
ON ABSOLUTE SUMMABILITY BY RIESZ AND 
GENERALIZED CESARO MEANS. I 

H.-H. KORLE 

1. The Cesàro methods for ordinary [9, p. 17; 6, p. 96] and for absolute 
[9, p. 25] summation of infinite series can be generalized by the Riesz methods 
[7, p. 21; 12; 9, p. 52; 6, p. 86; 5, p. 2] and by "the generalized Cesàro methods" 
introduced by Burkill [4] and Borwein and Russell [3]. (Also cf. [2] ; for another 
generalization, see [8].) These generalizations raise the question as to their 
equivalence. 

We shall consider series 
CO 

(1) Z On 
71=0 

with complex terms an. Throughout, we will assume that 

(2) 0 ^ Xo < Ai < . . . < K -* °o, K ^ 0, 

and we call (1) Riesz summable to a sum 5 relative to the type X = (Xw) and 
to the order K, or summable (R, X, K) to 5 briefly, if the Riesz means 

<riK)(x) = E ( l - - K (pc > Xo), (7U)(Xo) = 0 
Xv<x \ %' 

(of the partial sums of (1)) tend to 5 as x —» co. If, moreover, 

Joo /*oo J 

dx < oo 

holds for some lower limit of integration ^X0, the series (1) is called summable 
\R, X, K\ to s. (1) is called summable (C, X, K) to 5 if the generalized Cesàro 
means 

± (i - ±) ... (i - -^-)(i - r
X-^-)^, » - o, i, 

n+U \ ^n+k/ \ Aw+fc+1 

K = k + ô, k the integer such that 0 ^ 8 < 1, 

tend to ^ as n—* oo. (In the case that \n = w, these T[K) reduce to the /cth 
Cesàro means if K is an integer, and at least define a method equivalent to 

Received October 22, 1968 and in revised form, February 17, 1969. This paper contains 
part of the author's Habilitations s chr ift accepted by the Naturwissenschaftliche Fakultdt of the 
University of Marburg. 

202 

https://doi.org/10.4153/CJM-1970-026-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-026-6


SUMMABILITY. I 203 

the Cesàro method of order K if K is non-integral [3; 2], i.e., it is the method 
that is generalized.) If, moreover, 

(4) E l^ - T^i| < 00 
n 

holds, we call (1) summable \C, X, K\ to s. This method generalizes the absolute 
Cesàro method of order K, as was (for non-integral K) proved by Borwein [2]. 
"Summable" means "summable to some s". 

We may assume that X0 > 0. (Changing X0 = 0 to a new X0 = Xi/2, e.g., 
we arrive at new means a(li)(x) and r ^ which differ from the old ones by a 
function and a sequence, respectively, tending to zero monotonically as 
x, n —•> co.) Therefore we may write 

1? = t i1 -—)••• (- - —)(- - l )>, 
y=o \Xj» XW4-i/ \Xy X/i-j-fc/ \XV X +̂fc+i/ 

where a ^ = X*a„. 
For definitions of the terms "inclusion" and "equivalence" applying to 

summation methods, see [6, p. 66] ; we shall write C and = , respectively. 

2. In this paper we shall be concerned with integral orders K = k only; 
results on non-integral orders will appear subsequently (cf. [10]). After proofs 
had been provided for (R, X, k) = (C, X, k) under more assumptions on X 
than (2) [4; 13; 1], Russell [13, Theorem 4] and Meir [11] proved the two 
inclusions with no restriction other than (2) (see also [3] for the history of 
the problem). It is our aim in the present paper to establish that \R, X, k\ = 
|C, X, k\ holds without additional assumptions. Moreover, our proof furnishes 
an alternative argument for the result of Russell and Meir. 

3. To some extent, we shall employ the technique of proof initiated by 
Burkill in [4] and also used in subsequent work. It is worthwhile defining, 
for numbers &i, . . . , br, 

!

BVr = H &P1 • • 'bPp1 p = 1, . . . , r , 

B\ = B\ = 1, B~Q = 0 (q = 1, 2, . . .). 

Part (ii) in our proof of the Theorem requires the following result. 

