A CHARACTERIZATION OF THE DEFINITENESS OF A HERMITIAN MATRIX

by YIK-HOI AU-YEUNG and TAI-KWOK YUEN

(Received 11 January, 1972; revised 11 June, 1973)

1. Introduction. We denote by F the field R of real numbers, the field C of complex numbers or the skew-field H of real quaternions, and by F^{n} an n-dimensional left vector space over F. If A is a matrix with elements in F, we denote by A^{*} its conjugate transpose. In all three cases of F, an $n \times n$ matrix A is said to be hermitian (unitary resp.) if $A=A^{*}\left(A A^{*}=\right.$ identity matrix resp.). An $n \times n$ hermitian matrix A is said to be definite (semidefinite resp.) if $u A u^{*} v A v^{*}>0\left(u A u^{*} v A v^{*} \geqq 0\right.$ resp.) for all nonzero u and v in F^{n}. If A and B are $n \times n$ hermitian matrices, then we say that A and B can be diagonalized simultaneously into blocks of size less than or equal to m (abbreviated to d.s. $\leqq m$) if there exists a nonsingular matrix U with elements in F such that $U A U^{*}=\operatorname{diag}\left\{A_{1}, \ldots, A_{k}\right\}$ and $U B U^{*}=\operatorname{diag}\left\{B_{1}, \ldots, B_{k}\right\}$, where, for each $i=1, \ldots, k, A_{i}$ and B_{i} are of the same size and the size is $\leqq m$. In particular, if $m=1$, then we say A and B can be diagonalized simultaneously (abbreviated to d.s.).

The purpose of this note is to give a characterization of the definiteness of a hermitian matrix in terms of simultaneous diagonalization. (For other characterizations see, for example, [3].)
2. Characterization of the definiteness of a hermitian matrix. In the following we shall use A, B and X to denote $n \times n$ hermitian matrices. We now give a characterization of the definiteness of a hermitian matrix.

Theorem 1. Let $A \neq O$. Then A is definite if and only if A and X can be diagonalized simultaneously for all X.

Proof. Since any hermitian matrix can be diagonalized by a unitary matrix (for $F=R$ or C, this is well known, for $F=H$, see [4] or [6]), if A is definite, then A and X can be d.s. Conversely, if A is not definite, then we may assume that

$$
A=\operatorname{diag}\left\{A_{1}, A_{2}\right\}, \quad \text { where } \quad A_{1}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Now take

$$
X=\operatorname{diag}\left\{X_{1}, O\right\}, \quad \text { where } \quad X_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then A_{1} and X_{1} cannot be d.s. and hence (see [1] or [2]) A and X cannot be d.s.
In order to give a characterization of the semidefiniteness of a hermitian matrix, we need the following lemmas.

Lemma 1. Let

$$
A_{1}=\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& & 0
\end{array}\right), \quad X_{1}=\left(\begin{array}{rrr}
2 & -2 & 1 \\
-2 & 2 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

and

$$
A_{2}=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & -1
\end{array}\right), \quad X_{2}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 3 & -2 \\
1 & -2 & 1
\end{array}\right)
$$

Then A_{i} and X_{i} cannot be d.s. $\leqq 2$ for $i=1,2$.
Proof. Suppose that A_{i} and X_{i} can be d.s. $\leqq 2$ by a nonsingular matrix $U_{i}=\left(\begin{array}{l}u_{i} \\ v_{i} \\ w_{i}\end{array}\right)$, where $i=1$ or 2 , and u_{i}, v_{i}, w_{i} form a basis of F^{3}. Then at least one of them, say u_{i}, possesses the property that

$$
u_{i} A_{i} v_{i}^{*}=u_{i} A_{i} w_{i}^{*}=u_{i} X_{i} v_{i}^{*}=u_{i} X_{i} w_{i}^{*}=0
$$

Hence the subspace $L\left\{u_{i} A_{i}, u_{i} X_{i}\right\}$ spanned by $u_{i} A_{i}$ and $u_{i} X_{i}$ is of dimension less than or equal to 1 and v_{i} and w_{i} are in the orthogonal complement of this subspace. But, by direct calculation, it can be easily seen that such a basis cannot exist. This completes the proof.

