A CHARACTERIZATION OF THE DEFINITENESS OF A HERMITIAN MATRIX

by YIK-HOI AU-YEUNG and TAI-KWOK YUEN

(Received 11 January, 1972; revised 11 June, 1973)

1. Introduction. We denote by F the field R of real numbers, the field C of complex numbers or the skew-field H of real quaternions, and by F^n an n-dimensional left vector space over F. If A is a matrix with elements in F, we denote by A^* its conjugate transpose. In all three cases of F, an $n \times n$ matrix A is said to be hermitian (unitary resp.) if $A = A^*$ ($AA^* =$ identity matrix resp.). An $n \times n$ hermitian matrix A is said to be definite (semidefinite resp.) if $uAu^*vAv^* > 0$ ($uAu^*vAv^* \ge 0$ resp.) for all nonzero u and v in F^n . If A and B are $n \times n$ hermitian matrices, then we say that A and B can be diagonalized simultaneously into blocks of size less than or equal to m (abbreviated to d.s. $\le m$) if there exists a nonsingular matrix U with elements in F such that $UAU^* = \text{diag}\{A_1, \ldots, A_k\}$ and $UBU^* = \text{diag}\{B_1, \ldots, B_k\}$, where, for each $i = 1, \ldots, k, A_i$ and B_i are of the same size and the size is $\le m$. In particular, if m = 1, then we say A and B can be diagonalized simultaneously (abbreviated to d.s.).

The purpose of this note is to give a characterization of the definiteness of a hermitian matrix in terms of simultaneous diagonalization. (For other characterizations see, for example, [3].)

2. Characterization of the definiteness of a hermitian matrix. In the following we shall use A, B and X to denote $n \times n$ hermitian matrices. We now give a characterization of the definiteness of a hermitian matrix.

THEOREM 1. Let $A \neq O$. Then A is definite if and only if A and X can be diagonalized simultaneously for all X.

Proof. Since any hermitian matrix can be diagonalized by a unitary matrix (for F = R or C, this is well known, for F = H, see [4] or [6]), if A is definite, then A and X can be d.s. Conversely, if A is not definite, then we may assume that

$$A = \text{diag} \{A_1, A_2\}, \text{ where } A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Now take

$$X = \text{diag} \{X_1, 0\}, \text{ where } X_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then A_1 and X_1 cannot be d.s. and hence (see [1] or [2]) A and X cannot be d.s.

In order to give a characterization of the semidefiniteness of a hermitian matrix, we need the following lemmas.

LEMMA 1. Let

$$A_{1} = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix}, \qquad X_{1} = \begin{pmatrix} 2 & -2 & 1 \\ -2 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

and

٨

$$A_2 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}, \qquad X_2 = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

Then A_i and X_i cannot be d.s. ≤ 2 for i = 1, 2.

Proof. Suppose that A_i and X_i can be d.s. ≤ 2 by a nonsingular matrix $U_i = \begin{pmatrix} u_i \\ v_i \\ w_i \end{pmatrix}$, where

i = 1 or 2, and u_i , v_i , w_i form a basis of F^3 . Then at least one of them, say u_i , possesses the property that

$$u_i A_i v_i^* = u_i A_i w_i^* = u_i X_i v_i^* = u_i X_i w_i^* = 0.$$

Hence the subspace $L\{u_i A_i, u_i X_i\}$ spanned by $u_i A_i$ and $u_i X_i$ is of dimension less than or equal to 1 and v_i and w_i are in the orthogonal complement of this subspace. But, by direct calculation, it can be easily seen that such a basis cannot exist. This completes the proof.

The following lemma is obvious.

LEMMA 2. Let $A = \text{diag} \{A_1, O\}$ and $B = \text{diag} \{B_1, O\}$, where A_1 and B_1 are of the same size. If A and B can be d.s. ≤ 2 , then so can A_1 and B_1 .

LEMMA 3. Let $A = \text{diag} \{A_1, A_2\}$ and $B = \text{diag} \{B_1, O\}$, where A_1 and B_1 are of size k, and let B_1 be nonsingular. If A and B can be d.s. ≤ 2 , then so can A_1 and B_1 .

Proof. By Lemma 2, without loss of generality, we may assume that A_2 is nonsingular. Suppose that A and B can be d.s. ≤ 2 by the matrix U. Let u_i (i = 1, ..., n) be the *i*th row of U. Then $\{u_1, ..., u_n\}$ is a basis of F^n . Now put $u_i = (x_i, y_i)$, where $x_i \in F^k$ and $y_i \in F^{n-k}$. Let $\{x_{i_1}, ..., x_{i_k}\}$ be a basis of F^k and let M be the $k \times k$ matrix with rows $x_{i_1}, ..., x_{i_k}$; then M is nonsingular. We shall show that A_1 and B_1 are d.s. ≤ 2 by M.

