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The Dirac equation and the Dirac field

The Standard Model is a quantum field theory. In Chapter 4 we discussed the

classical electromagnetic field. The transition to a quantum field will be made in

Chapter 8. In this chapter we begin our discussion of the Dirac equation, which was

invented by Dirac as an equation for the relativistic quantum wave function of a

single electron. However, we shall regard the Dirac wave function as a field, which

will subsequently be quantised along with the electromagnetic field. The Dirac

equation will be regarded as a field equation. The transition to a quantum field theory

is called second quantisation. The field, like the Dirac wave function, is complex.

We shall show how the Dirac field transforms under a Lorentz transformation, and

find a Lorentz invariant Lagrangian from which it may be derived.

On quantisation, the electromagnetic fields Aμ(x), Fμν(x) become space- and

time-dependent operators. The expectation values of these operators in the environ-

ment described by the quantum states are the classical fields. The Dirac fields ψ(x)

also become space- and time-dependent operators on quantisation. However, there

are no corresponding measurable classical fields. This difference reflects the Pauli

exclusion principle, which applies to fermions but not to bosons. In this chapter

and in the following two chapters, the properties of the Dirac fields as operators are

rarely invoked: for the most part the manipulations proceed as if the Dirac fields

were ordinary complex functions, and the fields can be thought of as single-particle

Dirac wave functions.

5.1 The Dirac equation

Dirac invented his equation in seeking to make Schrödinger’s equation for an elec-

tron compatible with special relativity. The Schrödinger equation for an electron

wave function ψ is

i
∂ψ

∂t
= Hψ.

49
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50 The Dirac equation and the Dirac field

To secure a symmetry between space and time, Dirac postulated the Hamiltonian

for a free electron to be of the form

HD = α · p + βm = −iα · ∇ + βm, (5.1)

where m is the mass of the electron, p its momentum, α = (α1, α2, α3), and

α1, α2, α3 and β are matrices. ψ is a column vector, and the Schrödinger equa-

tion becomes the multicomponent Dirac equation:

(i∂
/
∂t + iα · ∇ − βm)ψ = 0. (5.2)

If this equation is to describe a free electron of mass m, its solutions should also

satisfy the Klein–Gordon equation of Section 3.5. Multiplying the Dirac equation

on the left by the operator (i∂
/
∂t − iα · ∇ + βm), we obtain[

−∂2/∂t2 +
∑

i

α2
i ∂i∂i +

∑
i< j

(αiα j + α jαi )∂i∂ j

+ im
∑

i

(αiβ + βαi )∂i − β2m2
]
ψ = 0,

where ∂i = ∂
/
∂xi . This equation is identical to the Klein–Gordon equation if

β2 = 1, α2
1 = α2

2 = α2
3 = 1,

αiα j + α jαi = 0, i �= j ; αiβ + βαi = 0, i = 1, 2, 3. (5.3)

The reader may recall that similar equations are satisfied by the set of 2 × 2 Pauli

spin matrices σ = (σ 1, σ 2, σ 3), where it is conventional to take

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
. (5.4)

We shall also find it useful to write

σ 0 =
(

1 0

0 1

)

for the 2 × 2 unit matrix.

However, here we have four anticommuting matrices, the αi and β, to represent.

It proves necessary to introduce a second set of Pauli matrices and represent the

αi and β by 4 × 4 matrices. The representation is not unique: different choices are

appropriate for illuminating different properties of the Dirac equation. We shall use

the so-called chiral representation, in which

αi =
(−σ i 0

0 σ i

)
, β =

(
0 σ 0

σ 0 0

)
, (5.5)
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5.2 Lorentz transformations and Lorentz invariance 51

writing the matrices in 2 × 2 ‘block’ form. Here

0 =
(

0 0

0 0

)

and the 4 × 4 identity matrix may be written

I =
(

σ 0 0
0 σ 0

)
.

It can easily be checked that these matrices satisfy the conditions (5.3). (The block

multiplication of matrices is described in Appendix A.)

Since the αi and β are 4 × 4 matrices, the Dirac wave function ψ is a four-

component column matrix. Regarded as a relativistic Schrödinger equation, the

Dirac equation has, as we shall see, remarkable consequences: it describes a par-

ticle with intrinsic angular momentum (h
/

2)σ and intrinsic magnetic moment

(qh/2m)σ if the particle carries charge q, and there exist ‘negative energy’ solu-

tions, which Dirac interpreted as antiparticles.

