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Abstract

This paper contributes to the regular covers of a complete bipartite graph minus a matching, denoted
Kn,n − nK2, whose fiber-preserving automorphism group acts 2-arc-transitively. All such covers, when
the covering transformation group K is either cyclic or Z2

p with p a prime, have been determined in
Xu and Du [‘2-arc-transitive cyclic covers of Kn,n − nK2’, J. Algebraic Combin. 39 (2014), 883–902] and
Xu et al. [‘2-arc-transitive regular covers of Kn,n − nK2 with the covering transformation group Z2

p’, Ars.
Math. Contemp. 10 (2016), 269–280]. Finally, this paper gives a classification of all such covers for
K � Z3

p with p a prime.
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1. Introduction

Throughout this paper graphs are finite, simple and undirected. For the group- and
graph-theoretic terminology we refer the reader to [18, 20]. For a graph X, let V(X),
E(X), A(X) and Aut X denote the vertex set, edge set, arc set and the full automorphism
group of X, respectively. An edge and an arc of X are denoted by {u, v} and (u, v),
respectively. An s-arc of X is a sequence (v0, v1, . . . , vs) of s + 1 vertices such
that (vi, vi+1) ∈ A(Y) and vi , vi+2, and X is said to be 2-arc-transitive if Aut X acts
transitively on the set of 2-arcs of X.

Let X be a graph and let P be a partition of V(X) into disjoint sets of equal
cardinality m. The quotient graph Y := X/P is the graph with vertex set P and two
vertices P1 and P2 of Y are adjacent if there is at least one edge between a vertex of
P1 and a vertex of P2 in X. We say that X is an m-fold cover of Y if the edge set
between P1 and P2 in X is a matching whenever P1P2 ∈ E(Y). In this case Y is called
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the base graph of X and the sets Pi are called the fibers of X. An automorphism of
X which maps a fiber to a fiber is said to be fiber-preserving. The subgroup K of all
those automorphisms of X which fix each of the fibers setwise is called the covering
transformation group. It is easy to see that if X is connected, then the action of K
on the fibers of X is necessarily semiregular, that is, Kv = 1 for each v ∈ V(X). In
particular, if this action is regular, we say that X is a regular cover of Y .

By [28, Theorem 4.1], the class of finite 2-arc-transitive graphs X can be divided
into the following three subclasses:

(1) quasiprimitive type: every nontrivial normal subgroup of Aut X acts transitively
on vertices;

(2) bipartite type: every nontrivial normal subgroup of Aut X has at most two orbits
on vertices and at least one of them has two orbits on vertices;

(3) covering type: there exists a normal subgroup of Aut X having at least three
orbits on vertices and thus X is a regular cover of some graph in cases (1) or (2).

During the past twenty years, a lot of results regarding the primitive, quasiprimitive
and bipartite 2-arc-transitive graphs have appeared; see [12, 13, 21–23, 28, 29].
However, very few results concerning the 2-arc-transitive covers are known, except
for some covers of graphs with small valency and small order. The first worthy class
of graphs to be studied might be complete graphs. In [10], a classification of covers
of complete graphs is given, whose fiber-preserving automorphism group acts 2-arc-
transitively and whose covering transformation group is either cyclic or Z2

p with p a
prime, and it is generalized in [8] to the covering transformation group Z3

p with p a
prime. In [32], the same problem as in [10] and [8] is considered, where the covering
transformation group is a metacyclic group, which is by definition an extension of one
cyclic group by another.

As for covers of bipartite type, in [31] and [33], all regular covers of a
complete bipartite graph minus a matching Kn,n − nK2 were classified, whose covering
transformation group is cyclic or Z2

p with p a prime, and whose fiber-preserving
automorphism group acts 2-arc-transitively. In this paper, we shall extend the covering
transformation group to Z3

p with p a prime. Interestingly, we find several new covers
of Kn,n − nK2. For further reading on the topic of covers, see [5, 6, 9, 14–16, 26].

A combinatorial description of a covering is introduced through a voltage graph, in
the next section. Before stating the main theorem, we first introduce several families
of covers Y × f K of Y := Kn,n − nK2 with the covering transformation group K � Z3

p
for a prime p and a voltage assignment f , where

V(Y) = {i, i′ | 1 ≤ i ≤ n}, E(Y) = {{i, j′} | i , j, i, j′ ∈ V(Y)}

and K is identified with the additive group of the three-dimensional vector space
V(3, p) over Fp.
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(1) n = 4 and X1(4, p) = Y × f K, where

f12′ = f13′ = f14′ = f24′ = f21′ = f31′ = f41′ = (0, 0, 0),
f23′ = (1, 0, 0), f42′ = (0, 1, 0), f34′ = (0, 0, 1),

f43′ = (0, 1,−1), f32′ = (−1, 1, 0).

(2) n = 5, p = ±1 mod 10 and X21(5, p) = Y × f K, where

f1,2′ = (0, 2t, 1 − 2t), f1,3′ = (2t, 1 − 2t, 0), f1,4′ = (1 − 2t, 0, 2t),
f1,5′ = (−1,−1,−1), f2,3′ = (1 − 2t, 0,−2t), f2,4′ = (2t, 2t − 1, 0),

f2,5′ = (−1, 1, 1), f3,4′ = (0,−2t, 1 − 2t), f3,5′ = (1, 1,−1),

f4,5′ = (1,−1, 1), fi, j′ = fi′, j for i, j ∈ {1, 2, 3, 4, 5}, where t =
1 +
√

5
4

∈ F∗p.

n = p = 5 and X22(5, 5) = Y × f K, where

f1,2′ = (0,−1, 0), f1,3′ = (3,−1, 2), f1,4′ = (2, 3,−1), f1,5′ = (0, 1, 2),
f2,3′ = (0,−1, 3), f2,4′ = (3, 0, 1), f2,5′ = (2, 2,−1), f3,4′ = (0,−1, 1),
f3,5′ = (3, 1, 2), f4,5′ = (0,−1,−1), fi, j′ = fi′, j for i, j ∈ {1, 2, 3, 4, 5}.

(3) Label V(Y) = {i, j′ | i, j ∈ PG(1, p)} and E(Y) = {{i, j′} | i, j′ ∈ V(Y), i , j}.
n = 1 + p, p ≥ 5 and X31(p + 1, p) = Y × f K, where

f∞,i′ = f∞′,i = (0, 1, 2i) and

fi, j′ = fi′, j =

( 1
i − j

,
i + j
i − j

,
2i j

i − j

)
for all i , j in Fp.

n = 6, p = 5 and X32(6, 5) = Y × f K, where

f∞,i′ = f∞′,i = (−i,−i2, i3),
fi, j′ = (0,±2,±2(i + j)) for (i − j)2 = ∓1, where i, j ∈ F5.

(4) Let Ω = PG(2,2) be the two-dimensional projective space over the field F2, while
we identify Ω with V(3, 2) \ {0}. Let χ∆ denote the characteristic function of ∆,
that is, if χ∆(i) = 1 for i ∈ ∆ and χ∆(i) = 0 for i < ∆, then the set V = V(Ω) of all
characteristic functions χ∆, where ∆ ∈ P(Ω), forms a seven-dimensional vector
space over F2 with the rule: (aχ∆ + bχΓ)(i) = aχ∆(i) + bχΓ(i) for any a, b ∈ F2
and χ∆, χΓ ∈ V(Ω). Clearly, a natural basis for V(Ω) is the set of characteristic
functions χ{i} for all i ∈ Ω. Note that a one-dimensional subspace of PG(2, 2) can
be written as {i, j, i + j} for all i , j in Ω, while a two-dimensional subspace
of PG(2, 2) can be written as {i, j, k, i + j, j + k, k + i, i + j + k} for any three
distinct elements i, j, k in Ω. Let V1 and V2 be the subspaces of V generated
by the characteristic functions of all one-dimensional subspaces and of all two-
dimensional subspaces of PG(2, 2), respectively.
Let Y = K8,8 − 8K2, where V(Y) = {i, j′ | i, j ∈ V(3, 2)}, E(Y) = {{i, j′} | i, j′ ∈
V(Y), i , j}, and let K be the corresponding additive group of V1/V2.
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We have n = 8, p = 2 and X4(8, 2) = Y × f K, where

f0, j′ = 0 := V2 and fi, j′ = χ{i, j,i+ j} := χ{i, j,i+ j} + V2 for all i , j in Ω.

Now we are ready to state the main result of this paper, which will be proved in
Section 3.

Theorem 1.1. Let X be a connected regular cover of Kn,n − nK2 (n ≥ 3), whose
covering transformation group K is isomorphic to Z3

p with p a prime and whose fiber-
preserving automorphism group acts 2-arc-transitively. Then one of the following
holds:

(1) n = 4 and X � X1(4, p);
(2) n = 5 and X � X21(5, p) for p ≡ ±1 mod 10, or X22(5, 5) for p = 5;
(3) n = p + 1 ≥ 6 and X � X31(p + 1, p) for p ≥ 5, or X32(6, 5) for p = 5;
(4) n = 8 and X � X4(8, 2) for p = 2.

