
BERNSTEIN POWER SERIES 

E. W. CHENEY AND A. SHARMA 

1. Introduction. In Bernstein's proof of the Weierstrass Approximation 
Theorem, the polynomials 

a) 5B(/>x) = t/(^)(;)^ (i-xr-
are constructed in correspondence with a function / £ C [0, 1] and are shown 
to converge uniformly to / . These Bernstein polynomials have been the 
starting point of many investigations, and a number of generalizations of 
them have appeared. It is our purpose here to consider several generalizations 
in the form of infinite series and to establish some of their properties. The 
series to be discussed have their origins in the works of Szâsz (8) and of 
Meyer-Konig and Zeller (3). 

The succeeding sections are devoted to the following topics: convergence 
of the sequences, variation-diminishing properties, convergence questions in 
the complex domain, and an application to differential equations. 

2. The operators and their convergence properties. In the same way 
that the Bernstein polynomials originate in the identity 

(2) 1= ± ("W-*)-' 
so another sequence of polynomials may be based upon the following identity 
from (9, eq. 5.1.9) 

(3) 1 = (1 - x ) a + 1 e x p ( ï ^ ) g Lï\t)xv (a > - 1 ) 

in which L(
v
a) denotes the Laguerre polynomial of degree v. We define an 

operator by the equation 

(4) PM, x) = (1 - * r + 1 e x p ^ ) § / ( ^ ) ^ K 

in which / is a parameter assumed < 0. The properties of this operator will 
be studied subsequently. The case t = 0 was the subject of study by Meyer-
Konig and Zeller. We reserve for it a special notation: 
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(5) i,(/,) = (i-rÊ/(^)(t)-
Actually, the operator of Meyer-Konig and Zeller had f(v/(v + n + 1)) in 
place of f(v/(v + n)). Our slight modification enables us to establish in the 
next section the monotonie convergence of Mnf to / whenever / is convex. 

In a similar manner, starting from the identity 
CO Ï 

(6) 1 = e-nx £ - (nx)" 

we are led to the operator introduced and studied by Szâsz, 

£S f\n / V: (7) Sn(f,x) = e-nxi: A-~-)-{nx)\ 

The convergence of 5n(/, x) to / uniformly in any interval [0, a] in which / is 
continuous was established by Szâsz. For the operator Pn the convergence 
theorem is as follows. 

THEOREM. If f is continuous on [0, 1], if a < 1, and if t/n —> 0, then Pn(f, x) 
converges to f{x) uniformly on [0, a]. 

Proof. By a theorem of Korovkin (4, p. 14) it will suffice to prove that Pn 

is a positive linear operator and that the desired convergence occurs whenever 
/ is a quadratic function. The linearity is obvious, and the fact that Pnf > 0 
when / > 0 comes about because L^ (t) > 0 when t < 0. From (3) we see, 
for the function f(s) = 1, that Pn(l, x) = 1. Consider then the function 
f(s) = s. For it we have 

(8) Pn(s,x) = (1 - x ) B + 1 exp ( - t o —) £ -JL-i}?(t)x\ 
\1 — x/ v=i v -f- n 

Using the known recurrence formula (9, eq. 5.1.14), 

(9) tL(?+1\t) = {v + n)L{:\(t) - vL<?\t), 

we get from (8), using then (3), 

(10) Pn{s,x) = (1 - x ) w + 1 e x p ( - ^ - ) É x'\ 
\ i x/ v=i 

= (1 - x ) n + 1 e x p 

L{:\{t) - j ~ L ^ \ t ) 

NW+1 / tX 

1 ~ X 
x £ xvL{:i\t) 

L_ v=Q 

txj: —-*-— L^l\t) 
t o v + n + 1 

tx 
= x — in + 1)(1 - x) ' 

Thus Pn(s, x) -^ x uniformly in any interval [0, a] with a < 1 provided that 
t/n -> 0. 
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We proceed, then, to a consideration of the function f(s) = s2. We have 

(11) Pn{s\ x) = (1 - x)"+1 e x p ( r ^ ) g ( - L _ y i « ( 0 * ' . 