The following lemma is obvious.
Lemma 2. Let $A=\operatorname{diag}\left\{A_{1}, O\right\}$ and $B=\operatorname{diag}\left\{B_{1}, O\right\}$, where A_{1} and B_{1} are of the same size. If A and B can be d.s. $\leqq 2$, then so can A_{1} and B_{1}.

Lemma 3. Let $A=\operatorname{diag}\left\{A_{1}, A_{2}\right\}$ and $B=\operatorname{diag}\left\{B_{1}, O\right\}$, where A_{1} and B_{1} are of size k, and let B_{1} be nonsingular. If A and B can be d.s. $\leqq 2$, then so can A_{1} and B_{1}.

Proof. By Lemma 2, without loss of generality, we may assume that A_{2} is nonsingular. Suppose that A and B can be d.s. $\leqq 2$ by the matrix U. Let $u_{i}(i=1, \ldots, n)$ be the i th row of U. Then $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of F^{n}. Now put $u_{i}=\left(x_{i}, y_{i}\right)$, where $x_{i} \in F^{k}$ and $y_{i} \in F^{n-k}$. Let $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ be a basis of F^{k} and let M be the $k \times k$ matrix with rows $x_{i_{1}}, \ldots, x_{i_{k}}$; then M is nonsingular. We shall show that A_{1} and B_{1} are d.s. $\leqq 2$ by M.

Let $\left\{j_{1}, \ldots, j_{n-k}\right\}=\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$. We first show that U can be chosen so that it shall have $x_{j_{t}}=O$ for $t=1, \ldots, n-k$. To prove this we consider the matrix $U B U^{*}$, noting that its (j, h) th entry is $x_{j} B_{1} x_{h}^{*}$. From the "diagonalized $\leqq 2$ " form of $U B U^{*}$ we see that, for any particular j_{t}, either (i) $x_{j_{t}} B_{1} x_{h}^{*}=0$ for all $h \in\{1, \ldots, n\} \backslash\left\{j_{t}\right\}$ or (ii) there is an l, with $l=j_{t}-1$ or $l=j_{t}+1$, such that $x_{j_{t}} B_{1} x_{h}^{*}=0$ for all $h \in\{1, \ldots, n\} \backslash\left\{j_{v}, l\right\}$.

If (i) holds or if (ii) holds with $l \in\left\{j_{1}, \ldots, j_{n-k}\right\}$, then $x_{j_{t}} B_{1} x_{h}^{*}=0$ for all $h \in\left\{i_{1}, \ldots, i_{k}\right\}$ and hence, since B_{1} is nonsingular and the k columns $x_{i_{1}}^{*}, \ldots, x_{i_{k}}^{*}$ are linearly independent, we have $x_{j_{t}}=0$.

If (ii) holds with $l \in\left\{i_{1}, \ldots, i_{k}\right\}$, then $x_{j_{t}} B_{1} x_{h}^{*}=0$ and $x_{l} B_{1} x_{h}^{*}=0$ for all $h \in\left\{i_{1}, \ldots, i_{k}\right\} \backslash\{l\}$ and hence, since B_{1} is nonsingular and the $k-1$ columns x_{h}^{*} with $h \in\left\{i_{1}, \ldots, i_{k}\right\} \backslash\{l\}$ are linearly independent, $x_{j_{t}}$ and x_{i} are linearly dependent, so that there is a $\lambda \in F$ such that $x_{j_{t}}=\lambda x_{i}$. Let $\tilde{u}_{j_{t}}=u_{j_{t}}-\lambda u_{i}=\left(O, \tilde{y}_{j_{t}}\right)$. Then A and B are d.s. $\leqq 2$ by the matrix with rows $u_{1}, \ldots, u_{f_{t}-1}$, $\tilde{u}_{j_{t}}, u_{j_{t}+1}, \ldots, u_{n}$. This result, applied in turn to each of the rows $u_{j_{t}}$ of U for which $x_{j_{t}} \neq O$, establishes the existence of a matrix, which we shall again call U, in which the rows $u_{j_{c}}$ $(t=1, \ldots, n-k)$ all have $x_{j_{t}}=O$ and the rows $u_{i_{1}}, \ldots, u_{i_{k}}$ are as in the original matrix U, and which is such that A and B are d.s. $\leqq 2$ by U.