2. Preliminaries

In this section we introduce some preliminary results needed in Section 3.
To describe a covering graph, we need the following definition. A combinatorial

description of a covering was introduced through a voltage graph by Gross and
Tucker [17, 18]. Let Y be a graph and K a finite group. A voltage assignment (or
K-voltage assignment) of the graph Y is a function f : A(Y)→ K with the property
that f (u, v) = f (v, u)−1 for each (u, v) ∈ A(Y). For convenience, we denote f (u, v) by
fu,v. The values of f are called voltages and K is called the voltage group. The derived
graph Y × f K from a voltage assignment f has its vertex set V(Y) × K and its edge
set E(Y) × K, so that an edge (e, g) of Y × f K joins a vertex (u, g) to (v, fv,ug) for
(u, v) ∈ A(Y) and g ∈ K, where e = {u, v}. Clearly, the graph Y × f K is a covering of
the graph Y with the first coordinate projection p : Y × f K → Y , which is called the
natural projection. For each u ∈ V(Y), {(u, g) | g ∈ K} is a fiber of u. Moreover, by
defining (u, g′)g := (u, g′g) for any g ∈ K and (u, g′) ∈ V(Y × f K), K can be identified
with a subgroup of Aut(Y × f K) fixing each fiber setwise and acting regularly on each
fiber. Therefore, p can be viewed as a K-covering. Conversely, each connected regular
cover X of Y with the covering transformation group K can be described by a derived
graph Y × f K from some voltage assignment f . Given a spanning tree T of the graph
Y , a voltage assignment f is said to be T -reduced if the voltages on the tree arcs are
the identity. Gross and Tucker [17] showed that every regular cover X of a graph Y
can be derived from a T -reduced voltage assignment f with respect to an arbitrary
fixed spanning tree T of Y . Moreover, the voltage assignment f naturally extends to
walks in Y . For any walk W of Y , let fW denote the voltage of W. Finally, we say that
an automorphism α of Y lifts to an automorphism α of X if αp = pα, where p is the
covering projection from X to Y .

The first proposition is related to a lifting criterion of an automorphism of a base
graph with respect to a voltage assignment.
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Proposition 2.1 [25, Corollary 4.3]. Let Y be a connected graph and let X be a cover
of Y derived from a voltage assignment f . Then an automorphism α of Y can be lifted
to an automorphism of X if and only if, for each closed walk W in Y, we have that
fWα = 1 implies fW = 1.

Let G be a finite group and H a proper subgroup of G, and let D = D−1 be
an inverse-closed union of some double cosets of H in G − H. Then the coset
graph X = X(G; H,D) is defined by taking V(X) = {Hg | g ∈ G} as the vertex set and
E(X) = {{Hg1,Hg2} | g2g−1

1 ∈ D} as the edge set. By the definition, the order of V(X)
is the number of left cosets of H in G and its valency is the number of left cosets
of H in D. It follows that the group G in its coset action by right multiplication on
V(X) is transitive, and the kernel of this representation of G is the intersection of all
the conjugates of H in G. If this kernel is trivial, then we say that the subgroup H
is core-free. In particular, if H = 1, then we get a Cayley graph. Conversely, each
vertex-transitive graph is isomorphic to a coset graph (see [24]).

Let G be a group, let L and R be subgroups of G and let D be a union of double
cosets of R and L in G, namely, D =

⋃
i RdiL. By [G : L] and [G : R], we denote the sets

of cosets G relative to L and R, respectively. Define a bipartite graph X = B(G, L,R; D)
with bipartition V(X) = [G : L] ∪ [G : R] and edge set E(X) = {{Lg, Rdg} | g ∈ G,
d ∈ D}. This graph is called the bicoset graph of G with respect to L, R and D
(see [11]).

Proposition 2.2 [11, Lemmas 2.3 and 2.4].

(i) The bicoset graph X = B(G, L,R; D) is connected if and only if G is generated
by elements of D−1D.

(ii) Let Y be a bipartite graph with bipartition V(Y) = U(Y) ∪W(Y), let G be a
subgroup of Aut(Y) acting transitively on both U and W, let u ∈ U(Y) and
w ∈W(Y) and set D = {g ∈G | wg ∈ Y1(u)}, where Y1(u) is the neighborhood of u.
Then D is a union of double cosets of Gw and Gu in G, and Y � B(G,Gu,Gw; D).
In particular, if {u, w} ∈ E(Y) and Gu acts transitively on its neighbor, then
D = GwGu.

The following result may be deduced from the classification of doubly transitive
groups (see [3] and [4, Corollary 8.3]).

Proposition 2.3. Let G be a 3-transitive permutation group of degree at least four.
Then one of the following occurs:

(i) G � S 4;
(ii) soc(G) is 4-transitive;
(iii) soc(G) � M22 or A5, which are 3-transitive but not 4-transitive;
(iv) PSL(2, q) ≤ G ≤ PΓL(2, q), where the projective special linear group PSL(2, q)

is the socle of G which does not act 3-transitively, and G acts on the projective
geometry PG(1, q) in a natural way, having degree q + 1 with q ≥ 5 an odd prime
power;
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(v) G � AGL(m, 2) with m ≥ 3; or
(vi) G � Z4

2 o A7 < AGL(4, 2).

The next two propositions deal with two basic group-theoretic results.

Proposition 2.4 [20, Satz 4.5]. Let H be a subgroup of a group G. Then CG(H) is
a normal subgroup of NG(H) and the quotient NG(H)/CG(H) is isomorphic with a
subgroup of Aut H.

Proposition 2.5 [20, Satz 17.4]. Let G be a finite group. Let A and B be two subgroups
of G such that A is abelian normal in G, A ≤ B ≤ G and (|A|, |G : B|) = 1. If A has a
complement in B, then A has a complement in G.

The following result may be deduced from Bloom’s determination of the subgroups
of PSL(3, q) in [1].

Proposition 2.6. Let G = GL(3, p) for an odd prime p. Then:

(1) any nontrivial subgroup H of G which does not contain an elementary abelian
normal subgroup of order ≥ 2 is isomorphic to one of the following groups:

(i) PSL(2, 5) with p ≡ ±1 mod 10;
(ii) PSL(2, 7) with p3 ≡ 1 mod 7;
(iii) PSL(2, p) for p ≥ 5; or
(iv) PGL(2, p) for p ≥ 5.

Moreover, G has exactly one conjugacy class of subgroups isomorphic to each
subgroup H listed in (i)–(iii);

(2) G contains neither the affine group AGL(m, 2) for m ≥ 3 nor Z4
2 o A7.

The next proposition shows a property of PSL(2, 7) acting on the vector space
V(3, p).

Proposition 2.7 [8, Lemmas 2.7 and 2.8]. Let p be an odd prime and p3 ≡ 1 mod 7 or
p = 7. Then, as a subgroup of GL(3, p), PSL(2, 7) has no orbits of length seven in its
action on the space V(3, p).

For a group G, we let G′ denote the commutator subgroup of G. Recall that a group
G is an extension of N by H if G has a normal subgroup N such that the quotient group
G/N is isomorphic to H. In particular, G is a proper central extension of N by H if
N ≤ Z(G) ∩G′ is a central subgroup. Such central subgroups are all quotients of a
largest group, called the Schur multiplier Mult(G) of G.

Proposition 2.8 [7, page xv]. The Schur multiplier of the simple group PSL(2, q) is Z2

for q , 9, and Z6 for q = 9.

The next result is a simple observation and it was first mentioned in [9].
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Proposition 2.9 [9, Lemma 2.5]. Let Y be a graph and let B be a set of cycles of Y
spanning the cycle space CY of Y. If X is a cover of Y given by a voltage assignment f
for which each C ∈ B vanishes, then X is disconnected.

The following proposition may be extracted from [33].

Proposition 2.10. Let X be a connected regular cover of Kn,n − nK2 (n ≥ 3), whose
covering transformation group K is isomorphic to Z2

p with p a prime and whose fiber-
preserving automorphism group acts 2-arc-transitively. Then X exists if and only if
n = 4.

3. Proof of Theorem 1.1

To prove Theorem 1.1, let U = {1, 2, . . . , n} and W = {1′, 2′, . . . , n′}. Set Y =

Kn,n − nK2 (n ≥ 3) with the vertex set V(Y) = U ∪W and the edge set E(Y) = {{i, j′} |
i , j, i, j = 1, 2, . . . , n}. Let X be a cover of Y with covering projection f : X → Y and
covering transformation group K = V+(3, p), the additive group of V(3, p).

Suppose that n = 3. Then Y is a circle and there is only one cotree arc. Since
X is assumed to be connected, all voltages assigned to the cotree arcs in Y should
generate K. It means that K is a cyclic group, which is a contradiction. Therefore, we
assume that n ≥ 4.

Let A be a 2-arc-transitive group of automorphisms of the base graph Y and let G =

AU = AW . Let Ã and G̃ be the respective lifts of A and G. Clearly, Aut(Y) = S n × 〈σ〉,
where σ is the involution exchanging every pair i and i′.

