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Abstract
We revisit the topic of common lines between projection images in single particle cryo-electron microscopy (cryo-
EM). We derive a novel low-rank constraint on a certain 2𝑛 × 𝑛 matrix storing properly-scaled basis vectors for
the common lines between 𝑛 projection images of one molecular conformation. Using this algebraic constraint
and others, we give optimization algorithms to denoise common lines and recover the unknown 3D rotations
associated to the images. As an application, we develop a clustering algorithm to partition a set of noisy images into
homogeneous communities using common lines, in the case of discrete heterogeneity in cryo-EM. We demonstrate
the methods on synthetic and experimental datasets.

Impact Statement
Single particle cryo-electron microscopy is an imaging technique used to determine the 3D structure of
biomolecules from noisy 2D projection images. This paper revisits one of the first approaches to cryo-EM
image processing, namely common lines between pairs of 2D class averages coming from the Fourier slice
theorem. We present a novel mathematical approach for dealing with common lines: in contrast to some
alternatives, it operates directly on the common lines themselves and avoids triplewise angular reconstitution
completely. The paper then derives novel algebraic constraints on sets of consistent common lines, includ-
ing a straightforward low-rank matrix condition. The algebraic conditions are incorporated into optimization
methods arising from the field of computer vision to produce new methods for computational tasks involving
common lines. In particular, we achieve improved accuracy in common line denoising and rotation recovery at
low signal-to-noise ratios. We also present a method to detect homogeneous communities of 2D class averages
in the case of a cryo-EM dataset with multiple molecular conformations. Altogether this work clarifies a clas-
sic topic in cryo-EM, and opens the door to applying common lines techniques on more challenging datasets.
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1. Introduction
Single particle cryo-electron microscopy (cryo-EM) is an imaging technique capable of recovering the
high resolution 3D structure of molecules from many noisy tomographic projection images taken at
unknown viewing angles. One of the first approaches for 3D reconstruction, known as angular recon-
stitution, is based on the common line property of projection images induced by the Fourier slice
theorem (1,2). Due to the low signal-to-noise ratio (SNR) in cryo-EM data, detecting common lines is a
difficult task (3): even today when applied to denoised averages of images, referred to as 2D class aver-
ages. Detecting common lines is subject to angular errors and incorrectly identified common lines.
Although methods which seek to minimize global errors in the estimated viewing directions have
increased the utility of common lines methods (4), additional constraints on common lines are needed
to improve their accuracy and robustness.

In this paper we propose a novel approach for dealing with common lines. Specifically, we assem-
ble the estimated common lines for a dataset of 𝑛 images into a certain 2𝑛 × 𝑛 matrix, which stores
properly-scaled basis vectors for the common lines (Theorem 3.2). The matrix directly encodes com-
mon lines data, without requiring angular reconstitution on various subsets of images or needing voting
procedures like some existing formulations (3,5). As such, it yields a direct and more global approach
than prior constructions for common lines.

As a main contribution, we derive algebraic constraints on the matrix of common lines, which must
be satisfied in order for a set of common lines to be consistent with a single asymmetric molec-
ular conformation. The constraints include a straightforward low-rank condition on the matrix, as
well as various sparse quadratic constraints. Importantly, the constraints enable new strategies for
computational tasks involving common lines, in particular for: denoising common lines; estimating 3D
rotations; and clustering heterogeneous image sets into homogeneous subsets. We demonstrate this by
adapting optimization algorithms from other domains to these tasks, using the algebraic constraints.
We remark that our constraints seem better suited for numerical optimization than the semialgebraic
constraints found in prior work (6).

Notably, the clustering problem is a recent application of common lines (7). In more detail, the goal
is to sort discretely heterogeneous image sets of multiple molecules into communities corresponding
to homogeneous image subsets. This application is motivated by the increasing complexity of cryo-
EM datasets, where samples may not be purified and thus the number of distinct molecules contained
in a dataset is more than one (8–10). Our algebraic constraints and optimization algorithms enable
consistency checks of subsets of images, to test whether the subset corresponds to a single molecule.

As a mathematical guarantee, we prove that computing the correct scales in the homogeneous case
admits an essentially unique global optimum, see Theorem 5.1. We implement our algorithms and test
them on simulated and real datasets in Section 7. The results demonstrate that our methods can be
successful when applied to 2D class averages at noise levels comparable to experimental data, in both
the homogeneous and discretely heterogeneous cases. We conclude with a discussion of potential future
improvements.

Advantages.
There are several advantages to our approach for dealing with common lines:

• The new formulation is directly in terms of the data, that is, in terms of the common lines
themselves.
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• It involves multiple common lines simultaneously, and does not require triplewise angular
reconstitution at all (in contrast to (5) for instance), making our approach fully global and
potentially more robust to noise than alternatives.

• The algebraic constraints can be incorporated into existing optimization algorithms that have
seen success in computer vision applications (11).

• The resulting algorithms outperform existing methods for denoising and rotation recovery on
noisy simulated data, and perform comparably well for clustering heterogeneous image sets on
real data, even though the optimization algorithms are off-the-shelf.

2. Background
First, we recall a standard simplified mathematical model for cryo-EM, in the homogeneous case of one
molecular conformation. We assume there exists a 3D function 𝜑 : R3 → R describing the electrostatic
potential generated by the molecule. As data, we receive 𝑛 two-dimensional tomographic projection
images, denoted 𝐼𝑅 (𝑖) : R2 → R for 𝑖 = 1, . . . , 𝑛, where 𝑅 (𝑖) ∈ SO(3) are 3D rotations associated with
each image. The goal of single particle cryo-EM is to recover the underlying 3D structure 𝜑 from the
set of 2D tomographic projection images which are observed at unknown rotations. The images, in their
idealized and noiseless form, have the following Fourier transforms due to the Fourier slice theorem:

𝐼̂𝑅 (𝑖) (𝑥, 𝑦̂) = (𝑅 (𝑖) · 𝜑) (𝑥, 𝑦̂, 0). (2.1)

Here 𝜑(𝑥, 𝑦̂, 𝑧) :=
∫
R3 𝜑(𝑥, 𝑦, 𝑧)𝑒

√
−1(𝑥𝑥̂+𝑦𝑦̂+𝑧𝑧̂)𝑑𝑥𝑑𝑦𝑑𝑧 denotes the Fourier transform of 𝜑, and 𝑅 (𝑖) · 𝜑

denotes the rotation of 𝜑 by 𝑅 (𝑖) . Writing 𝑅 (𝑖) =
(
r(𝑖)1 r(𝑖)2 r(𝑖)3

)⊤
, equation (2.1) reads

𝐼̂𝑅 (𝑖) (𝑥, 𝑦̂) = 𝜑

(
(𝑅 (𝑖) )⊤ (𝑥 𝑦̂ 0)⊤

)
= 𝜑(𝑥r(𝑖)1 + 𝑦̂r(𝑖)2 ). (2.2)

Generically, for asymmetric molecules 𝜑 and distinct rotations 𝑅 (𝑖) and 𝑅 ( 𝑗 ) , there exist unique lines
through the origin in the domain of the Fourier-transformed images 𝐼̂𝑅 (𝑖) and 𝐼̂𝑅 ( 𝑗) , respectively ℓ𝑖 𝑗 ⊆
domain( 𝐼̂𝑅 (𝑖) ) = R2 and ℓ 𝑗𝑖 ⊆ domain( 𝐼̂𝑅 ( 𝑗) ) = R2, such that the restrictions

𝐼̂𝑅 (𝑖)
��
ℓ𝑖 𝑗

= 𝐼̂𝑅 ( 𝑗)
��
ℓ 𝑗𝑖

(2.3)

are equal as functions on R2. In cryo-EM, one says that ℓ𝑖 𝑗 and ℓ 𝑗𝑖 are the common lines between the 𝑖th
and 𝑗 th image. In modest-noise settings, which are arrived at by working with 2D class averages instead
of raw tomographic images (12), common lines can be estimated from real cryo-EM data. They give
basic ways to do 3D reconstruction in cryo-EM; for example, see the angular reconstitution technique
of van Heel (2) or the works of Shkolnisky, Singer and their collaborators (3–5) for example.

From equation (2.2), the common lines ℓ𝑖 𝑗 and ℓ 𝑗𝑖 may be found mathematically by expressing the
single line in 3D space:

span(r(𝑖)1 , r(𝑖)2 ) ∩ span(r( 𝑗 )1 , r( 𝑗 )2 ) = span(r(𝑖)3 )
⊥ ∩ span(r( 𝑗 )3 )

⊥ = span(r(𝑖)3 × r( 𝑗 )3 ) ⊆ dom(𝜑) = R3

(2.4)
in the coordinate system of the 𝑖th and 𝑗 th image respectively. Here, × denotes the cross product in R3.
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Combining (2.2) and (2.4), equation (2.3) may be written as:

𝐼̂𝑅 (𝑖) (𝜆𝑥𝑖 𝑗 , 𝜆𝑦̂𝑖 𝑗 ) = 𝐼̂𝑅 ( 𝑗) (𝜆𝑥 𝑗𝑖 , 𝜆𝑦̂ 𝑗𝑖) for all 𝜆 ∈ R,

where 𝑥𝑖 𝑗 := ⟨r(𝑖)1 , r(𝑖)3 × r( 𝑗 )3 ⟩, 𝑦̂𝑖 𝑗 := ⟨r(𝑖)2 , r(𝑖)3 × r( 𝑗 )3 ⟩,

and 𝑥 𝑗𝑖 := −⟨r( 𝑗 )1 , r(𝑖)3 × r( 𝑗 )3 ⟩, 𝑦̂ 𝑗𝑖 := −⟨r( 𝑗 )2 , r(𝑖)3 × r( 𝑗 )3 ⟩

where ⟨·, ·⟩ denotes the standard inner product in R3. Common lines can therefore be encoded via:

Definition 2.1. Vectors a𝑖 𝑗 , a 𝑗𝑖 ∈ R2 are called representatives for the common lines ℓ𝑖 𝑗 and ℓ 𝑗𝑖 if there
exists a nonzero scalar 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 ∈ R such that

a𝑖 𝑗 = 𝜆𝑖 𝑗

(
⟨r(𝑖)1 , r(𝑖)3 × r( 𝑗 )3 ⟩
⟨r(𝑖)2 , r(𝑖)3 × r( 𝑗 )3 ⟩

)
, a 𝑗𝑖 = 𝜆 𝑗𝑖

(
−⟨r( 𝑗 )1 , r(𝑖)3 × r( 𝑗 )3 ⟩
−⟨r( 𝑗 )2 , r(𝑖)3 × r( 𝑗 )3 ⟩

)
. (2.5)

Equivalently, representatives a𝑖 𝑗 and a 𝑗𝑖 are choices of basis vectors for the common lines ℓ𝑖 𝑗 and
ℓ 𝑗𝑖 which satisfy 𝐼̂𝑅 (𝑖) (𝜆a𝑖 𝑗 ) = 𝐼̂𝑅 ( 𝑗) (𝜆a 𝑗𝑖) for all 𝜆 ∈ R. Representatives for common lines can be
estimated from 2D class averages in practice.

We stress that, although quite standard, the model (2.1) is greatly simplified. It neglects the effects
of contrast transfer functions (CTFs), imperfect centering in particle picking, and blurring in class
averaging. Further, we have restricted attention to the case of asymmetric molecules, as otherwise
common lines are only unique up to the action of the relevant symmetry group (e.g., see (13)).

3. Constraints on sets of common lines
3.1. The common lines matrix
We introduce an object to keep track of all common lines in a dataset. It is the main object in this paper.