We assume, then, that U has each $u_{j_{t}}$ of the form ($O, y_{j_{t}}$) and note that, since $u_{j_{1}}, \ldots, u_{j_{n-k}}$ are linearly independent, $\left\{y_{j_{1}}, \ldots, y_{j_{n-k}}\right\}$ is a basis of F^{n-k}.

We prove that A_{1} and B_{1} are d.s. $\leqq 2$ by M, by showing that, if $r \neq s$ and

$$
u_{i_{r}} A u_{i_{s}}^{*}=u_{i_{r}} B u_{i_{s}}^{*}=0
$$

then

$$
x_{i r} A_{1} x_{i_{s}}^{*}=x_{i_{r}} B_{1} x_{i_{s}}^{*}=0 .
$$

For each i_{r}, we have two cases:
Case 1. $u_{i_{r}} A u_{j_{t}}^{*}=0$ for all $t=1, \ldots, n-k$.
In this case, we have

$$
y_{i_{r}} A_{2} y_{j_{t}}^{*}=0 \text { for all } t=1, \ldots, n-k,
$$

and evidently $y_{i_{r}}=O$ as A_{2} is nonsingular. Therefore

$$
x_{i_{r}} A_{1} x_{i_{s}^{*}}^{*}=x_{i_{r}} B_{1} x_{i_{s}}^{*}=0 \quad \text { if } \quad u_{i_{r}} A u_{i_{s}}^{*}=u_{i_{r}} B u_{i_{s}}^{*}=0 .
$$

Case 2. There is some j_{t}, such that $u_{i_{r}} A u_{j_{t}}^{*} \neq 0$.
In this case j_{t} is either $i_{r}-1$ or $i_{r}+1$, and the subspace spanned by $u_{i_{r}} A, u_{i_{r}} B, u_{j_{t}} A, u_{j_{t}} B$ is of dimension 2 with a basis $\left\{u_{i_{r}} B, u_{j_{t}} A\right\}$. Hence there exist a and b in F such that

$$
u_{i_{r}} A=a u_{i_{r}} B+b u_{j_{t}} A
$$

and, by using the fact that A_{2} is nonsingular, we have $y_{i_{r}}=b y_{j_{t}}$. If $u_{i_{r}} A u_{i_{s}}^{*}=u_{i_{r}} B u_{i_{s}}^{*}=0$, then

$$
u_{j_{t}} A u_{i_{s}}^{*}=u_{j_{t}} B u_{i_{s}}^{*}=0 \text { as } r \neq s,
$$

and hence

$$
\left(u_{i_{r}}-b u_{j_{s}}\right) A u_{i_{s}}^{*}=\left(u_{i_{r}}-b u_{j_{r}}\right) B u_{i_{s}}^{*}=0 .
$$

Consequently, we have

$$
x_{i_{r}} A_{1} x_{i_{s}}^{*}=x_{i_{r}} B_{1} x_{i_{s}}^{*}=0
$$

Theorem 2. (a) If A is semidefinite, then A and X can be diagonalized simultaneously into blocks of size $\leqq 2$ for all X. (b) If $n \geqq 3$ and A and X can be diagonalized simultaneously into blocks of size $\leqq 2$ for all X, then A is semidefinite.