Since A acts 2-arc-transitively on Y , G has a faithful 3-transitive representation
on both U and W, so that G should be one of the 3-transitive groups listed in
Proposition 2.3. Moreover, for the case n = 4, it has been proved in [30] that
X � X1(4, p). So, we need to consider the following remaining cases in four separate
subsections:

(1) either soc(G) is 4-transitive or soc(G) � M22, and it will be proved in Section 3.1
that the covering graph X does not exist;

(2) n = 5 and soc(G) = A5, and it will be proved in Section 3.2 that X � X21(5, p) or
X22(5, 5);

(3) n ≥ 6 and soc(G) = PSL(2, q) with q ≥ 5, and it will be proved in Section 3.3 that
X � X31(p + 1, p) or X32(6, 5);

(4) G is of affine type and it will be proved in Section 3.4 that X � X4(8, 2).

3.1. Either soc(G) is 4-transitive or soc(G) � M22.

Lemma 3.1. There exist no regular covers X of Kn,n − nK2, whose fiber-preserving
automorphism group acts 2-arc-transitively and whose covering transformation group
is isomorphic to Z3

p with p a prime, provided either soc(G) acts 4-transitively on two
biparts or soc(G) � M22.
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Proof. Suppose that G has a nonabelian simple socle T := soc(G) which is either
4-transitive or isomorphic to M22. Let T̃ be the lift of T , so that T̃/K = T . In view of
Proposition 2.4,

(T̃/K)/(CT̃ (K)/K) � T̃/CT̃ (K) ≤ Aut(K) � GL(3, p). (3.1)

Since CT̃ (K)/K B T̃/K and T̃/K is simple, we get CT̃ (K)/K = 1 or T̃/K. If the first
case happens, then (3.1) implies that GL(3, p) contains a nonabelian simple subgroup
which is either 4-transitive or isomorphic to M22. This contradicts Proposition 2.6.
Thus, CT̃ (K) = T̃ , that is, K ≤ Z(T̃ ). Let Zp � K1 ≤ K. Since K ≤ Z(T̃ ), it follows that
K1 D T̃ . Consider the quotient graph Z induced by the normal subgroup K1. Then Z
is a Z2

p-cover of the base graph Y . However, by Proposition 2.10, there exists no such
cover. This completes our proof of this lemma. �

3.2. n = 5 and soc(G) = A5. Suppose that n = 5 and soc(G) = A5, so that Y =

K5,5 − 5K2. Since G is isomorphic to either A5 or S 5 and since A5 is a 3-transitive
group of degree five, it suffices to find all the covers for which A5 lifts. Suppose
that G � A5 and let G̃ be the lift of G, that is, G̃/K = G. As A5 is simple, we have
CG̃(K)/K � 1 or A5. For the case CG̃(K)/K � A5, which means that K ≤ Z(G̃), with
the same arguments as Lemma 3.1, one may get that there exist no connected covers
occurring. Therefore, CG̃(K) = K. Moreover, it follows from Proposition 2.4 that

A5 � G̃/K = G̃/CG̃(K) ≤ Aut(K) � GL(3, p).

So, by Proposition 2.6, we have either p ≡ ±1 mod 10 or p = 5. In what follows, we
deal with these two cases in Lemmas 3.2 and 3.3 separately.

Lemma 3.2. If p ≡ ±1 mod 10, then X � X21(5, p).

Proof. Let F be a fiber and take a vertex ṽ ∈ F. Then G̃F = K o G̃ṽ. Since
(|G̃ : G̃F |, |K|) = (5, p3) = 1 and K is an abelian normal subgroup of G̃, by Proposition
2.5, K has a complement in G̃, say T . Thus, G̃ = K o T , where T � A5.

Let K = V+(3, p). By [1, Lemma 6.4], GL(3, p) has only one conjugacy class of
subgroups isomorphic to A5, for p ≡ ±1 mod 10, given as follows:

a1 = (12)(34) 7−→ a =

1 0 0
0 −1 0
0 0 −1

 , c1 = (234) 7−→ c =

0 1 0
0 0 1
1 0 0

 ,
x1 = (345) 7−→ x =


− 1

2
1
2 − t −t

t − 1
2 t − 1

2

t − 1
2

1
2 − t

 ,
where t = ((1 +

√
5)/4) ∈ F∗p and multiplication in A5 is chosen from right to left (for

example, (123)(234) = (12)(34) but not (13)(24)). For any k = (x, y, z) ∈ K and any
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matrix g ∈ T , we may write kg := (x, y, z)g. Moreover, under this isomorphism,

d1 = (15)(24) = (345)(14)(23)(354) 7−→ d =


−t − 1

2 t − 1
2

− 1
2 t − 1

2 −t

t − 1
2 −t − 1

2

 ,
b1 = (13)(24) = (234)(12)(34)(243) 7−→ b =

−1 0 0
0 −1 0
0 0 1

 .
Acting on V(Y) = U ∪W, where U = {1, 2, 3, 4, 5} and W = {1′, 2′, 3′, 4′, 5′}, let

H := 〈a, b〉 o 〈c〉 � A4 be the point stabilizer for the vertex 5 ∈ U and so the other
vertices in U \ {5} correspond to the cosets {Hd, Hda, Hdb, Hdab}. Then we carry
out the proof by the following four steps.

Step 1. Determination of the point stabilizers G̃ ũ.
Taking ũ ∈ f −1(5), the fiber over 5, we have A4 � G̃ ũ ≤ K o H � Z3

p o A4. Since
p ≡ ±1 mod 10, p cannot be 2 or 3. Thus, K is a normal π-Hall subgroup of K o H.
So, by the Schur–Zassenhaus theorem, we get that the subgroups of K o H which
are isomorphic to H are all conjugate. Therefore, one may set L := G̃ ũ = H and
R := G̃ũ′ = H, where ũ′ ∈ f −1(5′).

Step 2. Determination of the bicoset graphs of G̃ relative to L and R.
Now, by Proposition 2.2, our graph X is isomorphic to a bicoset graph

X′ = B(G̃, L,R; D), where D = Rdk1L for k1 ∈ K, with two biparts:

[G̃ : L] = {Lk, Ldk, Ldak, Ldbk, Ldabk | k ∈ K},
[G̃ : R] = {Rk,Rdk,Rdak,Rdbk,Rdabk | k ∈ K}.

Since the length of the orbit of L containing the vertex Rdk1 is four, the element c
should fix the vertex Rdk1, that is,

Rdk1 = Rdk1c = Rdk1c(dk1)−1dk1 = Rcd(kc
1k−1

1 )ddk1

= Rc−1(kc
1k−1

1 )ddk1 = R(kc
1k−1

1 )ddk1,

which forces kc
1 = k1. This in turn gives k1 = (x, x, x) for some x ∈ F∗p.

Step 3. Show that X′ � X21(5, p).
Since the neighbor of L corresponds to the bicoset D = Rdk1L, the vertex L is

adjacent to

{Rd(x, x, x),Rda(x,−x,−x),Rdb(−x,−x, x),Rdab(−x, x,−x)}.

Therefore, the neighbors of Ld, Lda, Ldb and Ldab are, respectively,

{R(−x,−x,−x),Rda(0, 2tx, (1 − 2t)x),Rdb(2tx, (1 − 2t)x, 0),Rdab((1 − 2t)x, 0, 2tx)},
{R(−x, x, x),Rdb((1 − 2t)x, 0,−2tx),Rdab(2tx, (2t − 1)x, 0),Rd(0,−2tx, (2t − 1)x)},
{R(x, x,−x),Rda((2t − 1)x, 0, 2tx),Rdab(0,−2tx, (1 − 2t)x),Rd(−2tx, (2t − 1)x, 0)}
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and

{R(x,−x, x),Rda(−2tx, (1 − 2t)x, 0),Rdb(0, 2tx, (2t − 1)x),Rd((2t − 1)x, 0,−2tx)}.

Define a map η: V(X′)→ V(X21(5, p)) by the rule

η(Lk) = (5, x−1k), η(Rk) = (5′, x−1k),
η(Ldk) = (1, x−1k), η(Rdk) = (1′, x−1k),
η(Ldak) = (2, x−1k), η(Rdak) = (2′, x−1k),
η(Ldbk) = (3, x−1k), η(Rdbk) = (3′, x−1k) and
η(Ldabk) = (4, x−1k), η(Rdabk) = (4′, x−1k),

where k ∈ K. It can be checked that X′ � X21(5, p) via η.

Step 4. The connectedness of X21(5, p). Take three closed walks:

W1 = 1, 2′, 3, 4′, 1, W2 = 1, 3′, 4, 2′, 1, W3 = 1, 4′, 2, 3′, 1.

Then it is easy to get fW1 = (0, 0, 2(1 − 4t)), fW2 = (0, 2(1 − 4t), 0) and fW3 =

(2(1 − 4t), 0, 0), where t is given as above. Then fW1 , fW2 and fW3 can generate K.
Hence, X21(5, p) is connected.

Finally, in view of the voltage assignment f of X21(5, p), for σ which exchanges
every pair in Y and for any i, j, we have fiσ, j′σ = fi′, j = fi, j′ . Thus, fWσ = fW for any
closed walk W. So, by Proposition 2.1, σ lifts. �

Lemma 3.3. If p = 5, then X � X22(5, 5).

