2 £ Pr(mx)''. (5.27)
r-0

Expressions for the coefficients Pr are given for coincident circular loops and
arbitrary rectangular loops in Appendix 1.
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Both P and Q have a zero of the second order at x = 0, so provided that x is
less than the modulus of the closest nonzero zero of Q, the series for P and Q can
be manipulated as follows. Let

F = P/Q (5.28)
00

= m2 £ Frx
r, (5.29)

where

Fo = Po (5.30)

and
r

Fr=m'Pr- £ QpFr_p, r>0. (5.31)

It is easy to prove by induction on r that Fr is a polynomial in w, that

degree(Fr) < r, (5.32)

and that F2r and w"1F2r+1 are polynomials in m2.
Within the region of convergence of the series (5.29), we may integrate

termwise over m to obtain
00

S(x) = x2 £ Srx
r, (5.33)

where

Sr = T <to(l - m2)1/2w3Fr(m). (5.34)

To evaluate Sr, two options are open.
(1) For odd orders, F2 r + 1 has the form

^2r+i = m " polynomial in m2.

Hence,

- mz) miF2r+l(m). (5.35)

These integrals can be evaluated exactly by Gaussian quadrature with weight
(1 — m2)1/2, interval [-1, +1], and Chebyshev polynomials of the second kind.
(Stroud and Secrest [21]). To evaluate the even orders, let

w = m2

and obtain

S2r = 2-1 C dw{\ - w)1/2wF2r("
1/2). (5.36)

A)
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Recall that F2r(w
1/2) will be a polynomial in w. Thus, 52, may be evaluated

exactly by Gaussian quadrature with weight (1 - w)1/2, interval [0,1] and Jacobi
polynomials. (Krylov, Lugin and Yanovich [11].)

(2) Alternatively, quadrature rules may be developed for the interval [0,1] with
weight (1 — m2)1/2m2, so that both the odd and even order Sr may be evaluated
exactly with the same quadrature rule. This approach leads to a simpler program
and is the one we have followed. We computed Gaussian rules with from one to
twenty points. In order to compute Sr exactly for

we chose the rule with M points:

M

1 = 1

where w, and m, are the computed weights and nodes. In Appendix 2 are
tabulated the weights and nodes for the 8 point rule, sufficient to give the first 16
terms of the asymptotic expansion.

The algorithm for computing the coefficients Sr is summarised in the flow chart
below.

Compute Po, Pv. ..,PN for the loop configuration.
SetSr = 0, r = 0, l,...,N.
Set w, to the first quadrature node.

Label 1: Set n, = 0 and vr = 0.
Se te 2 = + ,e 3 = +,...,en = + .

Label 2: Compute Bt and Ce.
Compute nie\ fi^ and v^\ p[e).
Compute n[e) and v^ by recursion.
Increment nr and vr. fir:= /ir + /i(

r
e), v/.= vr + vr

(e)

If not finished all sign combinations, go to 2.
Compute Qo, Qu...,Qn from jur and vr.
Compute Fo, Flt...,FN recursively from Pr and Qr.
Increment Sr. Sr:= Sr + w,.Fr(m().
If not finished all quadrature points, go to 1.
Stop.

6. Thin layer approximations

At this point we can establish the relation between our asymptotic expansion
and the expansion to two terms obtained by Lee [13]. To do so, let

<2(*> = x2 Z Qrx
r, (6.1)

r-0
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and call Q(k) the k^ thin layer approximation to Q. Since Xr contains a factor
^I2'1 ' ' " ^«'"> *l *s c^e a r t r i a t l ^ e terms in the expansion of X (and hence of Q) will
become very small if the layers are thin, so it is reasonable to truncate the series
as in (6.1) above. Explicit calculation yields

Ql = 2mdOx, (6.2)
Q2 = d2[(0x + 62)(2m2-l) + 6?],

where 6X and 62 are given by (1.14).
If the series for Q is truncated at the first term, then the recurrence formula

(5.31) degenerates to

Fr = « T , (6.3)

from which we obtain

Sr = crPr, (6.4)

where

cr= f1 dm{\ - m 2 ) 1 / 2 m 3 + r,

= r (3 /2 ) r ( ( r + 4)/2) . ,
2T((r + 7)/2) • V>

Thus,

00

- /)r«'+1>/2+<\ (6.6)

This is the response of a uniform half space with the conductivity of the
basement, as expected, because all information concerning the layers was con-
tained in the terms dropped from Q.

