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Abstract

In this paper, we first prove that for g € {3,4}, there are infinitely many 3-geodesic transitive but not 3-arc
transitive graphs of girth g with arbitrarily large diameter and valency. Then we classify the family of
3-geodesic transitive but not 3-arc transitive graphs of valency 3 and those of valency 4 and girth 4.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. A geodesic from a vertex
u to a vertex v in a graph I is one of the shortest paths from u to v in I', and this
geodesic is called an s-geodesic if the distance between u and v is s. Then I is said
to be s-geodesic transitive if, for each 1 <i < s, the automorphism group Aut(I') is
transitive on the set of i-geodesics of I'. For a positive integer s, an s-arc of ' is a
sequence of vertices (vo, V1, ..., V,) in I" such that v;, v, are adjacent and v;_| # v4
where 0 <i<s—-1and 1< j<s—1. In particular, 1-arcs are called arcs. Then I'
is said to be s-arc transitive if, for each i < s, the group Aut(I') is transitive on the
set of i-arcs of I'. Thus if a graph is s-geodesic transitive (s-arc transitive), then it is
t-geodesic transitive (t-arc transitive) for each ¢ < s.

Clearly, every 3-geodesic is a 3-arc, but some 3-arcs may not be 3-geodesics. If I’
has girth 4 (the girth of I', denoted by girth(I'), is the length of the shortest cycle in I),
then the 3-arcs contained in 4-cycles are not 3-geodesics. The graph in Figure 1 is the
Hamming graph H(3, 2), which is 3-geodesic transitive but not 3-arc transitive with
valency 3 and girth 4. Thus the family of 3-arc transitive graphs is properly contained
in the family of 3-geodesic transitive graphs.

The first remarkable result about 2-arc transitive graphs comes from Tutte [10, 11],
and this family of graphs has been studied extensively; see [1, 7, 8, 12]. The local
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Ficure 1. H(3,2).

structure of the family of 2-geodesic transitive graphs was determined in [3]. In [4], the
authors classified 2-geodesic transitive graphs of valency 4. Later, in [5], a reduction
theorem for the family of normal 2-geodesic transitive Cayley graphs was produced
and those which are complete multipartite graphs were also classified. In this paper,
we study the family of 3-geodesic transitive graphs, and the first theorem shows that
there exist geodesic transitive but not 3-arc transitive graphs with unbounded large
diameter and valency. (The diameter diam(I") of a connected graph I is the maximum
distance of u, v over all u,v € V(I'). If T is s-geodesic transitive with s = diam(I"), then
I" is called geodesic transitive.)

TueoREM 1.1. For g € {3, 4}, there exist infinitely many geodesic transitive but not 3-arc
transitive graphs of girth g with arbitrarily large diameter and valency. In particular,
these graphs are 3-geodesic transitive but not 3-arc transitive.

Remark 1.2. Let I' be a 3-geodesic transitive but not 3-arc transitive graph. Then
girth(I') < 5. If girth(I') = 3, then I' is not 2-arc transitive, and such graphs have been
investigated; see [3—-5]. We suppose that I is 2-arc transitive, so girth(I') =4 or 5.
If girth(I') = 5, then I is nonbipartite, and there is a characterisation of such graphs
in [9].

Our second theorem is a classification of the family of 3-geodesic transitive graphs
which are not 3-arc transitive of valency at most 4. Note that a 3-geodesic transitive
graph of valency 2 is a cycle and so is 3-arc transitive.

Tueorem 1.3. Let I be a 3-geodesic transitive but not 3-arc transitive graph of valency
k. Suppose that girth(I') > 4.

(1) If k=3, then T is either H(3,2) or the dodecahedron, and both are geodesic
transitive.

(2) Ifk =4 and girth(I') = 4, then T is either H(4, 2) or the complement of the 2 X 5
grid, and both are geodesic transitive.

We do not have examples of 3-geodesic transitive but not 3-arc transitive graphs of

valency 4 with girth 5 at the time of writing, and we conjecture that there is no such
graph.
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2. Proof of Theorem 1.1

To facilitate the following discussion, we recall the definition of the Hamming
graph. The Hamming graph T = H(d, n) has vertex set A = {(x1,...,xq) | x; € A},
the cartesian product of d copies of A, where A = {1,aq,... ,a" 1), d>2and n > 2.
Then two vertices v and V' are adjacent if and only if they are different in exactly one
coordinate. Thus, if we suppose that |[v —V’| is the number of different coordinates of
v and V', then v and v’ are adjacent if and only if |[v — V| = 1. Moreover, V' € [';(v) if
and only if [v —Vv'| = i, where 1 <i < diam(I") and T';(v) is the set of vertices of I which
have distance i from v. The graph I has valency d(n — 1).