Proof. Suppose that n = p = 5. By [1, Lemma 6.3], GL(3, 5) has only one conjugacy
class of subgroups isomorphic to PSL(2, 5) given as follows:

ϕ :
(
r s
t v

)
7→ (rv − st)−1

 r2 2rs 2s2

rt rv + st 2sv
t2/2 tv v2

 .
In particular,

a =

(
1 1
0 1

)
7−→ a =

1 2 2
0 1 2
0 0 1

 , b =

(
0 1
−1 0

)
7−→ b =

0 0 2
0 −1 0
3 0 0

 ,
c =

(
3 0
0 2

)
7−→ c =

−1 0 0
0 1 0
0 0 −1

 , d =

(
1 1
2 3

)
7−→ d =

1 2 2
2 0 1
2 1 −1

 .
Acting on V(Y) = U ∪W, where U = {1, 2, 3, 4, 5} and W = {1′, 2′, 3′, 4′, 5′}, let

H := 〈b, c〉 o 〈d〉 � A4 correspond to the vertex 1 ∈ U and the other vertices in U \ {1}
correspond to the cosets {Ha, Ha2, Ha3, Ha4}. Take ũ ∈ F := f −1(1) and ũ′ ∈ F′ :=
f −1(1′). Let L := G̃ ũ and R := G̃ũ′ , and the two biparts in the bicoset graph are

[G̃ : L] = {Laik | i ∈ Z5, k ∈ K} and [G̃ : R] = {Raik | i ∈ Z5, k ∈ K}.
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Then we carry out the proof by the following six steps.

Step 1. Show that K has no complement in G̃.
On the contrary, assume that G̃ = K o T , where T � PSL(2, 5). Since G̃F = G̃F′ =

K o H � Z3
5 o A4 and there is only one conjugacy class of A4 in K o H, we may set

L := G̃ ũ = H and R := G̃ũ′ = H. Then X � X′ = B(G̃, L,R; D), where D = Rak1L for
some k1 ∈ K \ {0}, noting that R = L = H.

As the length of the orbit of L containing the vertex Rak1 is four, the element d
should fix the vertex Rak1, that is,

Rak1 = Rak1d = Rak1d(ak1)−1ak1 = Rda−1
(kd

1k−1
1 )a−1

ak1 = R(kd
1k−1

1 )a−1
ak1,

forcing kd
1 = k1. This gives k1 = (x, x,−x) for some x ∈ F∗5.

Now
〈D−1D〉 = 〈L(ak1)−1Rak1L〉 = 〈b, c, d, bak1 , cak1 , dak1〉 = G̃.

By computation, one may get cak1 dak1 b = ak1 and so ak1 ∈ 〈D−1D〉. Thus, 〈D−1D〉 =

〈b, d, ak1〉. Moreover, we have d = (ak1)b(ak1)2b(ak1)2, which means that 〈D−1D〉 =

〈b, ak1〉. Since (ak1)5 = b2 = (ak1b)3 = 1, it follows that 〈D−1D〉 � A5 < G̃ and thus, by
Proposition 2.2, X′ is disconnected.

Step 2. Determination of the defining relations of G̃.
Now assume that K has no complement in G̃. Then our group G̃ = 〈a1, b1, x1, y1, z1〉

has the following defining relations:

a5
1 = (0, 0, i), b2

1 = (3 j, 0, j), (a1b1)3 = (l,−l, 2l), xa1
1 = x1y2

1z2
1,

ya
1 = y1z2

1, za1
1 = z1, x1

b1 = z2
1, yb1

1 = y4
1, z

b1
1 = x3

1,

where i, j, l ∈ F5 and x1 = (1, 0, 0), y1 = (0, 1, 0), z1 = (0, 0, 1) ∈ K. If i = 0, then
(|G̃ : K o 〈a1〉|, |K|) = (12, 53) = 1; Proposition 2.5 implies that K has a complement in
G̃, which contradicts our assumption. Hence, i , 0.

Set H := 〈a, b, x, y, z〉, which has the following defining relations:

a5 = (0, 0, 1), b2 = 1, (ab)3 = (l,−l, 2l), xa = xy2z2,

ya = yz2, za = z, xb = z2, yb = y4, zb = x3,

where l ∈ F5 and x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1) ∈ K.
Define a map from H to G̃:

ϕ : a 7→ a1(0, l, j), b 7→ b1( j, 0, 2 j), x 7→ xi
1, y 7→ yi

1, z 7→ zi
1.

Then ϕ can be extended to an isomorphism from H to G̃. Therefore, let G̃ = H.

Step 3. Determination of the point stabilizers G̃ ũ.
Since G̃ ũ is the lift of H = 〈b, d〉, where d = aba2ba2, we may set G̃ ũ :=

〈bk1, aba2ba2k2〉 for some k1, k2 ∈ K. As (bk1)2 = 1, we get k1 = (r1, s1, 3r1) for
some r1, s1 ∈ F5.
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For the generators a and b, one may get the following relations:

bab = a−1ba−1, ba−1b = aba, ba−2b = a(ba2b)a,

ba2b = a−1(ba−2b)a−1, ba2ba2b = a−1(ba−3b)a−1,

ba−2ba−2b = a(ba3b)a, ba2ba3b = a−1ba−2ba2b,

ba−2ba2b = a(ba2ba3b) = (ba−3ba−2b)a−1.

(3.2)

Since G̃ ũ � A4 and aba2ba2k2 is the lift of d, it follows that

(aba2ba2k2)3 = 1. (3.3)

According to (3.2) and a5 = (0, 0, 1),

(aba2ba2)3 = a(ba2ba2ab)a2ba2aba2ba2 = ba−2(ba2ba2b)a3ba2ba2

= ba−3ba−3(ba2ba2b)a2 = ba−3ba−4ba−3ba
= (a−5)bba2ba−5aba−3ba = (a−5)bba2(bab)a−3ba(a−5)ba−3ba

= (a−5)b(bab)a−4ba(a−5)ba−3ba = (a−5)ba−1ba−5ba(a−5)ba−3ba

= (a−5)b(a−5)ba(a−5)ba−3ba = (2, 2, 3).

Set k2 := (r2, s2, t2). It follows from (3.3) that

kI+aba2ba2+(aba2ba2)2

2 = (3, 3, 2),

that is, r2 + s2 − t2 = 3.
Letting k = (2s1 + 2s2 + t2, 2s1, 3s1 + 2s2 + 3t2) ∈ K,

G̃ũk = k−1G̃ ũk = 〈b(k−1)bk1k, aba2ba2(k−1)aba2ba2
k2k〉 = 〈bk′1, aba2ba2(3, 0, 0)〉,

where k′1 = (s1 + 3s1 + s2 + 2t2, 0, 3(r1 + 3s1 + s2 + 2t2)). Moreover,

(bk′1aba2ba2(3, 0, 0))3 = (baba2ba2(k′1)aba2ba2
(3, 0, 0))3 = 1. (3.4)

By (3.2), one may get (baba2ba2)3 = 1. Then, from (3.4), we have k′1 = (2,0,1). Hence,
we may assume that

L := G̃ṽ = 〈b(2, 0, 1), aba2ba2(3, 0, 0)〉 and R := G̃ṽ′ = 〈b(2, 0, 1), aba2ba2(3, 0, 0)〉,

where ṽ ∈ f −1(1) and ṽ′ ∈ f −1(1′).

Step 4. Determination of the bicoset graphs B(G̃, L,R; D) of G̃.
Set D = Rak3L for some k3 ∈ K and X′ := B(G̃, L,R; D).
As the length of the orbit of L containing the vertex Rak3 is four, the element

aba2ba2(3, 0, 0) should fix the vertex Rak3, that is,

Rak3 = Rak3(aba2ba2(3, 0, 0)) = Rak3aba2ba2(3, 0, 0)(ak3)−1ak3

= Ra2ba2ba(kaba2ba2

3 (3, 0, 0)k−1
3 )a−1

ak3,

= R[(−1, 1, 1) + (kaba2ba2

3 (3, 0, 0)k−1
3 )a−1

]ak3,
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forcing

(−1, 1, 1) + (kaba2ba2

3 (3, 0, 0)k−1
3 )a−1

= 0. (3.5)

By (3.5), we get k3 = (x, x − 1,−x) for some x ∈ F5.
Let D′ = Ra(0,−1, 0)L. Define the map

δ : a 7→ a(−x,−x, x), b 7→ b.

It is easy to check that δ gives an automorphism of G̃ fixing R and L and maps D to
D′. Then δ induces an isomorphism from B(G̃, L,R; D) to B(G̃, L,R; D′). Therefore,
we let D = Ra(0,−1, 0)L.

Step 5. Show that X′ � X22(5, 5).
Since the neighbor of L corresponds to the bicoset D = Ra(0,−1, 0)L, the vertex L

is adjacent to

{Ra(0,−1, 0),Ra2(3,−1, 2),Ra3(2, 3,−1),Ra4(0, 1, 2)}.

Therefore, the neighbors of La, La2, La3 and La4 are respectively

{R(0, 1, 0),Ra2(0,−1, 3),Ra3(3, 0, 1),Ra4(2, 2,−1)},
{R(2, 1, 3),Ra(0, 1, 2),Ra3(0,−1, 1),Ra4(3, 1, 2)},

{R(3, 2, 1),Ra(2, 0,−1),Ra2(0, 1,−1),Ra4(0,−1,−1)} and
{R(0,−1, 3),Ra(3, 3, 1),Ra2(2,−1, 3),Ra3(0, 1, 1)}.