LEMMA. Given an integer k > 1 and numbers bi, . . . , bk-i ^ 0; the matrix 

Mj = (B£?l:i,j = 1, . . . , J) , / = 1, . . . ,k - 1, 
with entries (5) has the determinant 

i2»/i = £ bn £ bP2... x;1 bPJ, J = i , . . . , k -1. 
Pl = l P2 = l Pj=^ 
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Proof. For an index s = 1, . . . ,r tk k — 1 and for p = 1, . . . , r, let Cp
rs 

denote the sum of all those summands of Bv
r that are products bPl . . . bPp 

with pi = s. Hence, the decomposition 

BP
T 

T-p+1 

holds. Applying it to the last row of %Jlj, we obtain: 

(6) 
k-J 

\m = E 
p i - i 

aw>-i 

o 

o 
l 

^ A — l . p i * * * (sk—J+l,pi Opi 

The last row of Wflj-i reads 

-^A;-« = 2-*t ^k-t,p2i t = 1, . . . , J 1', 
P 2 = l 

in the matrices on the right-hand side of (6), these elements are neighbouring 

k—j+l 

ri~t+i _ 7 y ^ fj-t f - \ J — 1 
<^&-Z,pi — Vp\ Z^, ^k—t,p2l L — 1, . . . , J ± , 

P2=P1 + 1 

respectively. Thus, some basic operations yield 

k—J P I 

WJ\ = r &P. z 
P l = l P 2 = l 

2tt,-2 

0 
1 

r^- 1 r 2
 A 

^A—1,P2 ' ' ' ^k—J+2,p2 UP'. 

This again is the situation of (6), and iteration completes the proof. 

THEOREM. \R, X, k\ = \C, X, k\, k = 0, 1, . . . . 

Proof. Since (R, X, k) = (C, X, fe), the problem is as follows: A series (1) 
is summable \R, X, k\ if and only if it is summable \C, X, k\. The cases k = 0 
and fe = 1 are trivial; the latter one since, on every interval [\n, Xw+i], the 
function xcr(1)(x) is linear and so o-(1)(x) is monotone. We therefore assume 
that k ^ 2. 

(i) Suppose (1) to be summable |i£, X, &|; we have to prove (4), K = ky 

that is, 

(7) E(r-r-)|J: (£-»*-)-"(r-r1-)'" 
w \A« Aw+/C/ I y==o \ A „ A n + i / \ A „ A w + A ; _ i / 

< 0 0 . 
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We assume an integral-valued sequence m = m(n), n^wiSn + k — 1, 
chosen in a way to satisfy 

1 1 ( i i \ 
— - = max I — 1 , 
A m A m + i i = i % \ A n + f _ i A n + i / 

and we intend to prove (7) by means of 

When [l/Xm+i, 1/Xm] is subdivided by 

< oo. 

J 1_ _ i - 1 / J_ l \ 
MM AW 2& — 1 \Xm Xm+i/ 

i = 1, . . . , 2ife 

(we write /** = ^ ) , there exist certain mean values 0n̂  G (M2 ;-I, M2;) 

7 = 1, . . . , k, such that 

2j-
\fl2j-l fl2j/ v=0 \Aj» t7 w ^/ 

holds. (3) then implies 

») z(f-^)iÊ(f-j-r«ï 
w \ A m A w + i / I y =o \ A v t7w ;7 

(*» < 00, j = 1 , . . . ,fe, 

since m takes on the same value for a t most k different n. 
In order to infer (8) from (9), we propose the following: There are sequences 

Qnj = 0(1), j = 1, . . . , k, independent of v, such t h a t 

(10) 
\X„ Xn+i/ \XV \n+]c-l/ j=i \X„ Onj/ ,m, 

is satisfied. After division by lm , lm = l/\m — l/Xm+i, (10) becomes 

(ID 
where 

xnv — 

7 J QnjKpCnv ~T~ vnj) \pCnv "T" Uni) • * • \%nv ~| Vn,k—l)i 
3=1 

\ \ / / ^m' ^ ~~ V \ û / / mj °nP ~ \\ \ ) / I'm 
^v Am/ / \ A O T C7W:// / \Am An+p/ ' 