When n =2 and d > 2, the Hamming graph H(d, 2) is often called a d-cube
graph, see [2, pages 261-262]. If n =2, then girth(H(d, n)) = 4; if n > 3, then
girth(H(d, n)) = 3. In the following discussion, we always suppose that Hamming
graph H(d, n) and A are as defined above.

A graph I' is said to be G-geodesic transitive if, for each i < diam(I"), the group
G < Aut(D) is transitive on the set of i-geodesics of I'.

Levma 2.1. Let T = H(d, n) with vertex set A where d >2 andn >2. Let G =X 1S 4 <
Aut(I') where X < S ,,. If X acts 2-transitively on A, then T is G-geodesic transitive. In
particular, T is geodesic transitive.

Proor. Suppose that X acts 2-transitively on A. Then X acts primitively but not
regularly on A. It follows from [6, Lemma 2.7A] that G acts primitively and hence
transitively on V(I).

First, we prove that I' is (G, 1)-geodesic transitive. Suppose that (v, vy) is a 1-

geodesic of I'. Since G acts transitively on V(I'), we can assume that vo = (1, 1,..., 1).
Since, for any two vertices u, v’ of I', ' € I';(u) if and only if |u — u’| = i, that is, u
and u’ have exactly i different entries, it follows that vi = (1,...,b,...,1) for some

b € A\{1}. Now since X acts 2-transitively on A, it follows that the stabiliser X; acts
transitively on A\{1}, hence there exists o € X; such that b = a. It follows that there
exists @ € Gy, = X; ¢S4 such that vi =(1,...,b,..., )" =(a,1,...,1). Thus I'is
(G, 1)-geodesic transitive.

Next, we prove that, for each j=2,3,...,d, whenever I is (G, j — 1)-geodesic
transitive, then I is (G, j)-geodesic transitive.

Let (vo,v1,...,vj-1,v;) be a j-geodesic of I' where 2 < j < d. Suppose that I' is
(G, j — 1)-geodesic transitive. Then we can fix a (j — 1)-geodesic (vo,vi,..., V1)
such that vo = (1, 1,...,1), and foreach i=1,2,...,j -1, v;=(a,a,...,a,1,...,1)
where the first i entries are equal to a and the last d — i entries are equal to 1. Now since
vielj(vo) N y(vi)N---NT(vjy) and since v; € I(v) if and only if [v — v;| = k, it
follows that v; = (a,...,a,1,...,x,...,1) for some x € A\{1}, where the first j — 1
entries are equal to a. Moreover, since X acts 2-transitively on {1,a,...,a" '}, X,
acts transitively on A\{1}. Since X; ¢ Sy-(j-1) < Gy,,..v,.,, it follows that there exists
Y € Gy suchthatv’ =(a,...,a,1,...,x,..., 1)’ =(a,...,a,a,1,...,1) where the
first j entries are equal to a, and the last d — j entries are equal to 1. Therefore, I is
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(G, j)-geodesic transitive. Finally, since diam(I') = d, it follows that I" is G-geodesic
transitive, and so is also geodesic transitive. O

Proor oF THEOrREM 1.1. LetI” = H(d, n) be the Hamming graph withd > 2,n > 3. Then
I" has girth 3, diameter d and valency d(n — 1). Thus I is not 3-arc transitive. Further,
by Lemma 2.1, I' is geodesic transitive.

Let I = J(n, k) be the Johnson graph with 1 < k < [n/2] where [n/2] is the integer
part of n/2. Then I' has girth 3, diameter k and valency k(n — k). Thus I is not 2-
arc transitive, and so is not 3-arc transitive. Further, by Devillers ef al. (‘On the
transitivities of graphs’, Proposition 2.1, submitted for publication), I" is geodesic
transitive.