Using the recurrence formula (9) twice, we can prove that 

(12) (-f-Yi^(Z) = - W m - ^ + . ^ l ^ ) 
v + n 

t 

v + n 
L (n+D 

j>—2 (0 
J// 

(* + *)' ££T(0. 

Thus the right member of (11) splits naturally into three parts, which we 
analyse separately below. Since (y + 1)/{? + n + l )2 < 1/n, we have, 
using (3), 

(13) (1 - x) n + i exp 
tx vt 

< 

1 — x 

t\x(l — x)n+ exp 

\t\x 

i (v + n) 

tx 

2 J-^v—1 \t)X 

v+1 
1-x/ f^o (v + n + l ) 2 

(1 — x)n+" exp 

L?+1\t)x" 

( tx \ ^ 
\1 — x) ~o 

\t\x 
n(\ — x) 

Similarly, since l/(v + n) < 1/w, we have, using (3), 

o n(l — x) 

+ n 
L^\t)x 

\t\x 
^ n( l — x) " \ 1 — x/ „=0 

/x x; L^i\t)x = \t\x" 
w(l — x) 

Finally, since 

! _ I < !l±2LzJ: < l f 
w *> + n 

we have, using (3), 

(15) x 2 ( l - - ) < ( ! -x ) M + 1 exp tx tV-~^1L(UtW<x\ 
1 — x/ fri v + n 

Thus if / /# —> 0, Pn(t
2, x) —» x2 uniformly in [0, a]. 

Before leaving the topic of convergence we wish to answer the natural 
question of whether other operators such as Pn can possibly preserve all 
linear functions. The operator Pn is a special case of the general class of 
positive operators Tn defined as follows: 

(16) Tn(f, x) = T-^-r Ë f\-rzh>(.t)*' M*) > 0). 
rln\l, X) v==o \V -f 71/ 
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If we are to have Tn(l,x) = 1, then 

CO 

(17) hn(t,x) = X cnv(t)x\ 

Let us assume that this series (for fixed t) defines an analytic function of x 
so that we may apply the theorem on uniqueness of power series. If Tn{t, x) = x, 
then we must have 

I CO 

V ^ V , s v 
X -, / N / j . Cnv\t)X , 

hn(t, x) S i v + n 
whence 

OO I - | 

(18) K(t,x) = X) " ^ ^ T X ^ C w • , ' + 1 ^ , ' • 

Comparing (17) and (18) we see that 

whence 

r*\ - v + 1 + n (*\ 
Cn,v+l\t) — , -j Cnv\t), 

cUt) = [n + V)cn0(t) 

and 

hn(t,x) = Cno(0(l -Xyn-\ 

Thus, Mn as defined in (5) is essentially the only operator of the form (16) 
which preserves all linear functions. 

By precisely the same reasoning applied to the family of operators 

(19) ^^ X) = Â^lô S /("^)^'(0xFf 

which includes as a special case the Szâsz operator (7), we may conclude 
that only the Szâsz operator preserves linear functions. We remark that 
operators arising from sequences of analytic functions such as (16) and (19) 
have been studied by Baskakov in (2). 

3. Variation-diminishing properties. I. J. Schoenberg has introduced 
in (7, p. 250) the concept of a variation-diminishing operator. Such an operator 
has the property 

V[L„f] < V\Jl 

where V[f] is the variation of / , defined as the number of changes of sign of 
the function as x varies across its domain. The relation between variation-
diminishing and positivity is indicated in the following result. 

THEOREM. A variation-diminishing one-to-one linear operator on C[a, b] is 
positive, or its negative is positive. 
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Proof. If L is not positive, there exist two functions g, h > 0, which are 
not identically zero, such that Lg = gx > 0, Lh = hi < 0. Taking 0 < X < 1, 
we see that / = \g + (1 — X)h > 0 and is not identically zero and that 
Lf = Agi + (1 — X)hi. Each of the functions Lf must be of constant sign. It 
follows that for some À, Lf = 0; hence L is not one-to-one. 