Definition 3.1. A common lines matrix associated to rotations 𝑅 (1) , . . . , 𝑅 (𝑛) ∈ SO(3) is a matrix
𝐴 ∈ R2𝑛×𝑛, which when regarded as an 𝑛 × 𝑛 block matrices with 2 × 1 blocks a𝑖 𝑗 ∈ R2 is such that
a𝑖 𝑗 , a 𝑗𝑖 are representatives for the common lines ℓ𝑖 𝑗 , ℓ 𝑗𝑖 if 𝑖 and 𝑗 are distinct and a𝑖𝑖 = 0 otherwise. If
the scalars 𝜆𝑖 𝑗 in (2.5) are all equal to 1, then we call 𝐴 the pure common lines matrix.

Thus a common lines matrix 𝐴 associated to 𝑅 (1) , . . . , 𝑅 (𝑛) is uniquely defined up to
(𝑛
2
)

nonzero
real scalars 𝜆𝑖 𝑗 (𝑖 < 𝑗). In real data settings where the 2D class averages are sufficiently denoised, we
can estimate 𝐴 from data by estimating representatives for the common lines.

We now present constraints which a pure common lines matrix must satisfy. Firstly, there is the
following low-rank condition. All of our computational methods take advantage of this.

Theorem 3.2. Let 𝐴 ∈ R2𝑛×𝑛 be the pure common lines matrix associated to Zariski-generic rotations
𝑅 (1) , . . . , 𝑅 (𝑛) ∈ SO(3) where 𝑛 ≥ 3. Then rank(𝐴) = 3.

Proof. Since

a𝑖 𝑗 =

(
⟨r(𝑖)1 , r(𝑖)3 × r( 𝑗 )3 ⟩
⟨r(𝑖)2 , r(𝑖)3 × r( 𝑗 )3 ⟩

)
=

(
⟨r(𝑖)1 × r(𝑖)3 , r( 𝑗 )3 ⟩
⟨r(𝑖)2 × r(𝑖)3 , r( 𝑗 )3 ⟩

)
=

(
−⟨r(𝑖)2 , r( 𝑗 )3 ⟩
⟨r(𝑖)1 , r( 𝑗 )3 ⟩

)
=

(
−r(𝑖)2

⊤

r(𝑖)1
⊤

)
2×3

r( 𝑗 )3 ,
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the pure commons line matrix admits the following factorization:

𝐴 =

©­­­­­­­­«

−r(1)2
⊤

r(1)1
⊤

...

−r(𝑛)2
⊤

r(𝑛)1
⊤

ª®®®®®®®®¬2𝑛×3

(
r(1)3 · · · r

(𝑛)
3

)
3×𝑛

. (3.1)

Equation (3.1) witnesses rank(𝐴) ≤ min(3, 𝑛) = 3. We have equality when 𝑅 (𝑖) are generic because
the two matrices in the factorization are full rank. □

There are also necessary quadratic constraints in the entries of a pure common lines matrix.

Proposition 3.3. Suppose 𝐴 ∈ R2𝑛×𝑛 is a pure common lines matrix where 𝑛 ≥ 3. Then for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have ∥a𝑖 𝑗 ∥22 = ∥a 𝑗𝑖 ∥22.

Proof. See Appendix A. □

Proposition 3.4. Suppose 𝐴 ∈ R2𝑛×𝑛 is a pure common lines matrix where 𝑛 ≥ 3. Then for any
1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛, we have det

(
a𝑖 𝑗 a𝑖𝑘

)
= −det

(
a 𝑗𝑖 a 𝑗𝑘

)
= det

(
a𝑘𝑖 a𝑘 𝑗

)
.

Proof. See Appendix A. □

From Propositions 3.3 and 3.4, the number of quadratic constraints on a pure common lines matrix
equals

(𝑛
2
)
+ 2

(𝑛
3
)
.

Example 1. Consider 𝑛 = 4. Then a pure common lines matrix written in block form,

𝐴 =

©­­­«
0 a12 a13 a14

a21 0 a23 a24
a31 a32 0 a34
a41 a42 a43 0

ª®®®¬
has rank at most 3 and satisfies 14 quadratic equations, which are

∥a12∥22 = ∥a21∥22 ∥a14∥22 = ∥a41∥22
∥a13∥22 = ∥a31∥22 ∥a24∥22 = ∥a42∥22
∥a23∥22 = ∥a32∥22 ∥a34∥22 = ∥a43∥22

det
(
a12 a13

)
= −det

(
a21 a23

)
= det

(
a31 a32

)
det

(
a12 a14

)
= −det

(
a21 a24

)
= det

(
a41 a42

)
det

(
a13 a14

)
= −det

(
a31 a34

)
= det

(
a41 a43

)
det

(
a23 a24

)
= −det

(
a32 a34

)
= det

(
a42 a43

)
where ∥ · ∥2 denotes the Euclidean norm. Note that rank(𝐴) ≤ 3 is equivalent to the vanishing of all 4×4
minors of 𝐴, giving a collection of homogeneous degree 4 polynomial constraints on the entries of 𝐴.
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We note that (3.1) furnishes a polynomial map which sends an 𝑛-tuple of rotations to a pure common
lines matrix:

𝜓 : SO(3)𝑛 −→ R2𝑛×𝑛

(𝑅 (1) , . . . , 𝑅 (𝑛) ) ↦→ 𝐴
(3.2)

Studying 𝜓 will allow us understand additional important properties of pure common lines matrices. To
do this, we will need to introduce some terminology and elementary concepts from algebraic geometry
(see (14) for precise definitions.)

A subset 𝑋 ⊆ R𝑑 is called an algebraic variety if it is the set of points in R𝑑 where a finite collection
of polynomials all simultaneously equal 0. For example, 𝑆𝑂 (3) is an algebraic variety since it is the set
of matrices 𝑅 in R3×3 � R9 satisfying the polynomial equations 𝑅⊤𝑅− 𝐼3×3 = 03×3 and det(𝑅) −1 = 0.
Roughly speaking, an algebraic variety is similar to an embedded manifold, expect possibly singular
and always defined by polynomial equations. Due to the properties of polynomials, an algebraic variety
𝑋 is a “thin” subset of R𝑑 in which it lives: provided 𝑋 ≠ R𝑑 , the complement of 𝑋 is always a dense
subset filling up almost the entirety of the ambient space. More precisely, if one samples a random
point from R𝑑 according to any absolutely continuous probability distribution, then with probability 1
the point will lie in the complement of 𝑋 . We say that some property 𝑃 holds (Zariski) generically if
it holds for all points in the complement of some algebraic variety 𝑋 ⊊ R𝑑 , and we call such points
(Zariski) generic. Roughly speaking, this means that property 𝑃 holds with probability 1 (even if, as
usually the case, the variety 𝑋 ⊊ R𝑑 is left unspecified).

Recall that the fiber of a map at a point 𝑝 in its image is the set of points in its domain which map
to 𝑝. Therefore to answer the question, “Does a pure common lines matrix uniquely determine the
rotations which generated it?”, we need to understand the fibers of the map 𝜓 in (3.2). Our next result
shows that the answer to the question is “Yes", up to a global rotation, provided the pure common lines
matrix is generic.

Theorem 3.5. For 𝑛 ≥ 3, generically, the fibers of the map 𝜓 are isomorphic to SO(3). More precisely,
for generic rotations 𝑅 (1) , . . . , 𝑅 (𝑛) it holds that

𝜓−1 (𝜓(𝑅 (1) , . . . , 𝑅 (𝑛) )) = {(𝑅 (1)𝑄, . . . , 𝑅 (𝑛)𝑄) : 𝑄 ∈ SO(3)}.

Proof. See Appendix A. □

Remark 3.6. Theorem 3.5 does not contradict the chirality ambiguity in cryo-EM, which states that
the 3D molecule and rotations can only ever be recovered up to a global rotation and global reflection
given cryo-EM data. In Theorem 5.1 we prove that there are two possible pure common lines matrices
for a given non-pure common lines matrix. They differ by a global sign, and correspond to rotation
tuples (𝑅 (1) , . . . , 𝑅 (𝑛) ) and (𝐽𝑅 (1) , . . . , 𝐽𝑅 (𝑛) ) where 𝐽 = diag(−1,−1, 1), respectively. The chirality
or handedness ambiguity is well-known in the common lines literature (2,5) and unavoidable.

3.2. The common lines variety
In general, the image of a polynomial map from an algebraic variety is not an algebraic variety, because
polynomial inequalities (in addition to equations) are needed in the description of the image (15). This
means that the set of all pure common lines matrices, that is, the image of 𝜓 from 𝑆𝑂 (3), on its own is
not an algebraic variety. To resolve this, we consider the smallest algebraic variety in R2𝑛×𝑛 containing
𝜓(𝑆𝑂 (3)), i.e. we add the smallest set of additional points (which are not pure common lines matrices)
to 𝜓(𝑆𝑂 (3)) until the union becomes an algebraic variety. The process is called taking the Zariski
closure of 𝜓(𝑆𝑂 (3)). We call the resulting algebraic variety the common lines variety and it lives in
the ambient space R2𝑛×𝑛. The common lines variety is defined by polynomial equations in the entries
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of a matrix 𝐴 ∈ R2𝑛×𝑛. Since the common lines variety includes all pure common lines matrices, the
polynomials defining it in particular include the constraints we already identified in Section 3.1.

Example 2. When 𝑛 = 3, we used the computer algebra system Macaulay2 (16) to determine the collec-
tion of polynomial equations defining the common lines variety. Along with the 5 quadratic polynomials
from Propositions 3.3 and 3.4, our computation also found 1 polynomial of degree 6, 64 polynomials
of degree 8, and 24 polynomials of degree 10, for a total of 94 polynomial equations. Notice that for
𝑛 = 3, the rank 3 constraint of Theorem 3.2 is vacuous. We find the 5 quadratics are the only homoge-
neous polynomials. The other 89 equations are highly complex and we refrain from explicitly writing
them here. They are available at the Github repository (8.1).

In view of Example 2, we believe that Section 3.1 identifies all “simple-to-describe" algebraic con-
straints on pure common lines matrices. As such, it is important to understand to what extent these
constraints are enough to characterize pure common lines matrices. This requires understanding the
geometry of the common lines variety better, for which we will need to use a couple more basic concepts
from algebraic geometry described in the next two paragraphs.

In general, every algebraic variety 𝑋 ⊆ R𝑑 admits a unique decomposition into a finite union of
irreducible components 𝑋 =

⋃𝑟
𝑖=1 𝑋𝑖 , where 𝑋𝑖 ⊆ R𝑑 are algebraic varieties themselves and each

cannot be decomposed as a union of two strictly smaller varieties. We think of 𝑋𝑖 as “building blocks”
of 𝑋 . For example, the variety {(𝑥, 𝑦) ∈ R2 : 𝑥𝑦 = 0} is a union of the 𝑥- and 𝑦-axes, and these lines
are its irreducible components. In general, each irreducible component 𝑋𝑖 can be ascribed a dimension,
which captures the number of degrees of freedom in 𝑋𝑖 and coincides with manifold dimension when
𝑋𝑖 is smooth. We note that the dimension of different irreducible components 𝑋𝑖 of 𝑋 may differ.

Given an algebraic variety 𝑋 ⊆ R𝑑 , one can construct from it a larger algebraic variety 𝐶 (𝑋) ⊆ R𝑑
called the cone over 𝑋 by adding to 𝑋 all points in R𝑑 which lie on a line passing through the origin
and a point on 𝑋 . This constructs an algebraic variety that includes all scalar multiples of points of 𝑋 .

Since the constraints we identified in Section 3.1 are all polynomial equations, they define
Section 3.1 an algebraic variety in R2𝑛×𝑛. In the next proposition we show that this algebraic vari-
ety contains the cone over the common lines variety as an irreducible component. This means that
locally on this component, our constraints from Section 3.1 are sufficient to characterize pure common
lines matrices up to scale. The proof relies on computer algebra software (16), and checking that certain
numerical matrices are full-rank, so we also report the range of 𝑛 on which the proposition has been
confirmed.