LetI' = H(d, 2) with d > 3. Then, girth(I') = 4 and I" has both diameter and valency
d. Hence I' is not 3-arc transitive. It follows from Lemma 2.1 that I" is geodesic
transitive. O

3. Proof of Theorem 1.3
3.1. Valency 3

A graph T is said to be distance transitive if Aut(I') is transitive on the ordered
pairs of vertices at any given distance. Suppose that I is a distance transitive graph
of valency k and diameter d. Then the cells of the distance partition with respect
to u are orbits of A, where A := Aut('), and every vertex in I';(x) is adjacent to the
same number of other vertices in I';_;(u), say ¢;. Similarly, every vertex in I';(x)
is adjacent to the same number of other vertices in I';;1(«), say b;. We denote by

(k,b1,...,b4-1;1,¢a,...,cy) the intersection array of T.
The distance from vertex u to vertex v is denoted by dr(u,v). We give a useful
lemma.

LemmA 3.1. Let I be an i-geodesic transitive graph where 1 <i < diam(I') — 1. Let u,v
be two vertices of T such that dr(u,v) = i. Suppose that |U;;1(u) NT(v)| = 1. ThenT is
geodesic transitive and b; = 1 for each i < j < diam(I") — 1.

Proor. Let (ug = u,uy,...,u; =v) be an i-geodesic of I'. Since |T';41(up) N T(w)| =1,
it follows that b; = 1 and I' is (i + 1)-geodesic transitive. Let j be an integer such
that i < j < diam(I') — 2. Suppose that b, =1 for every i <k < j. Then I" is (j + 1)-
geodesic transitive. Let (u, ..., u;42) be a (j + 2)-geodesic. Since I'is (j + 1)-geodesic
transitive, it follows that b; = |T'j(uy) N T(uje)l.

Suppose that x € I'j1o(ug) NT'(uji1). Thendr(x,uy) < j+ 1. If dr(x,u;) < j+ 1, then
dr(x,up) < dr(x,u;) + 1 < j+ 2, contradicting the assumption. Thus dr(x,u;) = j + 1,
that is, x € Fj+1(u1) N F(uj+1). Thus Fj+2(uo) N F(uj+1) c Fj+1(u1) N F(uj+1), and hence
bjet = ITjea(ttg) O T(upu)| < a1 () N T(wjer)| = by = 1. Thus, T'is (j + 1)-geodesic
transitive. By induction, I" is geodesic transitive. O

LevmMa 3.2. Let T be a 3-geodesic transitive but not 3-arc transitive graph of valency 3.
Suppose that girth(I') > 4. Then T is geodesic transitive, and I is H(3,2) or the
dodecahedron.
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Proor. Since I' is 3-geodesic transitive but not 3-arc transitive, it follows that
girth(') =4 or 5.

Let (4, v,w) be a 2-geodesic of I'. Suppose first that girth(I') = 4. Then there are
six edges between I'(#) and I';(u), and |['(w) NT'(w)| =2 or 3. If I'(u) N T(w)| =3,
then I' is isomorphic to the complete bipartite graph K33 which is 3-arc transitive,
a contradiction. Suppose that [['(u) N T'(w)| = 2. Then |I'3(u) NT'(w)| = 1, and by
Lemma 3.1, T is geodesic transitive. Next assume that girth(I') = 5. Then |I'(x) N
I'w)|=Tand I'3(u) NT(w)| =0or 1. If I'(x) N T'(w)| =0, then I" is geodesic transitive.
If T(w) NnT'(w)| =1, then by Lemma 3.1, T is also geodesic transitive. Therefore,
I' is distance transitive, and so I' is one of the graphs listed in [2, pages 221-222,
Theorems 7.5.1 and 7.5.2].

Since I' is 3-geodesic transitive, it follows that I" has 3-geodesics and so the diameter
of I is at least 3. By inspecting the candidates in [2, pages 221-222, Theorems 7.5.1
and 7.5.2], T is either H(3, 2) or the dodecahedron. O

3.2. Valency 4

Lemma 3.3. Let T be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(') = 4. Then [I,(v) N T(w) NT(w)| =1 or 2, for each 2-geodesic
(u,v,w).

Proor. Suppose that I'(v) = {uy, up, us, us}. Since girth(I') = 4, it follows that any pair
of vertices in ['(v) are nonadjacent, and 1 < [[>(v) N T'(u;) N T(u,)| < 3. We will now
prove that [[,(v) N T'(uy) N T(un)| # 3.

Suppose to the contrary that |I,(v) N T'(u;) N T(up)] = 3. Since T is 3-geodesic
transitive, it follows that for any 2-geodesic (x,y,z) of I, [I2(y) N T'(x) N T'(z)| = 3.
Thus, [[2(v) N T'(uy) N I(uz)l = [F2(v) N T(ur) N T(us)| = 3.