A Lagrangian density that yields the Dirac equation from the action principle is

L = ψ†(i∂/∂t + iα · ∇ − βm)ψ

= ψ∗
a (Iabi∂/∂t + iαab · ∇βabm)ψb, (5.6)

where we have written in the matrix indices. ψ∗
a is a row matrix, the Hermitian

conjugate ψ† = ψT∗ of ψ . Instead of varying the real and imaginary parts of ψa

independently, it is formally equivalent to treat ψa and its complex conjugate ψ∗
a as

independent fields (cf. Section 3.7). The condition that S = ∫
L d4x be stationary

for an arbitrary variation δψ∗
a then gives the Dirac equation immediately, since L

does not depend on the derivatives of ψ∗
a .

5.2 Lorentz transformations and Lorentz invariance

The chiral representation (5.5) of the matrices αi and β is particularly convenient

for discussing the way in which the Dirac field must transform under a Lorentz

transformation. We have written the Dirac matrices in blocks of 2 × 2 matrices,

and it is natural to write similarly the four-component Dirac field as a pair of

two-component fields

ψ =
(

ψL

ψR

)
=

(
ψL

0

)
+

(
0
ψR

)
, (5.7)
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52 The Dirac equation and the Dirac field

where ψL and ψR are, respectively, the top and bottom two components of the

four-component Dirac field:

ψL =
(

ψ1

ψ2

)
, ψR =

(
ψ3

ψ4

)
. (5.8)

The Dirac equation (5.2) becomes

i

(
σ 0 0
0 σ 0

) (
∂0ψL

∂0ψR

)
+ i

(−σ i 0
0 σ i

) (
∂iψL

∂iψR

)
− m

(
0 σ 0

σ 0 0

) (
ψL

ψR

)
= 0.

(5.9)

Block multiplication then gives two coupled equations for ψL and ψR:

iσ 0∂0ψL − iσ i∂iψL − mψR = 0,

iσ 0∂0ψR + iσ i∂iψR − mψL = 0.
(5.10)

We shall find it highly convenient for displaying the Lorentz structure to define

σμ = (σ 0, σ 1, σ 2, σ 3), σ̃ μ = (σ 0, −σ 1, −σ 2, −σ 3).

With this notation, the equations (5.10) may be written

iσ̃ μ∂μψL − mψR = 0,

iσμ∂μψR − mψL = 0.
(5.11)

To obtain the Lagrangian density (5.6) in terms of ψL and ψR, we need to

multiply the expression on the left-hand side of (5.9) by the row matrix (ψ
†
L, ψ

†
R),

where the Hermitian conjugate fields are ψ
†
L = (ψ∗

1 , ψ∗
2 ), ψ

†
R = (ψ∗

3 , ψ∗
4 ). Block

multiplication gives

L = iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − m(ψ

†
LψR + ψ

†
RψL). (5.12)

Variations δψ∗
L and δψ∗

R in the action give the field equations (5.11).

To show that the Lagrangian has the same form in every frame of reference,

we must relate the field ψ ′(x ′) in the frame K ′ to ψ(x) in the frame K, when x′

and x refer to the same point in space-time, and are related by a proper Lorentz

transformation

x ′μ = Lμ
νxν. (5.13)

The operator ∂μ transforms like a covariant vector, so that

∂ ′
μ = Lμ

ν∂ν,

which has the inverse

∂μ = Lν
μ∂ ′

ν. (5.14)

(See Problem 2.2.)
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5.2 Lorentz transformations and Lorentz invariance 53

It is shown in Appendix B (equations (B.17) and (B.18)) that with this Lorentz

transformation we can associate 2 × 2 matrices M and N with determinant 1 and

with the properties

M†σ̃ νM = Lν
μσ̃ μ, (5.15)

N†σ νN = Lν
μσμ. (5.16)

The matrices M and N are related by (B.19):

M†N = N†M = l. (5.17)

In the frame K ′ the Lagrangian density (5.12) can be written

L = iψ
†
LM†σ̃ νM∂ ′

νψL + iψ
†
RN†σ νN∂ ′

νψR − m(ψ
†
LψR + ψ

†
RψL), (5.18)

where we have used (5.14) along with (5.15) and (5.16) in the first two terms.