Proposition 3.7. The algebraic variety defined by the low-rank constraint in Theorem 3.2, along with
the quadratic constraints in Propositions 3.3 and 3.4, and the requirement that all diagonal blocks
are 0, contains the cone over the common lines variety in R2𝑛×𝑛 as an irreducible component for
𝑛 = 3, . . . , 50.

Proof. See Appendix A. □

4. Optimization problem
We encode the common lines from cryo-EM data by choosing representatives â𝑖 𝑗 ∈ R2 (Definition 2.1)
to form the 2 × 1 blocks in a common lines matrix 𝐴 ∈ R2𝑛×𝑛. Suppose we have rescaled the 2 × 1
blocks of 𝐴 so they all have norm 1. Then at least in clean situations, Theorem 3.2 and Propositions 3.3
and 3.4 imply we can scale the blocks by nonzero scalars 𝜆𝑖 𝑗 with 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 so that the resulting matrix
is a pure common lines matrix 𝐴, and thus has rank 3 and satisfies the set of norm and 2×2 determinant
equations. Proposition 3.7 states that these constraints are sufficient to determine the common lines
variety locally. In Section 5.4, we further prove that for purposes of recovering scales 𝜆𝑖 𝑗 to obtain a
pure common lines matrix, the constraints are also sufficient.
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Proper scales are not directly available from common lines data in cryo-EM. To find the scales we
formulate an optimization problem, inspired by work for a mathematically similar problem in (11):

min
{a𝑖 𝑗 },{𝜆𝑖 𝑗 }
𝑖, 𝑗=1,...,𝑛

𝑛∑︁
𝑖, 𝑗=1
∥â𝑖 𝑗 − 𝜆𝑖 𝑗a𝑖 𝑗 ∥2

subject to


a𝑖𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛

rank(𝐴) = 3
𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
∥a𝑖 𝑗 ∥22 = ∥a 𝑗𝑖 ∥22
det

(
a𝑖 𝑗 a𝑖𝑘

)
= −det

(
a 𝑗𝑖 a 𝑗𝑘

)
= det

(
a𝑘𝑖 a𝑘 𝑗

)
for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛.

(4.1)

(4.1a)

(4.1b)

The mixed L1/Frobenius norm ∥ · ∥2 in the objective is chosen for its robustness to outliers.
Once we obtain a pure common lines matrix, we show in Section 5.3 how to recover the rotations

corresponding to the common lines (up to the ambiguity in Remark 3.6). Later in Section 6, we solve
the problem (4.1) to identify homogeneous clusters among images coming from a discrete number of
distinct molecules.

5. Optimization algorithms
Our approach to solving (4.1) is first to solve the problem with constraint (4.1a) only, and then to
enforce the constraint (4.1b) on the solution. These steps are in Sections 5.1 and 5.2 respectively.

5.1. IRLS and ADMM for the rank constraint
To solve (4.1) with the rank constraint, we closely follow the approach of (11). We relax the mixed
L1/Frobenius norm to a weighted least squares objective, where the weights and optimization variables
are updated after each iteration of minimization via a procedure called Iterative Reweighted Least
Squares (IRLS) (17). Let 𝑡 denote the IRLS iteration number. Then the objective (4.1) becomes:

min
𝐴∈R2𝑛×𝑛 , Λ∈R𝑛×𝑛

∥𝐴 − (Λ ⊗ 12×1) ⊙ 𝐴∥2𝑊𝐹 (5.1)

where ⊗ and ⊙ is the Kronecker and Hadamard product of two matrices respectively, Λ𝑖 𝑗 = 𝜆𝑖 𝑗 ,

∥𝑀 ∥2𝑊𝐹 :=
𝑛∑︁

𝑖, 𝑗=1
𝑤
(𝑡 )
𝑖 𝑗
∥m𝑖 𝑗 ∥22

is the squared weighted Frobenius norm of a block matrix 𝑀 ∈ R2𝑛×𝑛, the weights in (5.1) are

𝑤
(𝑡 )
𝑖 𝑗

=

{
1/(max{𝛿, ∥â𝑖 𝑗 − 𝜆 (𝑡−1)

𝑖 𝑗
a(𝑡−1)
𝑖 𝑗
∥2}) if 𝑖 ≠ 𝑗

0 if 𝑖 = 𝑗 ,
(5.2)

and 0 < 𝛿 ≪ 1 is a chosen regularization parameter.
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Within each iteration of IRLS, we need to solve the problem (5.1) with the constraints (4.1a). Since
the objective is bilinear in 𝐴 and Λ, we can do this using the Alternate Direction Method of Multiplier
(ADMM) (18,19). This gives an augmented Lagrangian optimization problem:

max
Γ∈R2𝑛×𝑛

min
𝐴,𝐵∈R2𝑛×𝑛 , Λ∈R𝑛×𝑛

1
2
∥𝐴 − (Λ ⊗ 12×1) ⊙ 𝐴∥2𝑊𝐹 +

𝜏

2
∥𝐵 − (𝐴 + Γ)∥2𝐹

subject to

{
a𝑖𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛

rank(𝐵) = 3,

(5.3)

where Γ is a matrix of Lagrange multipliers and 𝜏 =
∑𝑛

𝑖, 𝑗=1 𝑤
(𝑡 )
𝑖 𝑗

. We now describe the steps of the
ADMM procedure. Since the problem (5.3) is non-convex, we alternatingly optimize for each variable.
In the following, let 𝑘 denote the ADMM iteration number and let 𝑊 (𝑡 ) ∈ R𝑛×𝑛 where 𝑊 (𝑡 )

𝑖 𝑗
= 𝑤

(𝑡 )
𝑖 𝑗

be
the matrix of weights within IRLS iteration 𝑡.

1. Optimize 𝐴 and Λ: We alternatingly optimize for 𝐴 and Λ until convergence. Let 𝑘 ′ denote the
iteration number for this step.

1a. First we solve the unconstrained problem for 𝐴:

min
𝐴∈R2𝑛×𝑛

1
2
∥𝐴 − (Λ(𝑘′ ) ⊗ 12×1) ⊙ 𝐴∥2𝑊𝐹 +

𝜏

2
∥𝐵 (𝑘 ) − (𝐴 + Γ (𝑘 ) )∥2𝐹

The solution is

𝐴(𝑘
′+1) =

(
(𝑊 (𝑡 ) ⊗ 12×1) ⊙ (Λ(𝑘

′ ) ⊗ 12×1) ⊙ 𝐴 + 𝜏

4
(𝐵 (𝑘 ) + Γ (𝑘 ) )

)
⊘

(
(𝑊 (𝑡 ) ⊗ 12×1) ⊙ (Λ(𝑘

′ ) ⊗ 12×1) ⊙ (Λ(𝑘
′ ) ⊗ 12×1) +

𝜏

4
12𝑛×𝑛

) (5.4)

where ⊘ is the element-wise division of two matrices. Then we project 𝐴 onto the set of
matrices whose 2 × 1 diagonals are 0:

a(𝑘
′+1)

𝑖𝑖
= 0 (5.5)

1b. Next we solve the unconstrained problem for Λ:

min
Λ∈R𝑛×𝑛

1
2
∥𝐴 − (Λ ⊗ 12×1) ⊙ 𝐴(𝑘

′+1) ∥2𝑊𝐹

The solution is

𝜆
(𝑘′+1)
𝑖 𝑗

=


𝑤𝑖 𝑗 ⟨â𝑖 𝑗 ,a(𝑘

′+1)
𝑖 𝑗

⟩+𝑤 𝑗𝑖 ⟨â 𝑗𝑖 ,a(𝑘
′+1)

𝑗𝑖
⟩

𝑤𝑖 𝑗 ∥a(𝑘
′+1)

𝑖 𝑗
∥22+𝑤 𝑗𝑖 ∥a(𝑘

′+1)
𝑗𝑖

∥22
if 𝑖 ≠ 𝑗

0 if 𝑖 = 𝑗 .

(5.6)

After repeating 1a. and 1b. until convergence, we obtain 𝐴(𝑘+1) and Λ(𝑘+1) .
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2. Optimize 𝐵: The constrained problem for 𝐵 is

min
𝐵∈R2𝑛×𝑛

𝜏

2
∥𝐵 − (𝐴(𝑘+1) + Γ (𝑘 ) )∥2𝐹

subject to rank(𝐵) = 3

This is solved by

𝐵 (𝑘+1) = 𝑆𝑉𝑃(𝐴(𝑘+1) − Γ (𝑘 ) , 3) (5.7)
where 𝑆𝑉𝑃(𝑀, 3) is the singular value projection of a matrix 𝑀 onto the set of matrices of rank at most
3, which is computing by taking the highest three singular values of 𝑀 and its corresponding left and
right singular vectors.

3. Update Γ: In ADMM, there is a gradient ascent step for Γ, where the step is the solution to

max
Γ∈R2𝑛×𝑛

∥𝐵 (𝑘+1) − (𝐴(𝑘+1) − Γ)∥2𝐹 .

This gives the update

Γ (𝑘+1) = Γ (𝑘 ) + (𝐵 (𝑘+1) − 𝐴(𝑘+1) ). (5.8)
Steps 1., 2., and 3. are repeated until convergence in the optimization variables. This completes the

ADMM procedure for IRLS iteration 𝑡. The IRLS weights 𝑤 (𝑡+1)
𝑖 𝑗

for iteration 𝑡 + 1 are updated using
(5.2), and the ADMM procedure is repeated again. The whole pipeline is detailed in Algorithm 1.

5.2. Sinkhorn scaling for the quadratic constraints
When successful, IRLS-ADMM in Section 5.1 gives us a solution 𝐴 to (4.1) satisfying the constraint
(4.1a). Next we must enforce (4.1b). As described below, our approach is to scale the rows and columns
of 𝐴 alternatingly until constraint (4.1b) is satisfied, in a manner analogous to Sinkhorn’s algorithm (20).
Note that nonzero row and column scales do not affect the rank of 𝐴, so constraint (4.1a) will still be
satisfied.

We find the row and column scales by solving least squares problems. First we handle the norm
constraints. Define 𝑀 ∈ R𝑛×𝑛 where

𝑀𝑖 𝑗 = ∥a𝑖 𝑗 ∥22 (5.9)

Then the norm constraints are satisfied if and only if 𝑀 = 𝑀⊤, which leads us to the following
constrained least squares problems:

𝝁 = arg min
∥𝝁∥2=1

∥diag(𝝁)𝑀 − (diag(𝝁)𝑀)⊤∥2𝐹 (5.10)

𝝉 = arg min
∥𝝉 ∥2=1

∥𝑀diag(𝝉) − (𝑀diag(𝝉))⊤∥2𝐹 (5.11)

The solutions to problems (5.10) and (5.11) are

min
∥𝝁∥2=1

∥𝑁𝐿𝝁∥22 , (5.12)

min
∥𝝉 ∥2=1

∥𝑁𝑅𝝉∥22 (5.13)
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Algorithm 1 IRLS and ADMM for rank constraint satisfaction

Input: 𝐴 ∈ R2𝑛×𝑛, a common lines matrix
Output: 𝐴 ∈ R2𝑛×𝑛, a common lines matrix satisfying only the rank constraint

1: procedure IRLS-ADMM(𝐴)
2: initialize 𝐴,Λ,𝑊

3: 𝑡 ← 0
4: while not converged do
5: 𝐵← 𝐴

6: Γ← 02𝑛×𝑛
7: 𝜏 ← ∑𝑛

𝑖, 𝑗=1 𝑤
(𝑡 )
𝑖 𝑗

8: 𝑘 ← 0
9: while not converged do

10: 𝑘 ′ ← 0
11: while not converged do
12: update 𝐴 using (5.4) and (5.5) ⊲ 1. Update 𝐴 and Λ

13: update Λ using (5.6)
14: 𝑘 ′ ← 𝑘 ′ + 1
15: end while
16: update 𝐵 using (5.7) ⊲ 2. Update 𝐵

17: update Γ using (5.8) ⊲ 3. Update Γ

18: 𝑘 ← 𝑘 + 1
19: end while
20: update 𝑊 using (5.2) ⊲ Update IRLS weights
21: 𝑡 ← 𝑡 + 1
22: end while
23: end procedure

respectively, where 𝑁𝐿 , 𝑁𝑅 ∈ R𝑛×𝑛 are the corresponding least squares matrices. See Appendix B for
full detail. The problems (5.12) and (5.13) are solved by taking 𝝁 and 𝝉 to be the right singular vector
corresponding to the smallest singular value of 𝑁𝐿 and 𝑁𝑅 respectively.