(j= 1, . . . , k; p = 1, . . . , k — 1). Dropping the index n in (11), we may 
write, by notation (5), 

k—l /-i - A k k-l 

E xv1-' r ; M z *î 2̂  = z «r^u 
Thus, the gny are determined by a linear system the (Vandermonde) 
determinant of which is 
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When applying Cramer's rule, we observe that 

u> _ * w _ JL _ JL > J _ _ _ 1 _ 
Xynt vns)lm — n = 

Vns Vnt Vn,ïs Hn>2t-1 

_ 2(t ~ s) - 1 
2ife - 1 lm ~ 2k - 1 

Z r o , 1 ^ S < t ^ k, 

and 0 < #wi < 1, j = 1, 

\bnp\l"m = g (fc - \)lm, p = l , . . . , k - l. _l l_ 
I A w Aw-j_p i 

Consequently, there exist bounded qnj satisfying (10). 
(ii) Suppose (1) to be summable |C, X, k\; we have to prove (3), that is, 

J
»l/Xn I ? n / -, \ Jc I 

l/Xn+l " ^ "=0 \ A „ / I 

= ^ ( - - — ) I t, i 1 ~ i)*_1«" 
n \\n Xw+i/ I „=o \X„ #»/ 

< 00 

with certain mean values 6n £ (\n, \n+i). 
First, we propose the following: 

(13) 
I l 4 f l l < » , i = i *, 

where the empty product (for j — k) is taken to be one. The hypothesis, 
that is (7), yields (13), j — 1. With the abbreviations 

the recurrence 
Xw Xn+i+A;-; 

dn — ^njOn \J — 1 , . . . , K), 

o(j') __ o(;) _ 7 oO+D 
,j+l^>n i 

and therefore 

(14) 4 m ) = C-+i V p v I ' 

j = 1, . . . ,k - 1, 

7 = ! , . . . , * - ! , 

holds. Hence, 

K3+1)\ = KJ'| + |4^i|, i = i k-i, 
is true, and (13) follows by induction. 

(13) will infer (12) if there exist qnj = 0(1) , j — 1, . . . , k, to satisfy 

( i- _ -1-) £ ( — - - j a(^ = X) fe4;)> 
\XW X n +l / y=0 \Xy 0W/ y=l 
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or, equivalently, 

(15) (i _ J-Yi _ iV1
 = £ dji, (i _ -i-)... (i _ _i_) 

v = 0, . . . , n, with the empty product equal to one. (While following the 
analogy between part (i) and part (ii) of the proof, the denotations in both 
need not coincide!) We set 

- ± _ _ I h - i--!- ( - 1 * _ iv 
Av Un Un A w +p 

for brevity, we may drop the index n in xnv, bnp and, for the moment, in qnjl lnj. 
By this and by notation (5), (15) is given the form: 

k k-j 

lizXy = 2^ Qjh2-j J3k—j%v 

so that we have a linear system for the g/;- with the matrix 

the determinant of which is h . . . it ^ 0. This yields gi = lhlï , Qj = lkl]~j\$Bj\ 
(j = 2, . . . , fe), where 33̂ - results from (5iZ^: i, j = 1, . . . , k) by deleting 
the first row and thej th column. Hence, |93;| = |9Jï^_i|, j = 2, . . . , k, with the 
matrix 9JÎ/ defined as in the Lemma. This determinant is, by virtue of the 
Lemma and since 0 < bpl < bP2 for any pi < p2, a positive number less than 
a constant multiple of 

j = 2, . . . , k. 

Thus we arrive at 

•<=°(fc)= S w - 0 ^ - 0 ( 1 ) , ; - l 4. 

4. We add the following observation. From parts of the proof above, one 
may easily obtain, by new interpretation, that o-(fc_1)(x) = 0(1) holds if and 
only if r{n~l) = 0(1), k = 2, 3, . . . . (To infer the first from the latter, take 
the former mean values 6n in (15) to mean an arbitrary sequence of numbers 
0n € [K> X»+i) and replace (13) by an appropriate statement.) Thus again, 
(R,\,k) = ( C , M ) , k = 1, 2, . . . . 

Acknowledgement. I am indebted to the referee for some useful remarks. 
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