Define a map η: V(X′)→ V(X22(5, 5)) by the rule

η(Lk) = (1, k), η(Rk) = (1′, k),

η(Lak) = (2, k), η(Rak) = (2′, k),

η(La2k) = (3, k), η(Ra2k) = (3′, k),

η(La3k) = (4, k), η(Ra3k) = (4′, k) and

η(La4k) = (5, k), η(Ra4k) = (5′, k),

where k ∈ K. Then X′ � X22(5, 5) via η.

Step 6. The connectedness of X22(5, 5).
Take three closed walks in Y:

W1 = 1, 2′, 3, 4′, 1, W2 = 1, 3′, 4, 2′, 1, W3 = 1, 4′, 2, 3′, 1.

Then fW1 = (3,−1, 0), fW2 = (0,−1, 2) and fW3 = (1, 3,−1). Thus, fW1 , fW2 and fW3 can
generate K, showing the connectedness of X22(5, 5).

Finally, similarly to Lemma 3.2, σ exchanging every pair in Y lifts. �

https://doi.org/10.1017/S1446788716000057 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000057


158 S. Du and W. Xu [14]

3.3. soc(G) = PSL(2, q) with q ≥ 5 and n = 1 + q ≥ 6.

Lemma 3.4. Suppose that PSL(2, q) ≤ G ≤ PΓL(2, q), where q is an odd prime power.
Then the following hold.

(1) G = PGL(2, p) and A = G × 〈σ〉, where σ is an involution exchanging two
biparts.

(2) G̃ = K o T, Ã = K o (T × 〈τ〉), where τ is an involution which is a lift of
σ and T is the image of one of the following faithful irreducible p-modular
representations ϕ of degree three of PGL(2, p), up to equivalence, either:

(i) p ≥ 5 : ϕ1 :
(
r s
u v

)
7→ (rv − su)−1

 r2 2rs 2s2

ru rv + su 2sv
u2/2 uv v2

; or

(ii) p ≥ 5 : ϕ2 : g 7→ det(g)(p−1)/2ϕ1(g), g ∈ PGL(2, p).

Proof. (1) Let G̃ be the lift of G, so that G̃/K = G, where PSL(2, q) ≤ G ≤ PΓL(2, q).
Since CG̃(K)/K is normal in G̃/K and soc(G̃/K) � PSL(2, q), we deduce that
CG̃(K)/K = 1 or PSL(2, q) ≤ CG̃(K)/K. If the latter case happens, then, with the
same arguments as Lemma 3.1, one may get that there exist no covers occurring. So,
CG̃(K) = K.

Since PSL(2, q) ≤ G̃/K = G̃/CG̃(K) ≤ Aut(K) � GL(3, p), it follows from
Proposition 2.6 that q = p and G � PGL(2, p). Moreover, A = G × 〈σ〉, where σ is
an involution exchanging two biparts.

(2) In what follows, we identify V(Y) with two copies of the projective line
PG(1, p). Let F be a fiber over ∞ and pick ũ ∈ F. Then ÃF = K o Ãũ. Since K
is an abelian normal subgroup of Ã and (|K|, |Ã : ÃF |) = (p3, 2(1 + p)) = 1, it follows
from Proposition 2.5 that K has a complement in Ã, which is of course isomorphic
to PGL(2, p) × Z2. Therefore, we may set G̃ = K o T , where T is the image of
one of faithful irreducible p-modular representations ϕ of degree three of PGL(2, p).
Consequently, Ã = K o (T × 〈τ〉) for an involution τ which is a lift of σ.

By [1, Lemma 6.3], the map ϕ1 in (2)(i) of the present lemma gives an irreducible
p-modular representation of degree three of PGL(2, p). Clearly, ϕ2 is another such
representation, which is inequivalent to ϕ1.

In view of Proposition 2.6, all the subgroups isomorphic to PSL(2, p) (respectively
PGL(2, p)) contained in SL(3, p) form a conjugacy class of GL(3, p), given by ϕ1,
noting that ϕ1(g) = ϕ2(g) for any g ∈ PSL(2, p).

Let ϕ be any irreducible p-modular representation of degree three of T , where ϕ(T )
is not contained in SL(3, p). Then we show that ϕ is equivalent to ϕ2.

Take an involution b ∈ PGL(2, p) \ PSL(2, p). Then ϕ(PSL(2, p)) ≤ SL(3, p) and
ϕ(b) ∈ GL(3, p) \ SL(3, p). Now det(ϕ(b)) = −1. Let e = || − 1, −1, −1|| be the
central involution of GL(3, p). Then eϕ(b) ≤ SL(3, p), so that 〈ϕ(PSL(2, p)), eϕ(b)〉 ≤
SL(3, p). Since all the subgroups isomorphic to PGL(2, p) contained in SL(3, p) are
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conjugate in GL(3, p), there exists a g ∈ GL(3, p) such that 〈ϕ(PSL(2, p)), eϕ(b)〉 =

ϕ1(PGL(2, p))g. Then

ϕ(PSL(2, p) = ϕ1(PSL(2, p))g and eϕ(b) = ϕ1(x)g,

for some involution x ∈ PGL(2, p) \ PSL(2, p), that is, ϕ(b) = e(ϕ1(x))g = (−ϕ1(x))g =

ϕ2(x)g. Now

ϕ(PGL(2, p)) = 〈ϕ(PSL(2, p)), ϕ(b)〉
= 〈ϕ1(PSL(2, p))g, ϕ2(x)g〉

= 〈ϕ2(PSL(2, p)), ϕ2(x)〉g

= ϕ2(PGL(2, p))g.

Therefore, up to equivalence, ϕ1 and ϕ2 are all irreducible p-modular representations
of degree three of PGL(2, p). �

For m = 1, 2, let

S = ϕm(PSL(2, p)), Tm = ϕm(PGL(2, p)), G̃m = K o Tm and Ãm = G̃m o 〈τ〉,

where the operation between K and τ is yet to be determined. Then both G̃1 and G̃2
are subgroups of AGL(3, p) and G̃1 ∩ G̃2 = K o S . Again, K = V+(3, p). However, we
adopt a multiplication notation for K when considering K as a subgroup of G̃i.

In PGL(2, p), set

t1 =

(
1 1
0 1

)
, a1 =

(
θ 0
0 1

)
, g1 =

(
0 −1
1 0

)
,

where F∗p = 〈θ〉, and set H1 = 〈t1, a1〉.
Let PG(1, p) = {∞, 0, 1, . . . , p − 1} be the projective line over Fp, where we identify

〈(0,1)〉 and 〈(1, `)〉with∞ and `, respectively. Then H1 fixes∞ ∈ PG(1, p) and ti
1 maps

` into ` + i. Furthermore, let ϕ = ϕm, where m = 1, 2, and set t = ϕ(t1), a = ϕ(a1) and
g = ϕ(g1). Then, for any i,

ti = ϕ(ti
1) =

1 2i 2i2

0 1 2i
0 0 1

 , ai = ϕ(ai
1) = (−1)(m−1)i

θ
i 0 0

0 1 0
0 0 θ−i

 ,
g = φ(g1) =

 0 0 2
0 −1 0

1/2 0 0

 .
Then we have the following lemma.

Lemma 3.5. With the above notation, X is isomorphic to either:

(i) p ≥ 5, Cos(Ã1; 〈t, a〉, 〈t, a〉gkτ〈t, a〉), where k = (0, 1, 0) and [τ,K] = 1; or
(ii) p = 5, Cos(Ã2; 〈k′t, a〉, 〈t, a〉gτ〈k′t, a〉), where k′ = (1,−1,−1) and kτ = k−1 for

any k ∈ K.
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Proof. First note that our graph X is isomorphic to a coset graph arising from Ã = Ãm,
where m = 1, 2. Set T = Tm and H = ϕ(H1) = 〈t, a〉. Set M := G̃F = K o H, where
F = f −1(∞). Take ũ ∈ F.

Step 1. Determination of Ãũ = G̃ ũ.
Clearly, G̃ ũ ≤ M. Note that |M| = |K o H| = |(K o 〈t〉) o 〈a〉| = p4(p − 1). Let

P = K o 〈t〉. Then P is a p-group of order p4. Since p ≥ 5 by assumption, P
is a regular p-group (for the definition of regular p-groups, see [20, Kapitel III,
Definitionen 10.2]). Since Φ(P) ≤ K and the order of t is p, P has exponent p. Clearly,
M has only one conjugacy class of subgroups isomorphic to 〈a〉. Assume that L is
a subgroup of M such that 〈a〉 ≤ L � H and L ∩ K = 1. Then we may assume that
L = 〈kt〉 o 〈a〉 for some k = (x, y, z) ∈ K. Suppose that (kt)a = (kt)i. Then

(kt)a = kata = (−1)m−1(θx, y, θ−1z)tθ
−1

and

(kt)i = (kkt−1
kt−2
· · · kt−i+1

)ti

= ((x, y, z) + (x,−2x + y, 2x − 2y + z) + · · ·

+ (x,−2(i − 1)x + y, 2(i − 1)2x − 2(i − 1)y + z))ti

= (ix,−(i − 1)ix + iy,
(i − 1)i(2i − 1)

3
x − (i − 1)iy + iz)ti.