A direct corollary of Korovkin's theorem (4, p. 14) is that no positive 
linear operator on C[a, b] except the identity can preserve quadratic func
tions. Indeed, if such a linear operator L exists, then the sequence Ln = L 
has the property that Lnf—>f for all / in C[a, b], whence Lf = / . Another 
theorem of this type was given by Schoenberg (7, p. 254) and has the following 
generalization. 

THEOREM. Let {fi,f2,fz} be any Tchebycheff system of order 3 on the interval 
[a, b]. Then the identity operator is the only variation-diminishing linear operator 
L such that Lft = ft for i = 1, 2, 3. 

Proof. (According to Schoenberg for fi(x) = xl~l.) Suppose L ?£ I. Then 
for some g, h = Lg ^ g. Thus for some x0, h(xo) ^ g(xo). Suppose for definite-
ness that g(x0) < c < h(x0). If L is variation-diminishing and satisfies 
Lft = fi, then 
(20) V[h + arf! + a2f2 + ajfz] < V[g + a^ + a2f2 + atf*]. 

By (4, p. 44, Lemma 7), there exists a choice of (3's such that 
3 

when while 
3 

E /3i/«(*o) = 0. 
2 = 1 

From the characteristic property of Tchebycheff systems, there exist con
stants ji such that 

3 

Z) 7ifi(xo) = c. 
z = l 

Then for large A, the function 
3 

i = i 

crosses h at least twice and g not at all, contradicting (20). 
Before proving that the operator Pn is variation-diminishing we require 

another general result. 

LEMMA. Let 

f(%) = S a*%V 

be uniformly convergent in [0, A]. Then V[f] < F[{aw}]. 
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Proof. If the sequence {an} presents an infinite number of variations in 
sign, there is nothing to prove. Suppose then that this sequence has m varia
tions in sign, and suppose that V[f] > m. Then there are points 

0 < xi < x2 < . . . < xm+2 < A 

such that f(xv) alternates in sign. Put e = min|/(x„)|. Choose N so that 

< e. 

Then the polynomial 

p(x) = ^2 avx 

has at the points xv the same sign as / (x ) , and must therefore have at least 
m + 1 positive zeros, in contradiction with Descartes' rule of signs. 

THEOREM. The operators Pn and Sn defined in (4) and (7) are variation-
diminishing. 

Proof. Since 

(l-xT+'explj^jL^it) > 0 , 

V[Pnf] < V\ .Vtr^)/. < V[fl 

by the preceding theorem. The proof for Sn is similar. 

Results analogous to one proved by B. Averbach for Bernstein polynomials 
(7, p. 253) are proved next for the operators Mn and Sn defined in (5) and (7). 

THEOREM. If f is convex, then Mnf is decreasing in n, unless f is linear (in 
which case Mnf = Mn+1f for all n). 

Proof. 

Mn(j,x) - Mn+1(j,x) 

= a - *r+1 E v + n 
v + n) \ v 

= ( i - * r + 1 É [ ( ; t w M ' v + n 

<'-^(^iTT)C+:+1): 
v + n + 1 

i n 

V + W + 1 

+(:-">fe)>' 
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This last will surely be non-negative if, for all v, 

(2D /(„ + I + J < «<f(*0 + a2f(x2), 

where 

Oil = 
(v + n+ l\l(v + A = ( * + n + lVY" + n\ 

v - 1 
X\ = —; , x2 n v + n 

But (21) is a direct consequence of convexity of / since ax > 0, a2 > 0, 
OLI + «2 = 1, and 

«i^i + a:2x2 = P/O* + n + 1). 

The equality of Mn(f,x) and Mn+i(f, x) can occur only if 

(22) / \ ^ 4 ^ + l 7 = «1/(̂ 1) + «*f(**) 

for all *>. But if / is convex, (22) implies that its graph is linear in each of 
the intervals 

[xi, x2] : 0, — — , —r— , — — , 
L n + 1J Ln + 2 n + 2J 

Since these intervals overlap, / must be linear. 

THEOREM. If f is convex, then Snf is decreasing in n, unless f is linear {in 
which case Snf = Sn+1f for all n). 

Proof. 