The first order thin layer approximation gives

Qw = x2[\ + imxdO^. (6.7)

Note that Q(1) can vanish if 6X < 0, corresponding to a conductive overburden, so
the thin layer approximation has introduced a spurious zero on the x axis. The
recurrence relation for Fr can again be solved explicitly, because equation (5.31)
reduces to

F° = P°' (6 8)
F=m'P-QF y >
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which has the solution

p-0

= mrLr, (6.9)

where

Thus,

Lr= i(-2d9xyP,_p. (6.10)
p-0

= crLr

and

At(t) = (27T2)'1 I crL,r((r + l)/2 + /)r«'+1>/2+<>. (6.11)
r-0

Lee [13] obtained the first two terms of this asymptotic expansion for the case of
coincident circular transmitting and receiving loops.

7. Error estimates

If the function Q never vanished for nonzero x, then the series for S would
converge for all x and the asymptotic expansion would be a convergent series.
This happens only for the case of a uniform half space, for which

so in principle the transient response of the half space could be calculated with
arbitrary accuracy by summing sufficiently many terms of the series. (In practice,
however, the series is so slowly convergent at early times that the finite word
length of the computer causes large cancellation errors when many terms of the
series are summed.) In all other cases, Q is an entire function of order \, and so
has an infinite number of isolated zeros. The proximity of these zeros to the origin
limits the radius of convergence for the series for S, and hence reduces the range
of times for which the asymptotic series is useful. For low conductivity contrasts
or thin layers, the zeros of Q are well away from the origin, and the asymptotic
series 'converges' well, but, for larger conductivities and thicker layers, the zeros
of Q crowd in around the origin and the 'convergence' of the asymptotic series is
poor.
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To make these intuitive ideas, precise we will develop an estimate for the error
in chopping the asymptotic series at N terms. The estimate will be in terms of the
quantity

£ = inf £(w), (7.1)

where

and

0 = xo{m),xl{m),x2{m),...

are the distinct zeros of Q, regarded as a function of x with parameter m. Clearly
£ is the closest approach to the origin of all the zeros of Q as m is allowed to vary
over the range [0,1]. In principle £ is computable, because Q is an elementary
combination of hyperbolic functions and its zeros can be found by a number of
well established algorithms. However, the cost of such a search is not justified,
firstly because the pragmatic algorithm works well, and secondly because we can
approximate £ by the quantity £(Ar), defined analogously as the closest approach to
the origin of the zeros of Qw. It is easy to see that

l/€(1) = 2d|01|, (7.2)

and a rather lengthy, but straightforward, calculation yields

„ J«MI+ixn, ,«o.
Wl«,l( l + X)'", ' » 0 .

This is the approximation quoted in the introduction. Higher order approxima-
tions could be computed numerically, but again the cost is unwarranted. To
illustrate this, the figures in Table 3 compare £(1), | ( 2 ) and £ in the case of a single
conductive layer over a basement, for which £ can be computed exactly:

£ = log[(aj/2 + l ) / (a{/ 2 - l ) ] / ( 2 a j / ^ ) . (7.4)

<Jl = 1 0 , dy

i(1) 0.556
f(2) 0.833
( 1.035

TABLE 3

= 0.1 o, = 1000,

0.500 x
1.000 X
1.000 X

dx = 1

io-3

io-3

io-3

These figures also illustrate the general rule that the zeros crowd in around the
origin as the product of conductivity and thickness increases.
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We now turn to the derivation of the error estimate. Let

FN = m2Z Kxr (7-5)
r = 0

and

S" = x2 P dm{\ - m2)l/2mFN{m). (7.6)
•'o

LEMMA. There exists a constant Ksuch that for all x

\S(x) - SN(x)\ < Kx\x/0N/\x - l|. (7.7)

PROOF. For each m, /"has only simple poles, so the sequence

i(mY\Fr(m)\, r = 0,1,2, . . . ,

is bounded. Hence, there exists a constant C{m) such that

£(m)r\Fr(m)\< C(m) forallr.

Since £ < £(m) for all m, it follows that

\Fr(m)\< C(m)/£' forallr.

Consider x < | . Since the series for F is convergent for such x,

S(x) - SN(x) = x2 (l dm(l - m2)1/2m3 £ Fr(m)xr,
J0 r = N + l

and

\S(x)-SN(x)\<x2f1dm(l-m2)1/2m3 f C{m){x/i)r

where

C = fl dm(l - m2)1/2m3C(m).Jo
Thus, (7.7) holds with K = C.