Thus, we get i = θ−1 and

(−1)m−1(θx, y, θ−1z) =

(
ix,−(i − 1)ix + iy,

(i − 1)i(2i − 1)
3

x − (i − 1)iy + iz
)
. (3.6)

(1) First, suppose that m = 1. From (3.6), we have θx = ix = θ−1x and so θ2x = x.
Since p ≥ 5, we get θ2 , 1 and so x = 0 and y = 0 by the second equation again. Hence,
k = (0, 0, z) for any z ∈ Fp, which means that k has p possibilities. For each k, we get
an L = 〈kt〉 o 〈a〉; in particular, L = H when z = 0. Furthermore, these p subgroups are
conjugate in M. In fact, for any k = (0, 0, z), by taking k′ = (0, z/2, 0),

(kt)k′ = k(k′)−1tk′ = k(k′)−1(k′)t−1
t

=

(
(0, 0, z) −

(
0,

z
2
, 0

)
+

(
0,

z
2
,−z

))
t = (0, 0, 0)t = t

and
ak′ = k′−1ak′ = k′−1(k′)a−1

a =

((
0,−

z
2
, 0

)
+

(
0,

z
2

0
))

a = a,

which forces Lk′ = H. Therefore, we choose G̃ ũ = H.
(2) Now suppose that m = 2. From (3.6), we get −θx = ix = θ−1x and so

x(θ2 + 1) = 0.
If x = 0, then from (3.6) it can be easily deduced that y = z = 0.
Suppose that x , 0. Then θ2 = −1, that is, p = 5. Solving (3.6) again, we get

k′ = (y,−y,−y). Therefore, we choose G̃ ũ = 〈k′t, a〉.
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Step 2. Determination of the coset graphs.
Set L := Ãũ. Assume that X′ � Cos(G̃; L,D), where the neighbor of L corresponds

to a bicoset D = Lgk1τL for some k1 = (x1, y1, z1) ∈ K. Then the following conditions
should be satisfied:

(1) d(X′) = p.
As the length of the orbit of L containing the vertex Lgk1τ is p, the element a should

fix the vertex Lgk1τ, that is, Lgk1τa = Lgk1τ. Then, noting that g2 = 1 and [τ,T ] = 1,

L = Lgk1ak−1
1 g = Lag(ka

1k−1
1 )g = La−1(ka

1k−1
1 )g = L(ka

1k−1
1 )g.

Therefore, (ka
1k−1

1 )g ∈ K ∩ L = 1, that is, ka
1k−1

1 = 0. Then

ka
1k−1

1 = (((−1)m−1θ − 1)x1, ((−1)m−1 − 1)y1, ((−1)m−1θ−1 − 1)z1) = 0.

Therefore, if m = 1, then k1 = (0, y, 0) for some y ∈ F∗p; and, if m = 2, then k1 = 0.
In summary, we get X′ = Cos(Ã; L,D), where

m = 1, L = 〈t, a〉 and D = Lg(0, y, 0)τL, where y ∈ F∗p, and
m = 2, L = 〈(y,−y,−y)t, a〉 and D = LgτL, where y ∈ F∗p.

Suppose that [τ, K] , 1. Then τ can be viewed as an involution of GL(3, p). By
Lemma 3.4, we have CGL(3,p)(PGL(2, p)) = Z(GL(3, p)). In view of [τ, T ] = 1, we get
that τ is the central involution of GL(3, p) and, in particular, kτ = k−1 for any k ∈ K.
For any y ∈ F∗p, define a map λ(y) on Ã by

λ(y)(k) = yk, λ(y)(d) = d, λ(y)(τ) = τ,

where k ∈ K and d ∈ T . Clearly, λ(y) can be extended to an automorphism of Ã and,
moreover, λ(y−1) fixes L and moves L(0, y, 0)L to L(0, 1, 0)L for m = 1 and moves
L = 〈(y, −y, −y)t, a〉 to L = 〈(1, −1, −1)t, a〉. Therefore, L and D can be chosen as
follows:

m = 1, L = 〈t, a〉, D = Lg(0, 1, 0)τL; m = 2, L = 〈(1,−1,−1)t, a〉, D = LgτL.

(2) Undirected property.
For m = 2, we have D = LgτL, where gτ is an involution and so D = D−1.
Let m = 1. First, suppose that [τ,K] = 1. Note that D = LgkτL, where L = 〈t, a〉 and

k = (0, 1, 0). Then (gkτ)2 = gkgk = k−1k = 1 and so D−1 = D.
Next, suppose that [τ,K] , 1. Then τ = e, as stated before. Assume that D−1 = D.

Then there exist h1, h2 ∈ H such that (gkτ)−1 = h1gkτh2, that is,

kg = h1gkh2 = h1k−1gh2 = (kh−1
1 )−1h1gh2,

which forces k = (kh−1
1 )−1. However, for any h−1

1 = tia j, we have (kh−1
1 )−1 = (0, −1,

−2iθ j) , k. Therefore, [τ,K] = 1 and so τ is a central involution of Ã.
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(3) Connectedness property.
(i) m = 1:
It has been shown in (2) that [K, τ] = 1. Now X is connected if and only if

〈D〉 = 〈L, gkτ〉 = 〈t, a, gkτ〉 = Ã.

By computation, we get the following equations:

tgkτ = tg(1, 0, 0), tg(1, 0, 0)ttg(1, 0, 0) = g(1, 0, 2),
tg(1,0,2) = tg(−1, 2, 0), (tg(−1, 2, 0))−1tg(1, 0, 0) = (2,−2, 0).

Thus, (2, −2, 0) ∈ 〈D〉. Furthermore, we have (2, −2, 0)t = (2, 2, 0) ∈ 〈D〉 and
(2,−2, 0)gkτ = (0, 2, 4) ∈ 〈D〉. Hence, K ≤ 〈D〉, so that 〈D〉 = Ã, as desired.

(ii) m = 2:
Note that in this case p = 5 and

〈D〉 = 〈L, gτ〉 = 〈(1,−1,−1)t, a, gτ〉.

First, suppose that [K, τ] = 1. By computation, we get the following equations:

((1,−1,−1)t)gτ = tg(2,−1, 2), tg(2,−1, 2)(1 ,−1,−1)ttg(2,−1, 2) = g,
((1,−1,−1)tg)3 = (0, 0, 0).

Thus, 〈(1,−1,−1)t, g〉 � PSL(2, 5). Moreover,

((1,−1,−1)t)3g((1,−1,−1)t)2g((1,−1,−1)t)3g = a2,

which means that 〈(1,−1,−1)t, g, a〉 � PGL(2, 5). Therefore,

〈D〉 = 〈(1,−1,−1)t, g, a〉 × 〈τ〉 � PGL(2, 5) × Z2 < Ã,

so that X′ is disconnected in this case.
Next, suppose that kτ = k−1 for any k ∈ K. Then

((1,−1,−1)t)gτ = tg(3, 1,−2), tg(3, 1,−2)(1,−1,−1)ttg(3, 1,−2) = g(−1,−1,−2),
((1,−1,−1)t)g(−1,−1,−2) = tg(2, 2, 2), (tg(2, 2, 2))−1tg(3, 1,−2) = (1,−1, 1).

Therefore, K ≤ 〈D〉, so that 〈D〉 = Ã, proving the connectedness. �

Lemma 3.6. The following hold:

(i) p ≥ 5, Cos(Ã1; 〈t, a〉, 〈t, a〉gkτ〈t, a〉) � X31(p + 1, p), where k = (0, 1, 0) and
[τ,K] = 1;

(ii) p = 5, Cos(Ã2; 〈k′t, a〉, 〈t, a〉gτ〈k′t, a〉) � X32(6, 5), where k′ = (1, −1, −1) and
kτ = k−1 for any k ∈ K.

Proof. We discuss the two covers separately.

Step 1. Show that Cos(Ã1; 〈t, a〉, 〈t, a〉gkτ〈t, a〉) � X31(p + 1, p).
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Note that L is adjacent to Lgt j(0, 1, 2 j)τ with j ∈ Fp. Moreover, for any k ∈ K,

{Lgti, Lgt jkτ} ∈ E(X′) if and only if {L, Lgt jkt−igτ} ∈ E(X′).

By computation,

Lgt jkt−igτ = Lgt j−igkt−igτ = Lgt(i− j)−1
kt−igτ.

Therefore, kt−ig = (0, 1, 2/(i − j)), that is,

k =

(
0, 1,

2
i − j

)gti

=

( 1
i − j

,
i + j
i − j

,
2i j

i − j

)
.

Hence, Lgti is adjacent to Lgt j(1/(i − j), (i + j)/(i − j), 2i j/(i − j))τ.
Set X′ := Cos(Ã1; 〈t, a〉, 〈t, a〉gkτ〈t, a〉). Define a map φ1: V(X′)→ V(X31(p + 1, p))

by the rule

φ1(Lk) = (∞, k), φ1(Lgtik) = (i, k),
φ1(Lkτ) = (∞′, k), φ1(Lgtikτ) = (i′, k),

for any k ∈ K. Clearly, φ1 is an isomorphism from X′ to X31(p + 1, p).