Let $\{j_1, \ldots, j_{n-k}\} = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$. We first show that U can be chosen so that it shall have $x_{j_t} = O$ for $t = 1, \ldots, n-k$. To prove this we consider the matrix UBU^* , noting that its (j, h)th entry is $x_j B_1 x_h^*$. From the "diagonalized ≤ 2 " form of UBU^* we see that, for any particular j_t , either (i) $x_{j_t} B_1 x_h^* = 0$ for all $h \in \{1, \ldots, n\} \setminus \{j_t\}$ or (ii) there is an l, with $l = j_t - 1$ or $l = j_t + 1$, such that $x_{j_t} B_1 x_h^* = 0$ for all $h \in \{1, \ldots, n\} \setminus \{j_t, l\}$.

If (i) holds or if (ii) holds with $l \in \{j_1, \ldots, j_{n-k}\}$, then $x_{j_k} B_1 x_h^* = 0$ for all $h \in \{i_1, \ldots, i_k\}$ and hence, since B_1 is nonsingular and the k columns $x_{i_1}^*, \ldots, x_{i_k}^*$ are linearly independent, we have $x_{i_k} = O$.

If (ii) holds with $l \in \{i_1, \ldots, i_k\}$, then $x_{j_t} B_1 x_h^* = 0$ and $x_l B_1 x_h^* = 0$ for all $h \in \{i_1, \ldots, i_k\} \setminus \{l\}$ and hence, since B_1 is nonsingular and the k-1 columns x_h^* with $h \in \{i_1, \ldots, i_k\} \setminus \{l\}$ are linearly independent, x_{j_t} and x_l are linearly dependent, so that there is a $\lambda \in F$ such that $x_{j_t} = \lambda x_l$. Let $\tilde{u}_{j_t} = u_{j_t} - \lambda u_l = (O, \tilde{y}_{j_t})$. Then A and B are d.s. ≤ 2 by the matrix with rows $u_1, \ldots, u_{j_t-1},$ $\tilde{u}_{j_t}, u_{j_t+1}, \ldots, u_n$. This result, applied in turn to each of the rows u_{j_t} of U for which $x_{j_t} \neq O$, establishes the existence of a matrix, which we shall again call U, in which the rows u_{j_t} $(t = 1, \ldots, n-k)$ all have $x_{j_t} = O$ and the rows u_{i_1}, \ldots, u_{i_k} are as in the original matrix U, and which is such that A and B are d.s. ≤ 2 by U. We assume, then, that U has each u_{j_i} of the form (O, y_{j_i}) and note that, since $u_{j_1}, \ldots, u_{j_{n-k}}$ are linearly independent, $\{y_{j_1}, \ldots, y_{j_{n-k}}\}$ is a basis of F^{n-k} .

We prove that A_1 and B_1 are d.s. ≤ 2 by M, by showing that, if $r \neq s$ and

$$u_{i_r}Au_{i_s}^*=u_{i_r}Bu_{i_s}^*=0,$$

then

$$x_{i_r} A_1 x_{i_s}^* = x_{i_r} B_1 x_{i_s}^* = 0.$$

For each i_r , we have two cases:

Case 1. $u_{i_r}Au_{j_t}^* = 0$ for all t = 1, ..., n-k. In this case, we have

$$y_{i_r} A_2 y_{j_t}^* = 0$$
 for all $t = 1, ..., n-k$,

and evidently $y_{i_r} = O$ as A_2 is nonsingular. Therefore

$$x_{i_r}A_1x_{i_s}^* = x_{i_r}B_1x_{i_s}^* = 0$$
 if $u_{i_r}Au_{i_s}^* = u_{i_r}Bu_{i_s}^* = 0$.

Case 2. There is some j_t such that $u_{i_t} A u_{i_t}^* \neq 0$.