Now we handle the determinant constraints. Scaling each 2 × 𝑛 row of 𝐴 by 𝜇1, . . . , 𝜇𝑛 ∈ R and
enforcing the constraints leads us to the equations

𝜇2
𝑖 det

(
a𝑖 𝑗 a𝑖𝑘

)
= −𝜇2

𝑗det
(
a 𝑗𝑖 a 𝑗𝑘

)
= 𝜇2

𝑘det
(
a𝑘𝑖 a𝑘 𝑗

)
(5.14)

for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛. Taking the signed root on each equation, we obtain

𝜇𝑖sgn(det
(
a𝑖 𝑗 a𝑖𝑘

)
)
√︃
|det

(
a𝑖 𝑗 a𝑖𝑘

)
| = −𝜇 𝑗sgn(det

(
a 𝑗𝑖 a 𝑗𝑘

)
)
√︃
|det

(
a 𝑗𝑖 a 𝑗𝑘

)
|

= 𝜇𝑘sgn(det
(
a𝑘𝑖 a𝑘 𝑗

)
)
√︃
|det

(
a𝑘𝑖 a𝑘 𝑗

)
|

(5.15)

Scaling the columns of 𝐴 by 𝜏1, . . . , 𝜏𝑛 ∈ R and enforcing the constraints leads to the equations

𝜏𝑗𝜏𝑘det
(
a𝑖 𝑗 a𝑖𝑘

)
= −𝜏𝑖𝜏𝑘det

(
a 𝑗𝑖 a 𝑗𝑘

)
= 𝜏𝑖𝜏𝑗det

(
a𝑘𝑖 a𝑘 𝑗

)
(5.16)
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for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛. Dividing the first equation above by 𝜏𝑘 on both sides and the second equation
above by 𝜏𝑖 on both sides, we obtain

𝜏𝑗det
(
a𝑖 𝑗 a𝑖𝑘

)
= −𝜏𝑖det

(
a 𝑗𝑖 a 𝑗𝑘

)
−𝜏𝑘det

(
a 𝑗𝑖 a 𝑗𝑘

)
= 𝜏𝑗det

(
a𝑘𝑖 a𝑘 𝑗

) (5.17)

We observe that equations (5.15) and (5.17) are linear in 𝜇𝑖 and 𝜏𝑖 . We can enumerate all determinants
into three vectors

v1 =
(
det

(
a𝑖 𝑗 a𝑖𝑘

) )
1≤𝑖< 𝑗<𝑘≤𝑛 , v2 =

(
−det

(
a 𝑗𝑖 a 𝑗𝑘

) )
1≤𝑖< 𝑗<𝑘≤𝑛 , v3 =

(
det

(
a𝑘𝑖 a𝑘 𝑗

) )
1≤𝑖< 𝑗<𝑘≤𝑛 ,

(5.18)

each of length
(𝑛
3
)
. The determinant constraints are satisfied if and only if v1 = v2 = v3, which leads to

the following constrained least squares problems:

min
∥𝝁∥2=1

∥(𝝁 △ v1) − (𝝁 △ v2)∥22 + ∥(𝝁 △ v2) − (𝝁 △ v3)∥22 (5.19)

min
∥𝝉 ∥2=1

∥(𝝉 △1 v1) − (𝝉 △1 v2)∥22 + ∥(𝝉 △2 v2) − (𝝉 △2 v3)∥22 (5.20)

where the quantities in brackets (defined in (B.5) and (B.6)) are the corresponding scalings (5.15) and
(5.17) of v1, v2, and v3 by 𝝁 and 𝝉. The solutions to problems (5.19) and (5.20) are

min
∥𝝁∥2=1



(𝐷𝐿,1 + 𝐷𝐿,2)𝝁


2

2 (5.21)

min
∥𝝉 ∥2=1



(𝐷𝑅,1 + 𝐷𝑅,2)𝝉


2

2 (5.22)

respectively, where 𝐷𝐿,1, 𝐷𝐿,2, 𝐷𝑅,1, 𝐷𝑅,2 ∈ R𝑛×𝑛 are the corresponding least squares matrices. See
Appendix B for full detail. The problems (5.21) and (5.22) are again solved using SVD.

Now we describe the steps of the Sinkhorn scaling method. Let 𝑟 denote the iteration number of the
procedure.

1. Scale rows: Let 𝝁 ∈ R𝑛 be the solution to

min
∥𝝁∥2=1



(𝑁𝐿 + 𝐷𝐿,1 + 𝐷𝐿,2)𝝁


2

2 (5.23)

Then we perform the update

𝐴(𝑟+
1
2 ) =

∥𝐴(𝑟 ) ∥2
𝐹

∥(diag(𝝁) ⊗ 12×1)𝐴(𝑟 ) ∥2𝐹
(diag(𝝁) ⊗ 12×1)𝐴(𝑟 ) (5.24)

2. Scale columns: Let 𝝉 ∈ R𝑛 be the solution to

min
∥𝝉 ∥2=1



(𝑁𝑅 + 𝐷𝑅,1 + 𝐷𝑅,2)𝝉


2

2 (5.25)
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Then we perform the update

𝐴(𝑟+1) =
∥𝐴(𝑟+ 1

2 ) ∥2
𝐹

∥𝐴(𝑟+ 1
2 )diag(𝝉)∥2

𝐹

𝐴(𝑟+
1
2 )diag(𝝉) (5.26)

The Sinkhorn scaling procedure is detailed in Algorithm 2.

Algorithm 2 Sinkhorn scaling for quadratic constraint satisfaction

Input: 𝐴 ∈ R2𝑛×𝑛, the output of IRLS-ADMM
Output: 𝐴′ ∈ R2𝑛×𝑛, a pure common lines matrix

1: procedure SINKHORN(𝐴)
2: 𝑟 ← 0
3: while not converged do
4: set 𝑁𝐿 , 𝐷𝐿,1, 𝐷𝐿,2 using (B.1), (B.7), (B.8)
5: set 𝝁 to be the solution of (5.23)
6: update 𝐴 using (5.24) ⊲ 1. Scale rows
7: set 𝑁𝑅, 𝐷𝑅,1, 𝐷𝑅,2 using (B.2), (B.9), (B.10)
8: set 𝝉 to be the solution of (5.25)
9: update 𝐴 using (5.26) ⊲ 2. Scale columns

10: 𝑟 ← 𝑟 + 1
11: end while
12: 𝐴′ ← 𝐴

13: end procedure

5.3. Rotation recovery
IRLS-ADMM and SINKHORN aim to output a pure common lines matrix 𝐴 ∈ R2𝑛×𝑛. Given a pure
common lines matrix, we now show how to determine the underlying rotations 𝑅 (𝑖) in (2.3) which
generated 𝐴 (recall Theorem 3.5).

Given 𝐴, use singular value decomposition to compute a rank-3 factorization 𝐴 = 𝐵𝐶⊤ for 𝐵 ∈
R2𝑛×3 and 𝐶 ∈ R𝑛×3. We then seek an invertible matrix 𝑄 ∈ R3×3 so that 𝐵𝑄 and 𝐶𝑄−⊤ take the form
of the factors in (3.1). In particular, it is required that the rows of 𝐵𝑄 come in orthonormal pairs; more
precisely, (𝐵𝑄) (𝐵𝑄)⊤ = 𝐵𝑄𝑄⊤𝐵⊤ ∈ R2𝑛×2𝑛 should have 2 × 2 identities along its diagonal. Setting
𝑋 = 𝑄𝑄⊤ ∈ R3×3 and relaxing positive semidefiniteness, let us consider the following affine-linear
least squares problem:

min
𝑋∈R3×3

𝑋=𝑋⊤

∥L(𝐵𝑋𝐵⊤)∥2𝐹 , (5.27)

where L : R2𝑛×2𝑛 → R2𝑛×2𝑛 denotes the affine-linear operator which sets all entries of a 2𝑛×2𝑛 matrix
outside of the 2 × 2 diagonal blocks to 0, and subtracts the 2 × 2 identity matrices from the diagonal
blocks. The normal equations for (5.27) may be written as

𝐿 vec(𝑋) = vec(𝐵⊤𝐵), (5.28)
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where 𝐿 ∈ R9×9, whose rows and columns index the variables 𝑋𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 3, and whose
corresponding (𝑖 𝑗 , 𝑘ℓ)-th entry is

(𝐿)𝑖 𝑗 ,𝑘ℓ = ⟨(𝐼𝑛×𝑛 ⊗ 11×2) (b𝑖 ⊙ bℓ), (𝐼𝑛×𝑛 ⊗ 11×2) (b 𝑗 ⊙ b𝑘)⟩ (5.29)

where b𝑖 is the 𝑖-th column of 𝐵. Generically there is a unique symmetric matrix 𝑋 solving (5.28).
Let 𝑋 = 𝑉𝐷𝑉⊤ be an eigendecomposition for the solution to (5.27), where𝑉, 𝐷 ∈ R9×9. In the clean

case, the diagonal matrix 𝐷 is already positive semidefinite. Then 𝑉𝐷1/2 ∈ R3×3 is a candidate for 𝑄.
Next the 𝑖-th row block of 𝐵𝑄 determines the first two rows of 𝑅 (𝑖) , and the cross product of these two
rows computes the third row of 𝑅 (𝑖) . From this, we recover the 𝑛-tuple of rotations (𝑅 (1) , . . . , 𝑅 (𝑛) ) up
to global right-multiplication by a rotation. The full procedure for rotation recovery is in Algorithm 3,
which is formulated to apply to noisy inputs as well. We note that as explained in Remark 3.6, a pure
common lines matrix 𝐴 can only be recovered up to sign, because there are two distinct 𝑛-tuples of
rotations that can be recovered corresponding to the chiral ambiguity of common lines data. One can
run ROTATIONS twice, on 𝐴 and −𝐴, to produce the two possible sets of rotations.

Algorithm 3 Rotation recovery

Input: 𝐴 ∈ R2𝑛×𝑛, an estimate for pure common lines matrix
Output: (𝑅1, . . . , 𝑅𝑛) ∈ SO(3)𝑛, rotations determining the pure common lines matrix

1: procedure ROTATIONS(𝐴)
2: set 𝐵 using the SVD to get a rank-3 approximation 𝐵𝐶⊤ for 𝐴
3: set 𝐿 using (5.29)
4: set 𝑋 to be least squares solution of (5.28)
5: set 𝑉, 𝐷 using the eigendecomposition 𝑋 = 𝑉𝐷𝑉⊤

6: 𝐷𝑖𝑖 ← max(𝐷𝑖𝑖 , 0)
7: for 𝑖 = 1, . . . , 𝑛 do
8: set q⊤

𝑗
to be the (2𝑖 − 2 + 𝑗)-th row of 𝐵𝑉𝐷1/2 for 𝑗 = 1, 2

9: set q⊤3 to be the 𝑖-th row of 𝐶 (𝑉𝐷1/2)−⊤

10: set 𝑅𝑖 ∈ R3×3 to be ©­«
q⊤2
−q⊤1
q⊤3

ª®¬
11: end for
12: if det(𝑅𝑖) < 0 then
13: for 𝑖 = 1, . . . , 𝑛 do
14: 𝑅𝑖 ← −𝑅𝑖

15: end for
16: end if
17: for 𝑖 = 1, . . . , 𝑛 do
18: replace 𝑅𝑖 by the nearest rotation matrix to 𝑅𝑖 using the SVD of 𝑅𝑖

19: end for
20: end procedure

5.4. Justification of algorithms
Suppose the input to IRLS-ADMM is a noiseless common lines matrix 𝐴 ∈ R2𝑛×𝑛, and its output
𝐴 ∈ R2𝑛×𝑛 is a global minimizer to the non-convex problem (5.3). In the next theorem we show that
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we can recover the ground-truth pure common lines matrix, up to a global scale, by scaling the 2 × 1
blocks of 𝐴 via IRLS-ADMM and enforcing the quadratic constraints via SINKHORN. The theorem
justifies using IRLS-ADMM and SINKHORN.