We must define

ψ ′
L(x ′) = MψL(x), (5.19)

ψ ′
R(x ′) = NψR(x), (5.20)

to give

L = iψ
′†
L σ̃ ν∂ ′

νψ
′
L + iψ

′†
R σ ν∂ ′

νψ
′
R − m(ψ

′†
L ψ ′

R + ψ
′†
R ψ ′

L)

(noting that ψ
′†
L ψ ′

R = ψ
†
LM†NψR = ψ

†
LψR, since M†N = I, and similarly ψ

′†
R ψ ′

L =
ψ

†
RψL).

With the transformations (5.19) and (5.20) the Lagrangian, and hence the field

equations, take the same form in every inertial frame. The way to construct an M
and an N for any Lorentz transformation is given in Appendix B.

An example of a rotation is

Lμ
ν =

⎛
⎜⎜⎝

1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

⎞
⎟⎟⎠ . (5.21)

This is a rotation of the coordinate axes through an angle θ about the z-axis and is

equivalent to equations (2.1). The corresponding matrix M is unitary:

M =
(

eiθ/2 0

0 e−iθ/2

)
. (5.22)

Hence, from (5.17), N = (M†)−1 = M, since MM† = 1. The reader may verify that

(5.15) and (5.16) hold. M is unitary (and hence equal to N) for all rotations.
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54 The Dirac equation and the Dirac field

An example of a Lorentz boost is

Lμ
v =

⎛
⎜⎜⎝

cosh θ 0 0 −sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ

⎞
⎟⎟⎠ . (5.23)

This is a boost with velocity v/c = tanh θ along the z-axis and is equivalent to

equations (2.3). The corresponding matrix M is

M =
(

eθ/2 0

0 e−θ/2

)
, and N = (M†)−1 =

(
e−θ/2 0

0 eθ/2

)
= M−1. (5.24)

5.3 The parity transformation

The Lagrangian density (5.12) can also be made invariant under space inversion

of the axes. Denoting by a prime the space coordinates of a point as seen from the

inverted axes, we have

r′ = −r and ∇′ = −∇. (5.25)

Hence, from the definitions (5.10) of σμ and σ̃ μ,

σ̃ μ∂ ′
μ = σμ∂μ, σμ∂ ′

μ = σ̃ μ∂μ. (5.26)

Our Lagrangian density (5.12) is evidently invariant if ψ(r) → ψ P (r′) where

ψ P
L (r′) = ψR(r), ψ P

R (r′) = ψL(r). (5.27)

Actually the Lagrangian density would also retain the same form if we were to

take, for example,

ψ P
L (r′) = eiαψR(r), ψ P

R (r′) = eiαψL(r),

for any real α. It is the standard convention to adopt the form (5.27) for the field

transformation under space inversion.

5.4 Spinors

Two-component complex quantities that transform under a Lorentz transforma-

tion according to the rules (5.19) and (5.20) are called left-handed spinors and

right-handed spinors, respectively. Our subscripts L and R anticipated this. The

four-component Dirac field is often called a Dirac spinor.
Spinors have the remarkable property that they can be combined in pairs

to make Lorentz scalars, pseudoscalars, four-vectors, pseudovectors and higher

order tensors. For example, (ψ
†
LψR + ψ

†
RψL) is a Lorentz invariant real scalar

and i(ψ
†
LψR − ψ

†
RψL) is a real pseudoscalar; it is invariant under proper Lorentz
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5.5 The matrices γ μ 55

transformations but changes sign under space inversion. Using (5.15), (5.16) and

(5.27), we can see that (ψ
†
Lσ̃ μψL + ψ

†
RσμψR) is a four-vector, the space-like

components of which change sign under space inversion (since σ̃ i = −σ i ), and

(ψ
†
Lσ̃ μψL − ψ

†
RσμψR) is an axial four-vector, the space-like components of which

are unchanged under space inversion.