In this case j_t is either $i_r - 1$ or $i_r + 1$, and the subspace spanned by $u_{i_r}A$, $u_{i_r}B$, $u_{j_t}A$, $u_{j_t}B$ is of dimension 2 with a basis $\{u_{i_r}B, u_{j_t}A\}$. Hence there exist a and b in F such that

$$u_{i_r}A = au_{i_r}B + bu_{j_t}A$$

and, by using the fact that A_2 is nonsingular, we have $y_{i_r} = by_{j_i}$. If $u_{i_r}Au_{i_s}^* = u_{i_r}Bu_{i_s}^* = 0$, then

$$u_{i_t}Au_{i_s}^* = u_{i_t}Bu_{i_s}^* = 0$$
 as $r \neq s$,

and hence

$$(u_{i_r} - bu_{j_t})Au_{i_s}^* = (u_{i_r} - bu_{j_t})Bu_{i_s}^* = 0.$$

Consequently, we have

$$x_{i_r} A_1 x_{i_s}^* = x_{i_r} B_1 x_{i_s}^* = 0.$$

THEOREM 2. (a) If A is semidefinite, then A and X can be diagonalized simultaneously into blocks of size ≤ 2 for all X. (b) If $n \geq 3$ and A and X can be diagonalized simultaneously into blocks of size ≤ 2 for all X, then A is semidefinite.

Proof. (a) If $n \leq 2$, then the first statement is obviously true. We now suppose it holds for all k < n with n > 2. Let A be semidefinite and of size n. Then, without loss of generality, we may assume that

$$A = \text{diag} \{I_m, O\}$$
 and $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{12}^* & X_{22} \end{pmatrix}$,

where I_m is the $m \times m$ identity matrix (0 < m < n) and X_{11} is of size m. If $X_{22} \neq 0$, then obviously we can reduce the problem to the case for n-1, and hence, by our assumption, statement (a) is true. We now assume that

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{12}^* & O \end{pmatrix}$$

with $X_{12} \neq O$. Let v be a nonzero vector in F^{n-m} such that $vX_{12}^* \neq O$, and let $u_1 = (O, v)$ and $u_2 = (vX_{12}^*, O)$ be vectors in F^n . Then

$$u_1 A = O, u_1 X = u_2 A = (v X_{12}^*, O) \text{ and } u_2 X = (v X_{12}^* X_{11}, v X_{12}^* X_{12}).$$

Since $vX_{12}^* \neq 0$, we have $vX_{12}^*X_{12}v^* = vX_{12}^*(vX_{12}^*)^* \neq 0$. Hence $vX_{12}^*X_{12} \neq 0$ and the vectors $(vX_{12}^*, 0)$ and $(vX_{12}^*X_{11}, vX_{12}^*X_{12})$ are linearly independent. Therefore the subspace L spanned by $u_1 A$, $u_1 X$, $u_2 A$ and $u_2 X$ is of dimension 2. If we denote by L^{\perp} the orthogonal complement of L and take a basis $\{u_3, \ldots, u_n\}$ in L^{\perp} , then it can easily be seen that $\{u_1, \ldots, u_n\}$ is a basis in F^n . Let U be the matrix whose *i*th row is u_i ($i = 1, \ldots, n$). Then U is nonsingular with elements in F, and $UAU^* = \text{diag} \{M_1, M_2\}$, $UXU^* = \text{diag} \{N_1, N_2\}$, where M_1 and N_1 are 2×2 matrices and M_2 is semidefinite. By the induction assumption M_2 and N_2 can be d.s. ≤ 2 , and therefore so can A and X.

(b) If $n \ge 3$ and A is not semidefinite, then we may assume that

$$A = \operatorname{diag} \{A_1, A_2\},\$$

where

$$A_1 = A_1^{(1)} = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix}$$
 or $A_1^{(2)} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$.

Take

$$X = \operatorname{diag} \{X_1, O\},\$$

$$X_{1} = X_{1}^{(1)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ or } X_{1}^{(2)} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

By Lemma 1, $A_1^{(k)}$ and $X_1^{(k)}$ cannot be d.s. ≤ 2 for k = 1, 2. Hence by Lemma 3, A and X cannot be d.s. ≤ 2 . Thus the theorem is proved.

Since it is obvious that, if A and B are semidefinite and of size 2, then A and B are d.s., the following theorem, which is already known (see [2] or [5]), follows immediately from Theorem 2, Part (a).

THEOREM 3. If A and B are semidefinite, then A and B can be diagonalized simultaneously.

REFERENCES

1. Y. H. Au-Yeung, A necessary and sufficient condition for simultaneous diagonalization of two hermitian matrices and its application, *Glasgow Math. J.* 11 (1970), 81–83.

2. Y. H. Au-Yeung, A note on some theorems on simultaneous diagonalization of two hermitian matrices, *Proc. Cambridge Philos. Soc.* 70 (1971), 383–386.

3. C. R. Johnson, Positive definite matrices, Amer. Math. Monthly 77 (1970), 259-264.

4. H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253-260.

5. R. W. Newcomb, On the simultaneous diagonalization of two semi-definite matrices, *Quart.* Appl. Math. 19 (1961), 144–146.

6. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.

UNIVERSITY OF HONG KONG