Now consider x > £. The series is no longer convergent, but it is certainly true
that

\S(x) - SN(x)\ < x2 fl dm{\ - m2)1/2rn\F(m, x)\Jo

C dm{\ - m2)X/2m3 £ \Fr(m)\x'
0 r=0

Since |/0| < 1, it follows from (2.20) that
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where |T| and \R\ denote the areas of the transmitting and receiving loops. The
function

( l -m 2 ) 1 / 2 i f iV /G(m,Jc )

has at worst an integrable singularity in m, so there exists a constant L such that

1 dm{\ - m2)1/2rn\P(mx)/Q{m, j t ) | < L for all x > £.

- SN(x)\ < x2L + x1 P dm{\ - m2)l/2
m

3C(rn)

f
•'o

Hence,

Choose K so that

L + C(

a condition which will be satisfied provided that

K> C + LNN/(N +

Then

\S(x) - SN(x)\ < x2K(x/£)N+l/{x/£ - 1).

Again (7.7) holds and the proof is complete.
Define

1 ^o

Choose any small positive number e, split the integration into three ranges,
[0, | — e], [| — e, | + e] and [£ + e, oo), and use the estimate for \S(x) — SN(x)\
in the first and last ranges.

o
W

2|fi,(0 - B,N(t)\ < p'e dxexp{-x2t)x^-^Kx\xA)N/U - x)

f ( 2 0 x 2 ( / - 1 ) | 5 ( x ) - S"(x)\

dxexp(-x2t)x2°-l)Kx3(x/t)NAx - 0

Kf0 dxexp(-x2t)x2i+1(x/ON
J

^x^-^Six) - SN(x)\.f
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The first integral is trivial. Apply the mean value theorem to the second integral.

TT2\B,(t) - Bt
N(t)\ < (2e)~1K$2u + 1)r(N/2 + i + \)/(%tl/2)N+l' + 2

+ 2eexp(-z2t)z2ii-l)\S(z) - SN(z)\,

where z is a point in the interval [£ - e, £ + e]. Provided that 0 < £ < £ and also
that £ is not too small, then the dominant term is the first. In any case, we can
always increase the constant K in order to obtain the following bound.

This is the bound mentioned in the introduction.

Appendix 1

We assume that both the transmitting and receiving loops lie on the surface of
the ground, so that z = z' = 0.

Consider firstly the case of concident circular transmitting and receiving loops
with radius a. Formula (2.21) for the loop function reduces to

P(X) = ^TTaJ^Xa)]2. (8.1)

Insert the series for J2 given in formula (9.1.14) of Abramowitz and Stegun [1] to
obtain

P2r+i = 0,

;(-l)>/2)2r+2(2r + 2)! (8.2)

The sequence of Pr is best computed by recursion, since

Pir+2 = -P2rC2(2r + 3)/[2(r + l)(r + 2)(r + 3)], (8.3)

and

P0 = 7T2a4. (8.4)

Now consider rectangular transmitting and receiving loops with sides parallel
to the x and y axes. Suppose that the transmitting loop encloses the area

a> « X < 6 ' ' (8.5)

and that the receiving loop encloses the area

a < x < b,
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Insert the series for Jo (Abramowitz and Stegun [1], formula (9.1.10)) to obtain

P(\) = A2 £ PrK (8.7)
r-0

where

2r+l 0,

P2r=(-lYVr/[22r(r\)2]
and

2r

R JT
k - r's\2r.

(8.8)

(8.9)

(8.10)

The integrations in (8.10) are over the areas of the loops. For the rectangular
loops,

Vr = /* dxf dyf" dx'jd' dy'[(x - x'f + (y - y'f\'. (8.11)
Ja Jc Ja' Jc'

Use the binomial theorem on the power to reduce the integrand to a sum of
multinomials which can then be integrated trivially. Thus,

K-t {k)vk(a, b, a', b')Ur_k{c, d, c', d') (8.12)

where

[(ft - a
^ ( a ' * ' ° ' * ) = [{2k + l)(2k + 2)] •

(8.13)
Formulae (8.8), (8.12) and (8.13) give an easily computable expression for the
sequence Pr.

Appendix 2

Listed in Table 4 are the points and weights for a Gaussian quadrature rule
with weight (1 - w2)1/2m3 on the interval (0,1).

TABLE 4

1
2
3
4
5
6
7
8

Points

0.908248748533967848D +
0.976532380300760677D +
0.8013226051593359850 +
0.665445636715052751D +
0.51298670112516676D +
0.3579146860985938630 +
0.214550949148259760D +
0.960799955038826807Z) -

00
00
00
00
00
00
00
01

Weights

0.2788596542747174990 - 01
0.9341914643026807890 - 02
0.3794531584391249760 - 01
0.3220201004412132070 - 01
0.1809654208028341240 - 01
0.6488959266666886550 - 02
0.1282234233908675590 - 02
0.9039179394198274350 - 04
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