Step 2. Show that Cos(Ã2; 〈k′t, a〉, 〈t, a〉gτ〈k′t, a〉) � X32(6, 5).
Note that L is adjacent to Lgt j(− j,− j2, j3)τ with j ∈ Fp. Moreover, for any k ∈ K,

{Lgti, Lgt jkτ} ∈ E(X′) if and only if {L, Lgt jkt−igτ} ∈ E(X′).

By computation,

Lgt jkt−igτ = Lgt j−igkt−igτ = Lgt(i− j)−1
( j − i,−( j − i)2,−( j − i)3)gt(i− j)−1

kt−igτ.

Therefore,

( j − i,−( j − i)2,−( j − i)3)gt(i− j)−1

kt−ig = (−(i − j)−1,−(i − j)−2, (i − j)−3),

that is,

k = (3( j − i) − 3( j − i)−3, i( j − i) − i( j − i)−3 + 2( j − i)2 + ( j − i)−2,

i2( j − i) − i2( j − i)−3 − i( j − i)2 + 2i( j − i)−2 + ( j − i)3 + 2( j − i)−1).

Since i , j and i, j ∈ F5, it follows that (i − j)2 = ±1. Then

k = (0,±2,±2(i + j)) for (i − j)2 = ∓1.

Set X′ := Cos(Ã2; 〈k′t, a〉, 〈t, a〉gτ〈k′t, a〉). Define a map φ2: V(X′)→ V(X32(6, 5))
by the rule

φ2(Lk) = (∞, k), φ2(Lgtik) = (i, k),
φ2(Lkτ) = (∞′, k), φ2(Lgtikτ) = (i′, k),

for any k ∈ K. Obviously, φ2 is an isomorphism from the graph X′ to X32(6, 5). �
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3.4. G is of affine type. In this subsection, we assume that either G � AGL(m, 2) �
Zm

2 o GL(m, 2) with m ≥ 3 or G � Z4
2 o A7. With the same notation as before,

Ã/K = A = G × 〈σ〉, where σ is the involution exchanging every pair i and i′. By
Propositions 2.3 and 2.6, we get either CG̃(K) = G̃ or CG̃(K)/K � Zm

2 with m ≥ 3.
When CG̃(K) = G̃, the same discussion as Lemma 3.1 shows that there exist no

connected covers occurring.
When CG̃(K)/K � Zm

2 , by checking Proposition 2.6, we get m = 3 and either p = 7
or p3 ≡ 1 mod 7. Thus, Y = K8,8 − 8K2 and Ã/K � AGL(3, 2) × Z2 � (Z3

2 o GL(3, 2))
× Z2. In what follows, the cases either p = 7 or p is an odd prime and p3 ≡ 1 mod 7
will be dealt with in Lemma 3.7 and the case p = 2 will be dealt with in Lemma 3.8.

Lemma 3.7. There exist no covers when either p = 7 or p is an odd prime and
p3 ≡ 1 mod 7.

Proof. Let F be a fiber. Since (|Ã : ÃF |, |K|) = (16, p3) = 1 for both cases, it follows
that K has a complement in Ã. Thus, we may set

G̃ = K o (L o T ), Ã = K o ((L o T ) × 〈τ〉),

where L � Z3
2, [K, L] = 1, T � GL(3, 2) � PSL(2, 7) and τ is an involution, which is a

lift of σ.
Take ũ ∈ F := f −1(0), where 0 is the zero vector of L. Set H := G̃ ũ = Ãũ ≤ K o T .

So, X is isomorphic to a coset graph X′ := X(Ã; H,D), where D = Hτ`k1H for some
` ∈ L \ {0} and k1 ∈ K. Therefore, D corresponds to a suborbit of Ã of length seven
relative to H.

Suppose that the representations of G̃ on the two biparts are equivalent. Then
there exists an ũ′ in the other bipart such that G̃ ũ = G̃ũ′ = H � PSL(2, 7). Then
|H`k1H|/|H| = 7 for some nontrivial elements ` and k1, that is, |(`k1)H | = 7. This forces
H � PSL(2, 7) having an orbit of length seven in its conjugacy action on K. However,
this is impossible by Proposition 2.7.

From now on, suppose that the two representations of G̃ on the two biparts are
inequivalent. In particular, [K, τ] , 1. Suppose that p3 ≡ 1 mod 7. Then there is only
one conjugacy class of PSL(2, 7) in KT . In this case, two representations of G̃ on two
biparts are equivalent. Therefore, we let p = 7.

By Proposition 2.6, GL(3, 7) has only one conjugacy class of subgroups isomorphic
to PSL(2, 7). So, we may fix a matrix representation φ of T in GL(3, 7) as follows:

a1 =

(
0 1
−1 0

)
7→ a =

0 0 2
0 −1 0
4 0 0

 ,
b1 =

(
1 0
1 1

)
7→ b =

1 0 0
1 1 0
4 1 1

 ,
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where 〈a1, b1〉 = SL(2, 7) and φ(e) = 1 for the center involution e. Then
CGL(3,7)(PSL(2, 7)) = Z(GL(3, 7)). Since [τ, T ] = 1, the element τ is the center
involution of GL(3, p), which implies that kτ = k−1 for any k ∈ K.

Acting on V(3, 2), we have G0 = 〈a, b〉 and H is the lift of G0. Then we turn
to the group H. Since H ≤ K o T and since there is only one conjugacy class of
involutions in K o T , we may assume that H = 〈a, bk2〉 for some k2 = (x2, y2, z2) ∈ K.
As H � PSL(2, 7), the generators of H should satisfy

a2 = 1, (bk2)7 = 1, (abk2)3 = 1, ((bk2)4a)4 = 1. (3.7)

From the last two equations of (3.7),

2x2 − y2 + z2 = 0, 2x2 − y2 + 2z2 = 0,

forcing y2 = 2x2 and z2 = 0. Thus, H = 〈a, bk2〉, where k2 = (x2, 2x2, 0).
Since the length of the orbit of H containing the vertex Hτ`k1 is seven, every

involution in H should fix a point in the orbit and every Sylow 7-subgroup of H should
be transitive on the orbit. Taking this into account, we get the following.

(1) Hτ`k1a = Hτ`k1, which forces `a = ` and ka
1 = k1, where k1 = (x1, y1, z1) ∈ K.

From
(4z1,−y1, 2x1) = ka

1 = k1 = (x1, y1, z1),

we get y1 = 0 and z1 = 2x1. Hence, k1 = (x1, 0, 2x1).
(2) The 〈bk2〉-orbit containing Hτ`k1 is

4 := {Hτ`k1, Hτ`bi
kbi

1 (k2
2)

∑i−1
j=0 b j

: 1 ≤ i ≤ 6},

that is,

Hτ`k1, Hτ`b(2x1 + 2x2, 2x1 + 4x2, 2x1), Hτ`b2
(5x1 + x2, 4x1 + x2, 2x1),

Hτ`b3
(3x1 + 4x2,−x1 − 2x2, 2x1), Hτ`b4

(3x1 + 4x2, x1 + 2x2, 2x1),
Hτ`b5

(−2x1 + x2, 3x1 − x2, 2x1), Hτ`b6
(2x1 + 2x2,−2x1 + 3x2, 2x1).

(3) The images of a acting on those points are

Hτ`k1, Hτ`ba(x1,−2x1 − 4x2, 4x1 + 4x2), Hτ`b2a(x1,−4x1 − x2, 3x1 + 2x2),
Hτ`b3a(x1, x1 + 2x2,−x1 + x2), Hτ`b4a(x1,−x1 − 2x2,−x1 + x2),

Hτ`b5a(x1,−3x1 + x2, 3x1 + 2x2), Hτ`b6a(x1, 2x1 − 3x2, 4x1 + 4x2).

Since a preserves the set 4 setwise, by comparing (2) and (3), one may get that
x1 = −2x2. Thus, k1 = (−2x2, 0,−4x2) and k2 = (x2, 2x2, 0). Moreover, aτk1 = a and

(bk2)τk1 = k−1
1 bk−1

2 k1 = b((k−1
1 )bk−1

2 k1 = b((4, 4, 4) + (−1,−2, 0) + (−2, 0,−4))) = bk2.

Therefore, [τk1,H] = 1. Finally,

〈D〉 = 〈a, bk2, `τk1〉 ≤ 〈a, bk2, L, τk1〉 = (L o 〈a, bk2〉) × 〈τk1〉 < Ã,

contradicting the connectedness of X. �
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Lemma 3.8. If p = 2, then X � X4(8, 2).