Theorem 5.1. Let 𝑛 ≥ 4. Let 𝐴 ∈ R2𝑛×𝑛 be a generic pure common lines matrix and 𝜆𝑖 𝑗 ∈ R be nonzero
scales for 𝑖, 𝑗 = 1, . . . , 𝑛 with 𝑖 ≠ 𝑗 . Let Λ ∈ R𝑛×𝑛 where Λ𝑖 𝑗 = 𝜆𝑖 𝑗 if 𝑖 ≠ 𝑗 and Λ𝑖𝑖 = 0. Suppose

𝐵 := (Λ ⊗ 12×1) ⊙ 𝐴 =

©­­­­­­«

0 𝜆12a12 . . . 𝜆1,𝑛−1a1,𝑛−1 𝜆1,𝑛a1,𝑛
𝜆21a21 0 . . . 𝜆2,𝑛−1a2,𝑛−1 𝜆2,𝑛a2,𝑛

...
...

. . .
...

...

𝜆𝑛−1,1a𝑛−1,1 𝜆𝑛−1,2a𝑛−1,2 . . . 0 𝜆𝑛−1,𝑛a𝑛−1,𝑛
𝜆𝑛,1a𝑛,1 𝜆𝑛,2a𝑛,2 . . . 𝜆𝑛,𝑛−1a𝑛,𝑛−1 0

ª®®®®®®¬
has rank 3. Then there exist 𝜇1, . . . , 𝜇𝑛, 𝜏1, . . . , 𝜏𝑛 ∈ R such that

©­­­­­­«

0 𝜆12 . . . 𝜆1,𝑛−1 𝜆1,𝑛
𝜆21 0 . . . 𝜆2,𝑛−1 𝜆2,𝑛
...

...
. . .

...
...

𝜆𝑛−1,1 𝜆𝑛−1,2 . . . 0 𝜆𝑛−1,𝑛
𝜆𝑛,1 𝜆𝑛,2 . . . 𝜆𝑛,𝑛−1 0

ª®®®®®®¬
=

©­­­­­­«

0 𝜇1𝜏1 . . . 𝜇1𝜏𝑛−1 𝜇1𝜏𝑛
𝜇2𝜏1 0 . . . 𝜇2𝜏𝑛−1 𝜇2𝜏𝑛−1
...

...
. . .

...
...

𝜇𝑛−1𝜏1 𝜇𝑛−1𝜏2 . . . 0 𝜇𝑛−1𝜏𝑛
𝜇𝑛𝜏1 𝜇𝑛𝜏2 . . . 𝜇𝑛𝜏𝑛−1 0

ª®®®®®®¬
(5.30)

If 𝐵 additionally satisfies the quadratic constraints (4.1b), then there exists 𝜏 ∈ R such that for all
𝑖, 𝑗 = 1, . . . , 𝑛 (𝑖 ≠ 𝑗) it holds 𝜆𝑖 𝑗 = 𝜏.

Proof. See Appendix A. □

Remark 5.2. Theorem 3.5 implies that given a pure common lines matrix, the rotation recovery prob-
lem in Section 5.3 is uniquely solvable up to a global rotation. Theorem 5.1 states that the ground-truth
pure common lines matrix can only be determined up to a global scale; in particular, 𝜏 in Theorem 5.1
may be positive or negative. As in Remark 3.6, this sign flip corresponds to chiral ambiguity in
cryo-EM. Apart from its sign, the global scale has no effect on rotation recovery in Algorithm 3.

6. Application: Clustering heterogeneous common lines
Here we present an application of our approach for common lines to a challenging problem in cryo-
EM. We propose a clustering algorithm for detecting homogeneous communities of consistent common
lines from discretely heterogeneous data, using our algebraic constraints. One can then use the clusters
of common lines for rotation recovery and 3D reconstruction.

Several successful methods have been proposed for clustering heterogeneous cryo-EM data that
consist of images of a single macromolecule with conformational landscapes or differences in sub-
units (21–27). Recent work of the third author (7) proposed a method of solving a different heterogeneity
challenge in cryo-EM, where the heterogeneity in the data comes from multiple distinct macro-
molecules rather than variations on one primary structure. Our proposed application focuses on the
latter problem. For this setting of heterogeneity, the main prior work to compare against is (7).

The basic idea of our approach is illustrated in Figure 1. There the matrix in grey is a matrix of
common lines from simulated heterogeneous data, corresponding to two distinct molecular conforma-
tions. The two homogeneous common lines matrices are diagonal blocks in green and purple. The 2×1
entries outside of these diagonal blocks do not correspond to any consistent lines and are just random
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scree plot

common line matrix from rotations

molecule 1 rotations n1 = 10

molecule 2 rotations n2 = 10

Figure 1. A heterogeneous common lines matrix and rank test for simulated rotations from two distinct
molecules. Block-diagonals comparing rotations from the same molecule show rank-3 structure.

lines in R2, encoded as representatives. Note that in general, a heterogeneous common lines matrix will
not necessarily have consistent common lines matrices as diagonal blocks, but will be a 2 × 𝑛 row and
𝑛×1 column permutation of such a matrix. Gaussian white noise has also been added to the grey matrix
to decrease the signal-to-noise ratio of the common lines. A scree plot in Figure 1 shows a noticeable
spectral gap between the third and fourth singular values of the homogeneous common lines matrices
(green and purple curve), which is not detectable for the entire heterogeneous common lines matrix
(grey curve), thus demonstrating low-rank structure of submatrices.

R(n)

IR(1)

I

R(n)

IR(1)

I

construct common 
lines matrix for all 

images

randomly sample four 
common lines, record 

the constraint error

repeat

rank all samples and 
cluster according to 

construct common 
lines matrix for each 

cluster

proceed to 3D 
reconstruction

cryo-EM images or 
2D class averages

R(n)

IR(1)

I

construct common 
lines matrix for all 

images

randomly sample four 
common lines, record 

the constraint error

repeat

rank all samples and 
cluster according to 

thier error

construct common 
lines matrix for each 

cluster

proceed to 3D 
reconstruction

cryo-EM images or 
2D class averages

their error

Figure 2. Algorithm for separating images of distinct molecules using algebraic constraints on
common lines. The common lines matrix is first computed from an input set of images or class

averages. We then apply Algorithm 4, our clustering algorithm. After clustering, images
corresponding to the same molecule can then be used for 3D reconstruction.

Our clustering algorithm consists of two main steps:

1. Generate samples: As input, we are given a single common lines matrix 𝐴, from which we iden-
tify small clusters of consistent common lines. We randomly sample a set of four common lines 𝑆 and
extract the corresponding 8 × 4 submatrix 𝐴𝑆 from 𝐴 (the choice of four common lines is explained
in Section 7.3 based on numerical experiments). We then run IRLS-ADMM and SINKHORN on 𝐴𝑆 .
These methods may occasionally diverge due to numerical instability from noise in the data, as dis-
cussed in Section 7, in which case we discard the sample. We also discard the sample if the spectral
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Algorithm 4 Heterogeneous clustering on common line constraints

Input: 𝐴 ∈ R2𝑛×𝑛, a common lines matrix
Output: 𝐶1, . . . , 𝐶𝑟 ⊆ {1, . . . , 𝑛}, a partition of all common lines into consistent clusters

1: procedure CLUSTERS(𝐴)
2: 𝐿 ← ∅ ⊲ 1. Generate samples
3: for 𝑖 ≥ 1 until sufficient do
4: set 𝑆 ⊆ {1, . . . , 𝑛} to be a random sample such that |𝑆 | = 4
5: set 𝐴𝑆 to be the submatrix of 𝐴 associated to the common lines in 𝑆

6: 𝐴𝑆 ← IRLS-ADMM(𝐴𝑆)
7: 𝐴𝑆 ← SINKHORN(𝐴𝑆)
8: if converged then
9: set 𝑀 using (5.9) on 𝐴𝑆

10: set v1, v2, v3 using (5.18) on 𝐴𝑆

11: 𝑒 ← ∥𝑀 − 𝑀⊤∥2
𝐹
+ ∥v1 − v2∥22 + ∥v2 − v3∥22

12: 𝐿 ← append(𝐿, (𝑆, 𝑒))
13: end if
14: end for
15: sort 𝐿 by increasing values of 𝑒 ⊲ 2. Cluster samples
16: 𝐺 ← 0𝑛×𝑛
17: while 𝐿 ≠ ∅ do
18: (𝑆, 𝑒) ← pop(𝐿)
19: 𝐺𝑆,𝑆 ← max{𝐺𝑆,𝑆 ,− log(𝑒) · 14×4}
20: end while
21: 𝐺𝑖𝑖 ← 0 for all 𝑖 = 1, . . . , 𝑛
22: 𝐶1, . . . , 𝐶𝑟 ← COMMUNITYDETECTION(𝐺) ⊲ Use method from (28)

23: end procedure

gap between the third and fourth singular value of 𝐴𝑆 is not sufficiently large (i.e., 𝐴𝑆 does not have
numerical rank 3). Otherwise, we obtain a quadratic constraint satisfaction error for the sample. We
record both the sample and its error, and repeat this sampling sufficiently many times.

2. Cluster samples: We view the collection of samples and errors we obtain as a weighted hyper-
graph on 𝑛 vertices whose hyperedges are of size 4 corresponding to the samples and whose hyperedge
weights are given by their corresponding errors. We convert the weighted hypergraph into a weighted
graph by constructing a weighted adjacency matrix whose (𝑖, 𝑗) entry is the negative logarithm of the
smallest error on a hyperedge containing both common lines 𝑖 and 𝑗 . We then use an unsupervised com-
munity detection algorithm on this adjacency matrix to find the clusters of consistent common lines. In
our numerical experiments, we use the algorithm proposed by Lancichinetti, Fortunato, and Kertész (28),
which can identify overlapping communities and hierarchical structure, and depends only on a single
hyperparamter controlling the scale of the hierarchies. In particular, we do not need to specify the
number of clusters or their sizes.

The clustering algorithm is detailed in Algorithm 4 and illustrated in Figure 2.

7. Performance on data
We compare the performance of our methods to existing common lines based algorithms in the liter-
ature, namely functions in the software package ASPIRE (29) and the clustering algorithm of Verbeke
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et. al. (7). We study the problems of recovering rotations, denoising common lines, and partitioning dis-
cretely heterogeneous image sets into homogeneous subcommunities using common lines. The tests
are done on simulated data (at various levels of noise) and real data.

Our simulated data consists of image data of the 40S, 60S and 80S ribosome (available from the
Electron Microscopy Data Bank (30) as entries EMD-4214, EMD-2811, and EMD-2858, respectively),
generated by ASPIRE. The ribosomes and examples of their clean 2D projection images are displayed
in Figure 3. Each image is 128 × 128 with a pixel size of 3Å. White Gaussian noise is added to each
image corresponding to a specified signal-to-noise ratio (SNR). We define the SNR by taking the signal
to be the average squared intensity over each pixel in the clean image and setting the noise variance to
achieve the appropriate ratio. The common lines between two images are detected by finding the line
projections of the two images with the highest correlation, as computed in ASPIRE.

a) b) c)

Figure 3. 3-D structures and example projection images for the three structures used for simulation.
(a) 80S ribosome (EMD-2858) and example projection images. (b) 60S ribosome (EMD-2811) and

example projection images. (c) 40S ribosome (EMD-4214) and example projection images.