Sn(J,x) - Sn+i(J,x) 

" '--{'' S Kf ) 3("»' - S 4 T Ï ) 5(" + " v ] • 
Inserting the Taylor series for ex and carrying out the multiplication by 
Cauchy's rule, we obtain, for the expression in brackets, 

It is enough then to establish that 

AiT+T/ < in + 1)' S ^WÎ!^^-*)!-
As in the preceding theorem this is a direct consequence of convexity; we 
omit the calculations. Equality can occur only if / is linear in [0, v/n], for 
all v, which implies t h a t / i s linear in [0, oo). 
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LEMMA. If | /" | < k, 0 < a, 0 < /3, and a + /3 = 1, then 

!«/(*) + 0/(y) - / (ax + (5y)\< \k(x - y)\ 

THEOREM. If \f"\ < k, then the following estimates are valid: 

\Mn{f,x) - Mn+1(f,x)\ < ik(l - x)n~\ 

\Mn{f,x) -f(x)\<\k{\ -x)n~\ 

Proof. Referring to the theorem on monotonicity of Mnf when / is convex, 
we have 

Mn(f,x) - Mn+1(f,x) 

= (1 — x)n+l X V U )[«i/(^i) + oc2f(x2) —f(aiXi + a2x2)]x\ 

v=\ \ v / 

Applying the lemma, and inserting the expressions for Xi and x2, we obtain 

\Mn(f, x) - Mn+1(f, x)\< (1 - x)n+1 £ (" + n
y
 + *) \ [xx - * 2 ) V 

< (1 - x)^\ £ }'+ w+2 llX^ (V + n-1) 

< h(1 - *>• 
The second estimate is obtained from the first as follows: 

\f(x) - Mn{f,x)\ < £ |M,+ 1(/ ,x) - Mv{f,x)\ 
v—n 

4. Convergence of the Szâsz operator for complex values. In order 
to analyse the behaviour of Sn(fy z) for complex z we require the following 
result. 

LEMMA. / / / is a polynomial of degree <ra, then so is Sn^fj x) for all n. 

Proof (by induction). Suppose the theorem is true for all polynomials of 
degree <m. To prove it for polynomials of degree m it suffices, because of 
the linearity of Sn, to prove it for xm. We compute 

S YW Hi Sn(t
m,x) = e-nzY, I — - ! ( « * ) ' 

„—wx.„ 1—m - l l = e "~n~ '"x ^ (v + l ) m 1_7 (nx)v 

v=0 V\ 

* s ( V > H > - s (•*•)">>']• 
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Since the term in square brackets is Sn(t
k, x) and k < m, the induction hypo

thesis may be applied to conclude that Sn(t
m, x) is a polynomial of degree m. 

To complete the proof we observe that 5W(1, x) = 1. 
With the aid of the above theorem we can establish exactly as is done for 

Bernstein polynomials (6. p, 90) the analogue of Kantorovitch's theorem. 

THEOREM. Suppose that f is analytic on the interior of an ellipse having foci 0 
and 1. Then Sn(f, z) —>f(z) uniformly on any closed set interior to the ellipse. 

5. An application to differential equations. The following theorem 
is analogous to one given by Arama (1) for Bernstein polynomials. 

THEOREM. The functions yn(x) defined recursively by 

yo(x) = y0, y nix) = 3/0 + Mn{f[t, yn-i(t)], s}ds, 
Jo 

converge uniformly to a solution of the initial value problem 

y' =f(x,y), y(0) = yo, 

for x Ç [0, 1), provided that f and its first two partial derivatives are bounded 
in the strip 0 < # < 1, — °° < ; y < < » and that f satisfies 

|/(*i yi) - f(*> 3 )̂1 < X b i - 3^1, with X < 1. 