Proof. Let C = CG̃(K). Then C acts regularly on V(X) and C/K � Z3
2. Now C is

an extension of K by Z3
2 and so it has exponent either 2 or 4. Let T = G̃ṽ for some

ṽ ∈ V(X). Then T � GL(3, 2) � PSL(2, 7) and G̃ = C o T . Since C/K is elementary
abelian, we get Φ(C) ≤ K. Since T normalizes C, it normalizes Φ(C). On the other
hand, since T acts on K nontrivially and T is simple, K is a minimal normal subgroup
in G̃. It follows that Φ(C) is trivial or K. Thus, C is isomorphic to either Z6

2 or a 2-group
generated by three elements of order four. Suppose that the latter case happens, that
is, Φ(C) = K. A direct checking from a classification of groups of order 26 (see [19])
shows that C cannot be nonabelian. Therefore, it should be C � Z3

4 or Z6
2.

Recall our conditions

Ã = G̃〈τ〉 = (CG̃(K) o T )〈τ〉,

where τ2 ∈ K, T = G̃ ũ � PSL(2, 7) for some vertex ũ ∈ V(X), G̃ = C o T , C = CG̃(K)
and τ is a lift of σ. Then we prove the lemma by the following five steps.

(1) Show that [K, τ] = 1. Consider the group M = 〈K,T, τ〉. Suppose that [K, τ] , 1.
Then PSL(2, 7) × Z2 � M/K = M/CM(K) ≤ GL(3, 2), which is a contradiction.

(2) Show that τ2 = 1. Since [σ,G] = 1, for any t ∈ T , we may set tτ = tk for some
k ∈ K. Then tτ

2
= (tk)τ = tk2 = t, which means that [τ2,T ] = 1. Since τ2 ∈ K and T has

no fixed nonzero elements in K, we get τ2 = 1.
(3) Show that C � Z6

2. To the contrary, suppose that C � Z3
4. Then T can be

identified with a subgroup of Aut(C). By using Magma [2], we may compute that
Aut(C) has only one conjugacy class of subgroups isomorphic to GL(3, 2). Therefore,
we may fix a matrix representation of T in Aut(C). Pick two elements in Aut(C):

a =

−1 0 0
0 −1 0
1 0 1

 and b =

−1 −1 2
−1 1 1
2 1 2

 .
Then T := 〈a, b〉 � GL(3, 2). Note that we are working in the ring Z4.

Suppose that aτ = ak1 and bτ = bk2, where k1 = (x1, y1, z1), k2 = (x2, y2, z2) ∈ K.
Since ak1 and bk2 should satisfy the defining relations of GL(3, 2),

(ak1)2 = ka
1k1 = 1, ((ab)τ)3 = (ak1bk2)3 = (abkb

1k2)3 = (kb
1k2)I+ab+(ab)2

= 1,

which implies that z1 = 0 and x1 + x2 + z2 = 0.
Assume that X � Cos(Ã; T,D), where D = Tτ`T for some ` = (x, y, z) ∈ C \ K. It

follows that T has an orbit of length seven in its conjugacy action on C \ K, where the
involution a should fix a point in this orbit and 〈b〉 acts transitively on it.

Without loss of generality, suppose that Tτ` = Tτ`a, which is equivalent to
Tτ` = Tτ`ak1. Therefore, `a = `k1, that is,

z = 2x + x1, 2z = 0, 2y = y1. (3.8)
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By (3.8), the other six points in the 〈b〉-orbit ∆ including Tτ` are

Tτ`b = Tτ(−x − y + x2,−x + y + z + y2, 2x + y + z2),

Tτ`b2 = Tτ(2x + 2y + z + y2, 2x − y + z + x2 + z2, x + y + z + y2 + z2),

Tτ`b3 = Tτ(2x + y + y2 + z2, x + 2y + z + y2 + x2, y + z + x2),

Tτ`b4 = Tτ(x − y + z + z2,−x + 2y + y2 + z2, x + 2y − z + x2 + y2 + z2),

Tτ`b5 = Tτ(2x − y − z + x2 + y2,−x + y + x2 + y2 + z2,−x + y2) and

Tτ`b6 = Tτ(x + z + x2 + z2, 2y − z + z2, x − y + x2 + y2).

(3.9)

As a fixes 4 setwise, by (3.8) and the equation x1 + x2 + z2 = 0,

Tτ`ba = Tτ`bak1ka
2 = Tτ(−x + 2y, x + y − z + y2, 2x + y + z2) ∈ 4. (3.10)

Comparing (3.9) and (3.10), one may get ` ∈ K, which is a contradiction.
(4) Show that [τ,C] = 1. Since C is regular on both Ũ and Ũ′ and C o 〈τ〉

acts regularly on V(X), we may identify Ũ with C and Ũ′ with Cτ. Suppose that
X1(1) = {τci | ci ∈ C, 1 ≤ i ≤ 7}, the neighborhood of 1 with size seven. Then, for any
1 ≤ i ≤ 7, τci is adjacent to τciτci = cτi ci ∈ K, as [τ, ci] = 1 in G. Since each τci is
adjacent to just one vertex in the fiber K, that is, {1}, we have cτi ci = 1, that is, cτi = ci.
From the connectedness of X, we get that C can be generated by ci with 1 ≤ i ≤ 7 and
thus [C, τ] = 1.

(5) Show that X � X4(8, 2).
Since G̃ = C o T � Z6

2 o GL(3, 2), T has an isomorphism to GL(6, 2). To describe
these isomorphisms, let Ω = PG(2, 2) be the two-dimensional projective space over
the field F2, while we identify Ω with V(3, 2) \ {0}. Let χ∆ denote the characteristic
function of ∆, that is, χ∆(i) = 1 for i ∈ ∆ and χ∆(i) = 0 for i < ∆. Then the set V = V(Ω)
of all characteristic functions χ∆, where ∆ ∈ P(Ω), forms a seven-dimensional vector
space over F2 with the rule: (aχ∆ + bχΓ)(i) = aχ∆(i) + bχΓ(i) for any a, b ∈ F2 and
χ∆, χΓ ∈ V(Ω). Clearly, a natural basis for V(Ω) is the set of characteristic functions
χ{i} for all i ∈ Ω. Moreover, V can be defined as a T -module, called a permutation
module, where the action of g ∈ T is defined by (χg)(i) = χ(ig

−1
) for all i ∈ Ω (see [27]).

For i = 0, 1, 2, let Vi be the subspace of V(Ω) generated by the characteristic
functions of all i-dimensional subspaces of PG(2, 2). Then V0 = V(Ω), V2 = I, where
I = 〈

∑
i∈Ω χ{i}〉, and Vi is a T -submodule. Choose a basis {α1, α2, α3} for V(3, 2). Then

{χ{αi} + V1 | 1 ≤ i ≤ 3} (respectively {χ{αi,α j,αi+α j} + V2 | i , j, 1 ≤ i, j ≤ 3}) is a basis
for the irreducible quotient T -module V0/V1 (respectively V1/V2). Therefore, the
T -module V0/V2 of dimension six has the irreducible T -submodule V1/V2 of
dimension three, which is the unique faithful minimal T -submodule of V by
[21, Theorem 5.1]. Consider the affine transformation group AGL(6, 2) of the linear
vector space V0/V2. Then T can be viewed as a subgroup in AGL(6, 2), while K is
exactly V1/V2.

Let every characteristic function in V0 be presented as a seven-dimensional vector
(x1, x2, . . . , x7) over F2, whose vector components are indexed in order by

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.
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Let T = 〈a, b〉 � GL(3, 2), where

a =

1 0 0
0 1 0
1 0 1

 and b =

1 1 0
1 1 1
0 1 0

 .
Then, via its action of V(3, 2), the actions of a and b on V(Ω) are given by

(x1, x2, x3, x4, x5, x6, x7)a = (x1, x2, x5, x4, x3, x7, x6),
(x1, x2, x3, x4, x5, x6, x7)b = (x5, x3, x4, x1, x6, x7, x2).

Since 〈b〉 is a Sylow 7-subgroup, we may set aτ = ak1 and bτ = b, where k1 ∈ K.
Then ak1 and b satisfy the defining relations of GL(3, 2):

(ak1)2 = 1, (ak1b)3 = kb(ab)2

1 kb(ab)
1 kb

1 = 1,
(b4ak1)4 = k(b4a)3

1 k(b4a)2

1 kb4a
1 k1 = 1.

(3.11)

Solving (3.11), we get k1 = (0, x, x, x, x, 0, 0) + V2.
First, let x = 1. Suppose that X � X(Ã, T,D), where D corresponds to a suborbit

of Ã of length seven relative to T . Since a should fix a point in D, we may
assume that Tτca = Tτc, so that D = TτcT , for c = (x′1, · · · x

′
7) + V2 ∈ C \ K. Then

T = Tcaτc = Tcak1c = Tcak1c, that is, cak1c ∈ V2. However,

cack1 = (0, 1, x′3 + x′5 + 1, 1, 1 + x′3 + x′5, x
′
6 + x′7, x

′
6 + x′7) < V2.

Secondly, let x = 0. Then k1 = 0 and so [τ, T ] = 1. In other words, τ is a central
involution of Ã and so our graph X is a canonical double covering of a cover of the
complete graph of order eight with the covering transformation group Z3

2 and whose
fiber-preserving automorphism group acts 2-arc-transitively. This covering graph has
been determined in [8] and is just the homomorphism image of X4(8, 2) by mapping
every pair (i, i′) to one vertex. �

Combining the lemmas in Sections 3.1–3.4, we complete a proof of Theorem 1.1.
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