In our numerical experiments, we have observed that the performance of IRLS-ADMM, and con-
sequently SINKHORN, can depend on its initialization. In particular, we have occasionally observed
divergence or vanishing of the entries of 𝐴 in SINKHORN. This behavior appears to be due to numeri-
cal instabilities in SINKHORN arising from noise in the data or from using too many common lines. In
these cases, we can either discard such runs and restart the algorithms with new initializations, or skip
using SINKHORN. We address this issue in each of our tests.

7.1. Rotation recovery
Let 𝑅 (1) , . . . , 𝑅 (𝑛) ∈ SO(3) be the ground-truth rotations and 𝑅1, . . . , 𝑅𝑛 ∈ SO(3) be the recovered
rotations. Then Theorem 3.5 states that there exists a unique rotation 𝑄 ∈ SO(3) such that 𝑅 (𝑖) = 𝑅𝑖𝑄

for all 1 ≤ 𝑖 ≤ 𝑛. In other words, 𝑄 can be found by solving the orthogonal Procrustes problem

min
𝑄∈SO(3)

1
𝑛








©­­«
𝑅 (1)

...

𝑅 (𝑛)

ª®®¬ −
©­­«
𝑅1
...

𝑅𝑛

ª®®¬𝑄









2

𝐹

(7.1)

The solution to this problem can be found using SVD (31). We note that for 𝑛 = 1, there is a simple
relation between the Procrustes error and the angular error between two rotation matrices. For 𝑅, 𝑆 ∈
𝑆𝑂 (3), it holds ∥𝑅−𝑆∥2

𝐹
= ⟨𝑅−𝑆, 𝑅−𝑆⟩ = ∥𝑅⊤𝑅∥2

𝐹
−2⟨𝑅, 𝑆⟩+∥𝑆⊤𝑆∥2

𝐹
= ∥𝐼3×3∥2𝐹−2⟨𝑅, 𝑆⟩+∥𝐼3×3∥2𝐹 =
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2 · 3 − 2 · tr(𝑅⊤𝑆). Hence the angular error between 𝑅 and 𝑆 is

𝜃 = arccos
( tr(𝑅⊤𝑆) − 1

2

)
= arccos

(3 − 1
2 ∥𝑅 − 𝑆∥

2
𝐹
− 1

2

)
.

We compare our method to the procedure in ASPIRE on simulated data. Given common lines, the
rotation recovery algorithm used in ASPIRE is the synchronization with voting procedure as described
in (5). We use 30 images of the 60S, 80S, and 40S ribosomes at SNR = 0.125, 0.25, 0.5, 1. For each
macromolecule and SNR, we generate 50 sets of 30 random ground-truth rotations and their corre-
sponding noisy images. We report the average Procrustes error (7.1) per image (i.e., the Procrustes
error divided by the number of images).

When running this test, we chose to only use our IRLS-ADMM algorithm followed by ROTA-
TIONS, and omitted the SINKHORN row and column scaling step due to observed numerical instabilities
of SINKHORN with noise in the data or too many common lines. Also, Remark 5.2 states that our
algorithm is only guaranteed to recover the ground-truth pure common lines matrix up to a global
scale, and the sign of this scale produces two sets of rotations that differ by left-multiplication with
𝐽 = diag(−1,−1, 1). This sign flip corresponds to the chiral ambiguity in cryo-EM, as explained in
Remark 3.6. Thus in our tests we report the best rotational error amongst the two possible sets of
rotations.

The results for rotation recovery are displayed in Table 1. Notably, at lower SNR our method is
consistently more accurate than ASPIRE.

7.2. Denoising common lines
The problem we consider here is the following: given a noisy common lines matrix, how well can we
recover the ground-truth clean pure common lines matrix? If 𝐴, 𝐵 ∈ R2𝑛×𝑛 are the ground-truth and
recovered pure common lines matrix respectively, then we measure this error to be

min
𝜆∈R

1
𝑛
∥𝐴 − 𝜆𝐵∥2𝐹 (7.2)

since there is a global scale ambiguity in the recovered pure common lines matrix as discussed in
Remark 5.2. The above problem is a least-squares problem in 𝜆 and hence has a closed-form solution.

We compare our methods to ASPIRE on simulated data as follows. We run the rotation recovery
algorithm of ASPIRE based on common lines to obtain rotations 𝑅 (1) , . . . , 𝑅 (𝑛) ∈ 𝑆𝑂 (3). Then we
construct a recovered pure common lines matrix 𝐵 from these rotations by using the factorization (3.1).
We then compare the denoising error (7.2) from the ground-truth clean common lines matrix 𝐴 to the
output of our IRLS-ADMM method and to the matrix 𝐵. As before, the simulated data consists of 30
images of the 60S, 80S, and 40S ribosomes at SNR = 0.125, 0.25, 0.5, 1, and we report the average
denoising error (7.2) per image over 50 runs. We assume we have the ground-truth chiral information
when recovering rotations with ASPIRE.

The results for common line denoising are displayed in Table 2. Again our IRLS-ADMM method
outperforms ASPIRE for denoising common lines matrices, particularly at low SNR.

7.3. Clustering heterogeneous image sets
We test the performance of our algorithm CLUSTERS for clustering (see Section 6) on simulated and
real data.

The success of clustering is measured by the adjusted Rand index (32) (ARI) between the ground-
truth clusters and the recovered clusters. The range of this index is −∞ < ARI ≤ 1, with ARI = 1 if
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macromolecule SNR
average Procrustes rotation error (7.1)
Algorithm 1 &

Algorithm 3 ASPIRE

EMD-2811
(60S ribosome)

0.125 3.6840 4.3426

0.25 3.3215 3.6042

0.5 1.5512 2.2704

1 0.4215 0.4877

EMD-2858
(80S ribosome)

0.125 1.7903 2.5943

0.25 0.8038 1.3175

0.5 0.1576 0.2543

1 0.0259 0.0240

EMD-4214
(40S ribosome)

0.125 4.0377 4.5281

0.25 3.9079 4.0104

0.5 3.6375 3.3994
1 2.8271 2.1334

Table 1. The average rotation recovery error from 30 simulated images
of macromolecules at various SNR, 50 runs each

the two partitions are identical. The ARI is a corrected-for-chance version of the Rand index, meaning
that it is the expected Rand index for the cluster and is equal to 0 if every element is placed in a random
cluster.

While any number of common lines |𝑆 | can be sampled on line 4 of CLUSTERS, we found that
sampling four common lines at a time was effective for a number of reasons: |𝑆 | = 4 enforces a non-
trivial rank 3 constraint, and the small number of common lines allowed us to both generate many
samples rapidly and improve the numerical stability of the SINKHORN scaling procedure. In addition,
the COMMUNITYDETECTION algorithm we use is the one described in (28).

7.3.1. Simulated data
We generate a dataset containing three clusters, with 𝑛 = 5 + 30 + 15 = 50 images from the 40S, 60S,
and 80S ribosome respectively, from which we construct a common lines matrix.

CLUSTERS achieved perfect clustering (ARI = 1) at SNR = 10, ARI = 0.8581 at SNR = 5, and
ARI = 0.3286 at SNR = 1. The clusters found at SNR = 5 are displayed in Figure 4, which shows that
only one pair of images were placed in incorrect clusters.

7.3.2. Real data
Our real data consists of a subset of 2D class averages computed from the experimental data described
in Verbeke et. al. (7). The subset we consider consists of two clusters with 𝑛 = 47 + 28 = 75 images
corresponding to the 60S and 80S ribosomes respectively. Each class average is 96 × 96 with a pixel
size of 4.4Å. We use the labels from (7) as ground-truth for clustering.

Figure 5 shows the clusters found by our algorithm CLUSTERS, achieving ARI = 0.8440 and
misclassifying only three images.
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macromolecule SNR
average denoising error (7.2)

Algorithm 1 ASPIRE

EMD-2811
(60S ribosome)

0.125 14.1982 18.2274

0.25 12.7786 17.8805

0.5 8.2349 16.8199

1 4.1908 6.1365

EMD-2858
(80S ribosome)

0.125 11.2948 17.3292

0.25 6.8850 13.3778

0.5 2.3152 3.6690

1 0.5680 0.3512

EMD-4214
(40S ribosome)

0.125 15.5635 18.0612

0.25 15.1112 18.0862

0.5 14.0420 18.0069

1 11.6964 15.7237

Table 2. The average denoising error of recovered pure common lines matrices from
30 simulated images of macromolecules at various SNR, 50 runs each

40S ribosome
60S ribosome
80S ribosome

Figure 4. Clustering results for 𝑛 = 50 simulated images with SNR=5. Images are size 128 × 128 with
pixel size of 3Å, and are colored according to the ground truth labels. Using CLUSTERS achieves ARI

= 0.8581 and only one pair of images are incorrectly clustered.

The clustering algorithm used in (7) is based on performing community detection on a nearest-
neighbours graph constructed using Euclidean distances between the best-matching line projections
between every pair of images. We stress that our clustering algorithm uses a completely distinct aspect
of common lines data: the positions of the common lines. As a proof of concept for our constraints, we
do not make use of the correlations between the common lines at all, unlike (7). The test for CLUSTERS
only uses a subset of the dataset in (7), which has 𝑛 = 100 images and includes images with unknown
labels. If we compare only the 60S and 80S images that were clustered, then CLUSTERS achieves a
similar performance, where one additional image is misclassified by CLUSTERS compared to (7).

https://doi.org/10.1017/S2633903X24000072 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000072


22

Figure 5. Clustering results for 𝑛 = 75 2D class averages from EMPIAR-10268 computed as described
in (7). Images are size 96 × 96 with a pixel size of 4.4Å, and are colored according to the ground truth

labels. Using CLUSTERS achieves ARI = 0.8440 and only three images are incorrectly clustered.

8. Conclusion
This paper revisited the fundamental topic of common lines in cryo-EM image processing. We dis-
cussed a novel approach for dealing with common lines, based on a certain 2𝑛 × 𝑛 matrix encoding the
common lines between 𝑛 projection images. We proved that if the 2 × 1 blocks of the matrix are prop-
erly scaled, then the matrix satisfies nice algebraic constraints: a low-rank condition and several sparse
quadratic constraints. The new formulation operates directly on common lines data, and is fully global
in that it does not require angular reconstitution or voting procedures at all. It opens the door to dif-
ferent and potentially more robust approaches to computational tasks involving common lines. Using
the algebraic constraints, we adapted optimization algorithms from other domains to give new meth-
ods to denoise common lines data, and recover the 3D rotations underlying noisy images. Numerical
experiments show that these methods have increased accuracy at low SNR, compared to existing meth-
ods based on common lines. We also explored a setting where traditional common lines methods fail
to apply – cryo-EM datasets with discrete heterogeneity – by proposing a sampling-based process to
cluster the images homogeneous subcommunities based on our algebraic constraints. Experiments with
simulated and real data show the method performs well when applied to images with high noise.