Proof. We shall show that the series 
00 

yo + S bvnOO - yn(x)] 
n=0 

is uniformly convergent in [0, 1). The general term of this series in absolute 
value is given by 

kOOl = \yn+i(x) - yn(x)\ 

< (X \Mn+1{f[t, yn(t)l s} - Mn{f[t, yn-i(t)l s} \ds 

I , = f \Mn+l{f[t, yn(t)}, s] - Mn{f[t, yn(t)], s] \ds 
Jo 

I* = f* \M.{f[t, yn(t)l s} - Mn{f[t, y»-i(0L s) \ds. 
Jo 

We may estimate the integral 7i with the aid of a theorem in Section 3 as 
follows : 

(23) 

where 

and 
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where 

k = sup 
0<x<l 

J^f(X,yn(x)) 

We must verify next that our hypotheses are sufficient to guarantee that 
k < oo. Let K denote a common bound for the absolute value of / and its 
first two partial derivatives in the infinite strip 0 < x < 1. From the definition 
of Mn it is clear that for any g 

(24) \Mn(g, x) | < sup \g(s) | (0 < x < 1). 
0<s<l 

Thus from the definition of yn(x), we have 

\yn'(x)\ = \Mn{f[t, y„-i(t)], x}\<K (0 < * < 1) 

as well as 

d df. yn"(x) = £ Mn[f[t, yn-i(t)l x\ = ± < (1 - x)n+l £ F 
dx dx { — r 

,=o \v + n/\ v 

x t 

= ( ! - * ) " £ (v + n+l) 
\ v / L \v + n/ \v + n x , 

where we have written F(x) = f(x, yn-i(x)). Thus, using the mean-value 
theorem, 

F 
v + 

+ 1/ V + »/ = TOI (*> + w)(i> + w + 1) \v + n + 

Since ^'(x) = /i[x, yn-i(x)] + f2[x, yn-i(x)]y'n-i(x), we have 

|/?'(f)| <K + K*. 

Consequently 

\yn"(x)\ < (K+K2)(l -xTJt (" + n + l)(V + n) 
y=0 \ V / (n + v) {v + n + 1 ; 

<K+K\ 

Since 

A 
dx 2fix, yn(x)} = /„ + (2/12 + / « y . ' ) y . ' + / * " , 

k<K+ (2K + K')K + K(K + K'). 

We have, therefore, established that I\ = 0(n~2), uniformly for 0 < x < 1. 
Turning to Li, we have 

h < f |M,{/[/, yn{t)} - f[t, yn-i(t)], s\ \ds. 

Jo 

Now |/[J, ?»(*)] - / P , y n - i ( 0 ] | < X |y„(0 - y»-i(0l = X k , - ^ ) ! -Thus , by (24), 
12 < X sup |en_i(0|. 

0<*<1 
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It is easy to see that 

Indeed, 

sup \en(x)\ <2 ( |y 0 | + K). 
0<z<l 

\yn(x)\ < bo| + f \Mn{f[t,yn-i(t)],s}\ds < \yo\+K 
Jo 

by (24), and then the inequality for en follows from (23). 
Returning to (23) we have 

\en(x)\ < X sup |€w_i(/)| + 0(n~2), 
0 < K 1 

which is enough to show that yn(x) converges uniformly in [0, 1) to a function 
y(x), which is of course continuous on [0, 1). 

To show that y{x) is a solution of the initial value problem, we first observe 
that the series yo(x) + J^[yn+i(x) — yn(x)] may be differentiated term by 
term because the derived series converges uniformly. Indeed, 

\y'n+i(x) - yn'(x)\ < \Mn+1{f[t, yn(t)], x} - Mn{f[t,yH(t)],x}\ 

+ \Mn{f[t, yn(t)]f x} - Mn{f[t, yn-i(t)], x} \ 

and this is not greater than 

k(l — x) , . . . 
T"2 + X SUp €»_!(*) 
4w O < K I 

as we have already seen. Hence from 

y(x) = \imyn(x) 
n 

we may conclude that 

y'(x) = limyn'(x) = lim Mn{f[t, yn-i(t)], x}. 
n n 

Finally, we have 

\Mn{f[t, yn(t)), x] -f[x,y(x)]\ < \Mn{f[t, yn(f)], x] - Mn{f[t,y(t)],x}\ 

+ \Mn{f[t,y(t)],x] -f[x,y(x)]\. 

The second term clearly converges to zero, and the first, by (24), does not 
exceed 

sup \f[t,yn(t)] -f[tfy(t)]\ < X sup \yn(t) - y(t)\. 
0 < K 1 0 < K 1 
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