Proof. (a) If $n \leqq 2$, then the first statement is obviously true. We now suppose it holds for all $k<n$ with $n>2$. Let A be semidefinite and of size n. Then, without loss of generality, we may assume that

$$
A=\operatorname{diag}\left\{I_{m}, O\right\} \quad \text { and } \quad X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12}^{*} & X_{22}
\end{array}\right),
$$

where I_{m} is the $m \times m$ identity matrix $(0<m<n)$ and X_{11} is of size m. If $X_{22} \neq O$, then obviously we can reduce the problem to the case for $n-1$, and hence, by our assumption, statement (a) is true. We now assume that

$$
X=\left(\begin{array}{cc}
X_{11} & X_{12} \\
X_{12}^{*} & O
\end{array}\right)
$$

with $X_{12} \neq O$. Let v be a nonzero vector in F^{n-m} such that $v X_{12}^{*} \neq O$, and let $u_{1}=(O, v)$ and $u_{2}=\left(v X_{12}^{*}, O\right)$ be vectors in F^{n}. Then

$$
u_{1} A=O, u_{1} X=u_{2} A=\left(v X_{12}^{*}, O\right) \text { and } u_{2} X=\left(v X_{12}^{*} X_{11}, v X_{12}^{*} X_{12}\right)
$$

Since $v X_{12}^{*} \neq O$, we have $v X_{12}^{*} X_{12} v^{*}=v X_{12}^{*}\left(v X_{12}^{*}\right)^{*} \neq 0$. Hence $v X_{12}^{*} X_{12} \neq O$ and the vectors ($v X_{12}^{*}, O$) and ($v X_{12}^{*} X_{11}, v X_{12}^{*} X_{12}$) are linearly independent. Therefore the subspace L spanned by $u_{1} A, u_{1} X, u_{2} A$ and $u_{2} X$ is of dimension 2 . If we denote by L^{1} the orthogonal complement of L and take a basis $\left\{u_{3}, \ldots, u_{n}\right\}$ in L^{\perp}, then it can easily be seen that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis in F^{n}. Let U be the matrix whose i th row is $u_{i}(i=1, \ldots, n)$. Then U is nonsingular with elements in F, and $U A U^{*}=\operatorname{diag}\left\{M_{1}, M_{2}\right\}, U X U^{*}=\operatorname{diag}\left\{N_{1}, N_{2}\right\}$, where M_{1} and N_{1} are 2×2 matrices and M_{2} is semidefinite. By the induction assumption M_{2} and N_{2} can be d.s. $\leqq 2$, and therefore so can A and X.
(b) If $n \geqq 3$ and A is not semidefinite, then we may assume that

$$
A=\operatorname{diag}\left\{A_{1}, A_{2}\right\}
$$

where

$$
A_{1}=A_{1}^{(1)}=\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& & 0
\end{array}\right) \text { or } A_{1}^{(2)}=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & -1
\end{array}\right)
$$

Take

$$
X=\operatorname{diag}\left\{X_{1}, O\right\}
$$

where

$$
X_{1}=X_{1}^{(1)}=\left(\begin{array}{rrr}
2 & -2 & 1 \\
-2 & 2 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \text { or } \quad X_{1}^{(2)}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 3 & -2 \\
1 & -2 & 1
\end{array}\right)
$$

By Lemma 1, $A_{1}^{(k)}$ and $X_{1}^{(k)}$ cannot be d.s. $\leqq 2$ for $k=1,2$. Hence by Lemma 3, A and X cannot be d.s. $\leqq 2$. Thus the theorem is proved.

Since it is obvious that, if A and B are semidefinite and of size 2 , then A and B are d.s., the following theorem, which is already known (see [2] or [5]), follows immediately from Theorem 2, Part (a).

Theorem 3. If A and B are semidefinite, then A and B can be diagonalized simultaneously.

REFERENCES

1. Y. H. Au-Yeung, A necessary and sufficient condition for simultaneous diagonalization of two hermitian matrices and its application, Glasgow Math. J. 11 (1970), 81-83.
2. Y. H. Au-Yeung, A note on some theorems on simultaneous diagonalization of two hermitian matrices, Proc. Cambridge Philos. Soc. 70 (1971), 383-386.
3. C. R. Johnson, Positive definite matrices, Amer. Math. Monthly 77 (1970), 259-264.
4. H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253-260.
5. R. W. Newcomb, On the simultaneous diagonalization of two semi-definite matrices, Quart. Appl. Math. 19 (1961), 144-146.
6. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.

University of Hong Kong