Although there is clear promise, several future directions could be pursued for further improvements.
Firstly, in Section 5 the optimization algorithm building on (11) is quite complex. Matrix scaling prob-
lems as in (11) and our work are an interesting variation on the problem of matrix completion; would
other optimization approaches perform better? Secondly, extensions to molecules with nontrivial point
group symmetries would be useful (and currently are a focus in other common lines research). Perhaps
our formulation can suggest another way to incorporate symmetries into common lines methods. Lastly,
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in the application to discrete heterogeneity, we neglected correlation scores between the common lines,
on which (7) relied. It is likely better to use both the scores and the algebraic constraint errors.
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A. Additional proofs
Proof of Proposition 3.3. Since orthogonal matrices preserve norms, we have
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Similarly, we have
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2
2 (A.2)

Thus, equating (A.1) with (A.2) and simplifying, we obtain ∥a𝑖 𝑗 ∥22 = ∥a 𝑗𝑖 ∥22. □

Proof of Proposition 3.4. Let 𝐷 = det
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by expanding the determinant along the first column. Similarly for each 𝑗 and 𝑘 we have
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Proof of Theorem 3.5. We first prove the theorem in the case 𝑛 = 3. Given 𝑅1, 𝑅2, 𝑅3 ∈ 𝑆𝑂 (3), we
have 𝐴 = 𝜓(𝑅1, 𝑅2, 𝑅3) = 𝜓(𝑅1𝑄, 𝑅2𝑄, 𝑅3𝑄) for any 𝑄 ∈ 𝑆𝑂 (3) since
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Hence, the fibres of 𝜓 contain at least a copy of 𝑆𝑂 (3). By fixing 𝑄 = 𝑅⊤1 , we may assume that 𝑅1 = 𝐼,
so that 𝐴 = 𝜓(𝑅1, 𝑅2, 𝑅3) = 𝜓(𝐼, 𝑅2𝑅

⊤
1 , 𝑅3𝑅

⊤
1 ). To prove the statement, we therefore need to show that

fibers of the map 𝜓 with 𝑅1 = 𝐼 fixed,

𝜓 : SO(3) × SO(3) −→ R6×3

(𝑅 (1) , 𝑅 (2) ) ↦→ 𝜓(𝐼, 𝑅 (1) , 𝑅 (2) ),
(A.6)

generically consist of only one point. Our strategy to show this is to set up a corresponding system of
polynomial equations for a random instance of two rotations 𝑅 (1) and 𝑅 (2) , and then solve the system
numerically, showing that it has only one solution. It is sufficient to solve the polynomial system over
the complex numbers C, and exhibit that there is a unique solution even over C. We parameterize
𝑅1, 𝑅2 ∈ SO(3) using the Euler-Rodriguez formula:
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where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ∈ R such that 𝑎2

𝑖
+ 𝑏2

𝑖
+ 𝑐2

𝑖
+ 𝑑2

𝑖
= 1. We construct one pure common lines

matrix 𝐴 = 𝜓(𝐼, 𝑅1, 𝑅2) whose entries are polynomial in 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , and another pure common lines
matrix 𝐴 = 𝜓(𝐼, 𝑅1, 𝑅2), from random rotation matrices 𝑅1, 𝑅2 ∈ SO(3), whose entries are real. Set-
ting 𝐴 = 𝐴 gives us a system of polynomial equations, which we solve over C using the package
HomotopyContinuation.jl in Julia (33). Every rotation under the Euler-Rodriguez parametrization has
two parametrizations, namely (𝑎, 𝑏, 𝑐, 𝑑) and (−𝑎,−𝑏,−𝑐,−𝑑) representing the same matrix in SO(3).
By parameterizing 𝑅1 and 𝑅2, we therefore expect to find 4 real solutions to the system and therefore
one point in the fiber, which is indeed what we find using homotopy continuation. The computation is
carried out in the file fiber.jl in our Github repository (8.1).

Now with the theorem true for 𝑛 = 3, it in fact follows that the theorem is true for all 𝑛 > 3: if
𝐴1 = 𝜓(𝑅1, . . . , 𝑅𝑛) and 𝐴2 = 𝜓(𝑆1, . . . , 𝑆𝑛), where 𝐴1 = 𝐴2 is a generic point in the image of 𝜓,
then we need to show that there exists a unique 𝑄 ∈ SO(3) such that 𝑆𝑖 = 𝑅𝑖𝑄 for all 𝑖 = 1, . . . , 𝑛.
Choosing two 6 × 3 pure common lines submatrices of 𝐴1 = 𝐴2 corresponding to indices {𝑖, 𝑗 , 𝑘}
and {𝑖, ℓ, 𝑚}, the theorem in the case 𝑛 = 3 implies that there exist 𝑄𝑖 𝑗𝑘 , 𝑄𝑖ℓ𝑚 ∈ SO(3) such that
(𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘) = (𝑅𝑖𝑄𝑖 𝑗𝑘 , 𝑅 𝑗𝑄𝑖 𝑗𝑘 , 𝑅 𝑗𝑄𝑖 𝑗𝑘) and (𝑆𝑖 , 𝑆 𝑗 , 𝑆ℓ) = (𝑅𝑖𝑄𝑖ℓ𝑚, 𝑅ℓ𝑄𝑖ℓ𝑚, 𝑅𝑚𝑄𝑖ℓ𝑚). In particular,
𝑅𝑖𝑄𝑖 𝑗𝑘 = 𝑅𝑖𝑄𝑖ℓ, , so 𝑄𝑖 𝑗𝑘 = 𝑄𝑖ℓ𝑚. Thus, any triplet of rotations are related by the same matrix 𝑄. □

Proof of Proposition 3.7. Let V𝑛 ⊆ R2𝑛×𝑛 denote the cone over the common lines variety (i.e., V𝑛 is
the the smallest algebraic variety containing all scalar multiples of all pure common lines matrices).
LetW𝑛 ⊆ R2𝑛×𝑛 denote the variety defined by the polynomial constraints in Proposition 3.7. Note that
since the constraints are invariant to global scaling, we have V𝑛 ⊆ W𝑛. By (15), in order to show that
V𝑛 is an irreducible component ofW𝑛 we need to show that

dim(V𝑛) = dim(W𝑛, 𝐴) (A.7)

holds a generic point 𝐴 ∈ V𝑛, where dim(·) and dim(·, ·) respectively denote the dimension of a variety
and the local dimension of a variety at a point. This is analogous to computing the dimension of a
manifold by computing the dimension of its tangent space at a point.

RecallV𝑛 is the cone over the common lines variety, which is the smallest algebraic variety contain-
ing the image of the map 𝜓 in (3.2). Thus using the fiber dimension theorem (the algebraic geometric
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analog of the rank-nullity theorem from linear algebra), Theorem 3.5 implies

dim(V𝑛) = 3𝑛 − 2. (A.8)

Next we compute dim(W𝑛, 𝐴). We first note thatW𝑛 ⊆ X𝑛, whereX𝑛 is the algebraic variety of all rank
≤ 3 matrices in R2𝑛×𝑛 defined by the vanishing of 4× 4 minors. Note the map 𝜌 : R2𝑛×3 ×R𝑛×3 →V𝑛

given by 𝜌(𝐵,𝐶) = 𝐵𝐶⊤ parameterizes V𝑛 with 9-dimensional fibers over each rank-3 point (34). This
holds because for each 3 × 3 invertible matrix 𝑀 , 𝜌(𝐵,𝐶) = 𝜌(𝐵𝑀−1, 𝐶𝑀⊤). Hence

dim(W𝑛, 𝐴) + 9 = dim(𝜌−1 (W𝑛), (𝐵,𝐶)) (A.9)

for (𝐵,𝐶) ∈ R2𝑛×3 × R𝑛×𝑛 such that 𝜌(𝐵,𝐶) = 𝐴. We now compute the right-hand side of (A.9) in
the computer algebra system Macaulay2 (16). Specifically, we differentiate the defining constraints of
W𝑛 with respect to 𝐵 and 𝐶, noting that the rank-3 constraint is enforced automatically by 𝜌 and the
other constraints in Proposition 3.7 are biquadratic and bilinear in (𝐵,𝐶). We evaluate the Jacobian
matrix at a point (𝐵,𝐶) in the fiber of 𝜌 over 𝐴, where 𝐴 ∈ V𝑛 is generated as a random scaling
of 𝜓(𝑅 (1) , . . . , 𝑅 (𝑛) ) where 𝑅 (𝑖) are random. Generically, the nullity of the Jacobian matrix equals
dim(𝜌−1 (W𝑛), (𝐵,𝐶)). Performing numerical computations for 𝑛 = 3, . . . , 50 in double-precision
arithmetic yields numerical nullities of 3𝑛+7. Comparing (A.9) with (A.8) implies (A.7) as desired. □

Proof of Theorem 5.1. Since nonzero row and column scaling preserves rank, we may assume without
loss of generality that 𝜆𝑖1 = 𝜆1 𝑗 = 1 for all 𝑖, 𝑗 = 2, . . . , 𝑛: this is achieved by choosing 𝜇1 = 𝜏1 = 1,
𝜇𝑖 = 𝜆−1

𝑖1 , and 𝜏𝑗 = 𝜆−1
1 𝑗 . We will show that 𝜆𝑖 𝑗 = 𝜆𝑘ℓ for all 𝑖, 𝑗 , 𝑘, ℓ = 2, . . . , 𝑛, 𝑖 ≠ 𝑗 , 𝑘 ≠ ℓ. In other

words, we will prove that the matrix Λ must have the form in (A.12).
First we prove that 𝜆𝑖 𝑗 = 𝜆𝑖𝑘 for all 𝑖, 𝑗 , 𝑘 = 2, . . . , 𝑛, 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘 . There are three cases to consider:

𝑖 < 𝑗 < 𝑘 , 𝑗 < 𝑖 < 𝑘 , and 𝑗 < 𝑘 < 𝑖. Suppose we are in the first case. Since rank(𝐵) = 3, every 4 × 4
minor of 𝐵 vanishes. Thus, choosing row indices 1, 2, 2𝑖 − 1, and 2𝑖, and column indices 1, 𝑖, 𝑗 , and 𝑘 ,
we have

det
(

0 a1𝑖 a1 𝑗 a1𝑘
a𝑖1 0 𝜆𝑖 𝑗a𝑖 𝑗 𝜆𝑖𝑘a𝑖𝑘

)
= 𝜆𝑖𝑘det

(
a1𝑖 a1 𝑗

)
det

(
a𝑖1 a𝑖𝑘

)
− 𝜆𝑖 𝑗det

(
a1𝑖 a1𝑘

)
det

(
a𝑖1 a𝑖 𝑗

)
= 0 (A.10)

But since 𝐴 is a pure common lines matrix, det
(
a1𝑖 a1 𝑗

)
= −det

(
a𝑖1 a𝑖 𝑗

)
and det

(
a𝑖1 a𝑖𝑘

)
=

−det
(
a1𝑖 a1𝑘

)
by Proposition 3.4, all of which are nonzero since 𝐴 is generic. Thus 𝜆𝑖 𝑗 = 𝜆𝑖𝑘 .