5.5 The matrices γ μ

The separation of the Dirac spinor into left-handed and right-handed components

will be particularly appropriate when we discuss the weak interaction. For describ-

ing the electromagnetic interactions of fermions it is convenient to introduce 4 × 4

matrices γ μ defined by

γ 0 = β; γ i = βαi , i = 1, 2, 3. (5.28)

It follows from the properties of the β and αi matrices that

(γ 0)2 = I; (γ i )2 = −I, i = 1, 2, 3;

γ μγ ν + γ νγ μ = 0, μ �= ν.
(5.29)

In the chiral representation,

γ 0 =
(

0 σ 0

σ 0 0

)
, γ i =

(
0 σ i

−σ i 0

)
. (5.30)

Written with the γ μ matrices, the Lagrangian density (5.6) becomes

L =ψ̄(iγ μ∂μ − m)ψ, (5.31)

where ψ̄ is the row matrix ψ̄ = ψ†γ 0, and the Dirac equation takes the symmetrical

form

(iγ μ∂μ − m)ψ = 0. (5.32)

Another useful matrix γ 5 = iγ 0γ 1γ 2γ 3. In the chiral representation,

γ 5 =
(−σ 0 0

0 σ 0

)
.

The matrices 1
2
(I − γ 5), 1

2
(I + γ 5) are projection operators giving the left-handed

and right-handed parts of a Dirac spinor:

1

2
(I − γ 5)ψ =

(
σ 0 0
0 0

) (
ψL

ψR

)
=

(
ψL

0

)
, (5.33)

1

2
(I + γ 5)ψ =

(
0 0
0 σ 0

) (
ψL

ψR

)
=

(
0
ψR

)
. (5.34)
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56 The Dirac equation and the Dirac field

It is straightforward to verify that the Lorentz scalars and vectors constructed in

Section 5.4 from two-component spinors can be written:

ψ
†
LψR + ψ

†
RψL =ψ̄ψ (scalar)

i(ψ
†
LψR − ψ

†
RψL) = iψ̄γ 5ψ (pseudoscalar)

ψ
†
Lσ̃ μψL + ψ

†
RσμψR =ψ̄γ μψ (contravariant four-vector)

ψ
†
Lσ̃ μψL − ψ

†
RσμψR =ψ̄γ 5γ μψ (contravariant axial vector).

Note that these quantities are all real.

5.6 Making the Lagrangian density real

A potential problem with our Lagrangian density (5.6) or (5.12) is that it is not

real. Regarding ψ as a wave function, L is a complex function; regarding ψ as an

operator, L is not Hermitian. As a consequence, the energy–momentum tensor is

complex. Indeed, to apply Hamilton’s principle, the variation δS in the action must

be real. The term − m(ψ
†
LψR + ψ

†
RψL) in (5.12) is real, and the imaginary part of

L may be written

(1
/

2i)[iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − (iψ

†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR)†]

= (1
/

2i)[iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR + i(∂μψ

†
L)σ̃ μψL + i(∂μψR)†σμψR],

(where we have used the Hermitian property of the matrices σμ and σ̃ μ). The last

expression is just

(1/2)∂μ(ψ
†
Lσ̃ μψL + ψ

†
RσμψR).

This is a sum of derivatives, which give only irrelevant end-point contributions

to the action (cf. Section 3.1). Hence δS is real. The imaginary part of L can be

discarded, and we can take

L = 1

2
[(iψ

†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR) (5.35)

+ Hermitian conjugate] − m(ψ
†
LψR + ψ

†
RψL). (5.36)

For further interesting discussion of this question see Olive (1997).

Problems

5.1 Show that the matrix M = N of equation (5.22) when inserted into equations (5.15)

and (5.16) generates the rotation matrix (5.21).

5.2 Show that the matrices M and N = M−1 given by equation (5.24) when inserted into

equations (5.15) and (5.16) generate the Lorentz boost of equation (5.23).
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5.3 Show that ψ
†
RψL and ψ

†
LψR are invariant under proper Lorentz transformations.

Show that ψ
†
RσμψR and ψL

†σ̃ μψL are contravariant four-vectors under proper

Lorentz transformations.

Show that ψ
†
Rσμσ̃ νψL and ψ

†
Lσ̃ μσ νψR are contravariant tensors under proper

Lorentz transformations.

5.4 Demonstrate the equivalence of the expressions (5.6) and (5.31) for the Lagrangian

density.

5.5 Show that γ 5 has the properties

(γ 5)2 = I; γ μγ 5 = −γ 5γ μ; μ = 0, 1, 2, 3.

5.6 Show that iψ̄γ 5ψ is a pseudoscalar field and ψ̄γ 5γ μψ = −ψ̄γ μγ 5ψ is an axial

vector field.

5.7 Show that (γ 0)† = γ 0, (γ i )† = −γ i .
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