Expanding the 4 × 4 minor with the same choice of row and column indices for the remaining two
cases gives us

det
(

0 a1 𝑗 a1𝑖 a1𝑘
a𝑖1 𝜆𝑖 𝑗a𝑖 𝑗 0 𝜆𝑖𝑘a𝑖𝑘

)
= −det

(
0 a1𝑖 a1 𝑗 a1𝑘

a𝑖1 0 𝜆𝑖 𝑗a𝑖 𝑗 𝜆𝑖𝑘a𝑖𝑘

)
= 0

and

det
(

0 a1 𝑗 a1𝑘 a1𝑖
a𝑖1 𝜆𝑖 𝑗a𝑖 𝑗 𝜆𝑖𝑘a𝑖𝑘 0

)
= det

(
0 a1𝑖 a1 𝑗 a1𝑘

a𝑖1 0 𝜆𝑖 𝑗a𝑖 𝑗 𝜆𝑖𝑘a𝑖𝑘

)
= 0

respectively, which brings us back to (A.10).
Suppose that 3 ≤ 𝑖 ≤ 𝑛 − 1. The 4 × 4 minor whose row indices are 2𝑖 − 1, 2𝑖, 2(𝑖 + 1) − 1, and

2(𝑖 + 1), and whose column indices are 1, 𝑖 − 1, 𝑖, and 𝑖 + 1 is

det
(

a𝑖1 𝜆𝑖,𝑖−1a𝑖,𝑖−1 0 𝜆𝑖,𝑖+1a𝑖,𝑖+1
a𝑖+1,1 𝜆𝑖+1,𝑖−1a𝑖+1,𝑖−1 𝜆𝑖+1,𝑖a𝑖+1,𝑖 0

)
= det

(
0 𝜆𝑖,𝑖+1a𝑖,𝑖+1 a𝑖1 𝜆𝑖,𝑖−1a𝑖,𝑖−1

𝜆𝑖+1,𝑖a𝑖+1,𝑖 0 a𝑖+1,1 𝜆𝑖+1,𝑖−1a𝑖+1,𝑖−1

)
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We showed earlier that 𝜆′ := 𝜆𝑖,𝑖+1 = 𝜆𝑖,𝑖−1 and 𝜆′′ := 𝜆𝑖+1,𝑖 = 𝜆𝑖+1,𝑖−1. Thus expanding, we obtain

det
(

0 𝜆′a𝑖,𝑖+1 a𝑖1 𝜆′a𝑖,𝑖−1
𝜆′′a𝑖+1,𝑖 0 a𝑖+1,1 𝜆′′a𝑖+1,𝑖−1

)
= 𝜆′𝜆′′2det

(
a𝑖1 a𝑖,𝑖+1

)
det

(
a𝑖+1,𝑖−1 a𝑖+1,𝑖

)
− 𝜆′2𝜆′′det

(
a𝑖,𝑖−1 a𝑖,𝑖+1

)
det

(
a𝑖+1,1 a𝑖+1,𝑖

)
= 0

(A.11)

After dividing both sides of the last equation by 𝜆′𝜆′′, we obtain 𝜆′ = 𝜆′′. Lastly, the 4 × 4 minor with
the same choice of row and column indices when 𝑖 = 2 is

det
(
a21 0 𝜆23a23 𝜆24a24
a31 𝜆32a32 0 𝜆34a34

)
= det

(
0 𝜆′a23 a21 𝜆′a24

𝜆′′a32 0 a31 𝜆
′′a34

)
= 0

since 𝜆′ := 𝜆23 = 𝜆24 and 𝜆′′ := 𝜆32 = 𝜆34, which brings us back to (A.11). Thus we have proven that
𝜆𝑖 𝑗 = 𝜆𝑘ℓ for all 𝑖, 𝑗 , 𝑘, ℓ = 2, . . . , 𝑛, 𝑖 ≠ 𝑗 , 𝑘 ≠ ℓ. Let 𝜆 be their common value. Then

Λ =

©­­­­­­­­«

0 1 1 . . . 1 1
1 0 𝜆 . . . 𝜆 𝜆

1 𝜆 0 . . . 𝜆 𝜆
...
...
...
. . .

...
...

1 𝜆 𝜆 . . . 0 𝜆

1 𝜆 𝜆 . . . 𝜆 0

ª®®®®®®®®¬
(A.12)

and we may obtain (5.30) by choosing 𝜇1 = 1
𝜆

, 𝜇2 = . . . = 𝜇𝑛 = 1 and 𝜏1 = 1, 𝜏2 = . . . = 𝜏𝑛 = 𝜆.
Now we prove the last statement of the theorem. What we have shown so far is that rank(𝐵) = 3

implies that there exists scales 𝜇𝑖 and 𝜏𝑗 such that 𝜆𝑖 𝑗 = 𝜇𝑖𝜏𝑗 . Since 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 , we have

𝜇𝑖𝜏𝑗 = 𝜇 𝑗𝜏𝑖

for all for all 𝑖, 𝑗 = 1, . . . , 𝑛. If 𝝁 = (𝜇𝑖)𝑛𝑖=1 and 𝝉 = (𝜏𝑗 )𝑛𝑗=1, then this means that the matrix 𝝁𝝉⊤ ∈ R𝑛×𝑛
is symmetric. This is true if and only if 𝝁 = 𝝉. In particular,

𝜇𝑖 = 𝜏𝑖 (A.13)

If 𝐵 furthermore satisfies the determinant constraints, then we have

𝜇2
𝑖 𝜏𝑗𝜏𝑘det

(
a𝑖 𝑗 a𝑖𝑘

)
= −𝜇2

𝑗𝜏𝑖𝜏𝑘det
(
a 𝑗𝑖 a 𝑗𝑘

)
= 𝜇2

𝑘𝜏𝑖𝜏𝑗det
(
a𝑘𝑖 a𝑘 𝑗

)
for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛, which implies that

𝜇2
𝑖 𝜏𝑗𝜏𝑘 = 𝜇2

𝑗𝜏𝑖𝜏𝑘 = 𝜇2
𝑘𝜏𝑖𝜏𝑗

Substituting (A.13), we obtain

𝜏2
𝑖 𝜏𝑗𝜏𝑘 = 𝜏2

𝑗 𝜏𝑖𝜏𝑘 = 𝜏2
𝑘𝜏𝑖𝜏𝑗 =⇒ 𝜏𝑖 = 𝜏𝑗 = 𝜏𝑘

after dividing by 𝜏𝑖𝜏𝑗𝜏𝑘 . Denoting the common value of the above equation on the right by 𝜏, we find
that 𝜇𝑖 = 𝜏. Hence, 𝜆𝑖 𝑗 = 𝜏 for all 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 , which gives the desired result. □
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B. Least squares problems
In Section 5.2, we consider the least squares problems (5.10) and (5.11), which are

𝝁 = arg min
∥𝝁∥2=1

∥diag(𝝁)𝑀 − (diag(𝝁)𝑀)⊤∥2𝐹

𝝉 = arg min
∥𝝉 ∥2=1

∥𝑀diag(𝝉) − (𝑀diag(𝝉))⊤∥2𝐹

These have solutions
min
∥𝝁∥2=1

∥𝑁𝐿 · 𝝁∥22

min
∥𝝉 ∥2=1

∥𝑁𝑅 · 𝝉∥22

respectively, where 𝑁𝐿 ∈ R𝑛×𝑛 with

(𝑁𝐿)𝑖 𝑗 =


∑︁

𝑘=1,...,𝑛
𝑘≠𝑖

𝑀2
𝑖𝑘 if 𝑖 = 𝑗

−𝑀𝑖 𝑗𝑀 𝑗𝑖 if 𝑖 ≠ 𝑗

(B.1)

and 𝑁𝑅 ∈ R𝑛×𝑛 with

(𝑁𝑅)𝑖 𝑗 =


∑︁

𝑘=1,...,𝑛
𝑘≠𝑖

𝑀2
𝑘𝑖 if 𝑖 = 𝑗

−𝑀𝑖 𝑗𝑀 𝑗𝑖 if 𝑖 ≠ 𝑗

(B.2)

We also consider the least squares problems (5.19) and (5.20), which are

min
∥𝝁∥2=1

∥(𝝁 △ v1) − (𝝁 △ v2)∥22 + ∥(𝝁 △ v2) − (𝝁 △ v3)∥22 (B.3)

min
∥𝝉 ∥2=1

∥(𝝉 △1 v1) − (𝝉 △1 v2)∥22 + ∥(𝝉 △2 v2) − (𝝉 △2 v3)∥22 (B.4)

where

𝝁 △ v1 :=
(
𝜇𝑖sgn(det

(
a𝑖 𝑗 a𝑖𝑘

)
)
√︃
|det

(
a𝑖 𝑗 a𝑖𝑘

)
|
)

1≤𝑖< 𝑗<𝑘≤𝑛

𝝁 △ v2 :=
(
𝜇 𝑗sgn(det

(
a 𝑗𝑖 a 𝑗𝑘

)
)
√︃
|det

(
a 𝑗𝑖 a 𝑗𝑘

)
|
)

1≤𝑖< 𝑗<𝑘≤𝑛

𝝁 △ v3 :=
(
𝜇𝑘sgn(det

(
a𝑘𝑖 a𝑘 𝑗

)
)
√︃
|det

(
a𝑘𝑖 a𝑘 𝑗

)
|
)

1≤𝑖< 𝑗<𝑘≤𝑛

(B.5)

and

𝝉 △1 v1 :=
(
𝜏𝑗det

(
a𝑖 𝑗 a𝑖𝑘

) )
1≤𝑖< 𝑗<𝑘≤𝑛 𝝉 △1 v2 :=

(
−𝜏𝑖det

(
a 𝑗𝑖 a 𝑗𝑘

) )
1≤𝑖< 𝑗<𝑘≤𝑛

𝝉 △2 v2 :=
(
−𝜏𝑘det

(
a 𝑗𝑖 a 𝑗𝑘

) )
1≤𝑖< 𝑗<𝑘≤𝑛 𝝉 △2 v3 :=

(
𝜏𝑗det

(
a𝑘𝑖 a𝑘 𝑗

) )
1≤𝑖< 𝑗<𝑘≤𝑛

(B.6)
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are all vectors of length
(𝑛
3
)
. The solution to problem (B.3) is

min
∥𝝁∥2=1



(𝐷𝐿,1 + 𝐷𝐿,2) · 𝝁


2

2

where 𝐷𝐿,1, 𝐷𝐿,2 ∈ R𝑛×𝑛 with

(𝐷𝐿,1)𝑝𝑞 =



∑︁
1≤ 𝑗<𝑘≤𝑛
𝑗≠𝑝,𝑘>𝑝

sgn(𝑣𝑝 𝑗, 𝑝𝑘) |𝑣𝑝 𝑗, 𝑝𝑘 | if 𝑝 = 𝑞

−
∑︁

max{𝑝,𝑞}<𝑘≤𝑛
sgn(𝑣𝑝𝑞,𝑝𝑘𝑣𝑞𝑝,𝑞𝑘)

√︃
|𝑣𝑝𝑞,𝑝𝑘 |

√︃
|𝑣𝑞𝑝,𝑞𝑘 | if 𝑝 ≠ 𝑞

(B.7)

(𝐷𝐿,2)𝑝𝑞 =



∑︁
1≤ 𝑗<𝑘≤𝑛
𝑗≠𝑝,𝑘>𝑝

sgn(𝑣𝑝𝑘,𝑝 𝑗 ) |𝑣𝑝 𝑗, 𝑝𝑘 | if 𝑝 = 𝑞

−
∑︁

max{𝑝,𝑞}<𝑘≤𝑛
sgn(𝑣𝑝𝑞,𝑝𝑘𝑣𝑞𝑝,𝑞𝑘)

√︃
|𝑣𝑝𝑞,𝑝𝑘 |

√︃
|𝑣𝑞𝑝,𝑞𝑘 | if 𝑝 ≠ 𝑞

(B.8)

and the solution to problem (B.4) is

min
∥𝝉 ∥2=1



(𝐷𝑅,1 + 𝐷𝑅,2) · 𝝉


2

2

where 𝐷𝑅,1, 𝐷𝑅,2 ∈ R𝑛×𝑛 with

(𝐷𝑅,1)𝑝𝑞 =



∑︁
1≤ 𝑗<𝑘≤𝑛
𝑗≠𝑝,𝑘>𝑝

𝑣2
𝑗 𝑝, 𝑗𝑘 if 𝑝 = 𝑞

−
∑︁

max{𝑝,𝑞}<𝑘≤𝑛
𝑣𝑝𝑞,𝑝𝑘𝑣𝑞𝑝,𝑞𝑘 if 𝑝 ≠ 𝑞

(B.9)

(𝐷𝑅,2)𝑝𝑞 =



∑︁
1≤𝑘< 𝑗≤𝑛
𝑗≠𝑝,𝑘<𝑝

𝑣2
𝑗𝑘, 𝑗 𝑝 if 𝑝 = 𝑞

−
∑︁

1≤𝑘<max{𝑝,𝑞}
𝑣𝑝𝑘,𝑝𝑞𝑣𝑞𝑘,𝑞𝑝 if 𝑝 ≠ 𝑞

(B.10)

where 𝑣𝑖 𝑗 ,𝑖𝑘 := det
(
a𝑖 𝑗 a𝑖𝑘

)
.
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