Since the valency of I' is 4, it follows that [I'5(v) N T'(uy)| = 3. Thus I'(v) N
I'(u)) =T,(w)NT () NT(up) =T (w) NT'(uy) NT(uz) = T(v) NT(uy) N T'(ug). Hence
I(v) =T (v) NT'(u;) and diam(I') = 2, contradicting the hypothesis that I" contains 3-
geodesics. Therefore, [[(v) NT'(u;) NT'(up)| = 1 or 2. Since I' is 3-geodesic transitive,
T>(v) N T'(w) N T'(w)| = 1 or 2 for any 2-geodesic (u, v, w). O

Lemmva 3.4. Let T be the complement of the 2 X (k + 1) grid. Then T is geodesic
transitive with diameter 3 and valency k.

Proor. By [2, page 222], the intersection array of I" is (k,k—1,1;1,k - 1,k), so its
valency is k and its diameter is 3. Note that I is antipodal and each antipodal block
has two vertices. The automorphism group of I' is S, X S4;;. We reconstruct I in the
following way. Let V(I') = {(ay,0), (a2, 0), ..., (ax+1,0), (a1, 1), (a2, 1), ..., (ar+1, D},
and make two vertices (a;, 0), (a;, 1) adjacent if and only if i # j. It is clear that I’
is vertex transitive. Let u = (ay,0). Then I'(u) = {(az, 1), ..., (@rs1, 1)}. As Siy1 iS
k + 1 transitive on {ay, ..., a1}, it follows that I" is arc transitive. Let v = (a», 1).
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Then I'r(u) NT'(v) = {(asz, 0), (as,0), ..., (ars1,0)}. As Sy is k + 1 transitive on
{ai,...,ars1}), it follows that A, is transitive on I'2(u) N I'(v), and so I is 2-geodesic
transitive. Finally, from its intersection array, I" is geodesic transitive. O

Lemma 3.5. Let I be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(I') = 4. Let (u,v,w) be a 2-geodesic and [I',(v) NT'(w) N T(w)| = 2.
Then T is geodesic transitive and T is the complement of the 2 X 5 grid.

Proor. Since girth(I') = 4, any pair of vertices of I'(v) are nonadjacent. Since
W) NT(w) NT(w)| =2 and v € I'(u) N T'(w), it follows that |[I'(u) N T'(w)| = 3, and
so [I's(u) N T'(w)| = 1, and by Lemma 3.1, T" is geodesic transitive. Hence I is distance
transitive and I" is one of the graphs in [2, Theorems 7.5.2 and 7.5.3]. By inspecting
these graphs, I" is the complement of the 2 X 5 grid. O

Lemma 3.6. Let T be the incidence graph of the 2-(7,4,2) design (the complement of
the Fano plane). Then T is not 3-geodesic transitive.

Proor. By [2, page 222], ' is distance transitive and its intersection array is
(4,3,2;1,2,4). Hence it is arc transitive. Note that its automorphism group is
A = PGL(3,2)) of order 168. Let (&, v,w) be a 2-geodesic. Then |A,| =12, |A,,| =3
and |A, | = 1. However, [I'3(u) NT'(w)| = 2, so A, is not transitive on I'3(u) N T'(w),
that is, I is not 3-geodesic transitive. O

Lemma 3.7. Let T be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(I') = 4. Let (u, v, w) be a 2-geodesic and [I,(v) NT'(w) N T(w)| = 1.
ThenT = H(4,2).

Proor. Since T is 3-geodesic transitive and [[3(v) N T'(u) N T'(w)| = 1, it follows that
for every 2-geodesic (x,y,z), [T2(y) NT'(x) NT'(z)| = 1. Suppose that I'(v) = {u; = u,
uy = w, us, ug}. Then [[(v) NT'(u;) N (u;)| = 1 whenever i # j.

Suppose that T',(v) N T'(u;) = {wy, wy, wz} and T(v) N T'(u;) N T'(ip) = {w1}. Then
{ui,up} CT'(v) NT'(wy), and it follows that |['(v) N ['(w,)| > 2. Hence w; is adjacent
to at least one of u3, uy. Without loss of generality, assume that w; is adjacent to uj.
Since [[2(v) N T'(u) NT'(uj)| = 1, where j = 2,3,4, it follows that ws is not adjacent
to up or uz. Since [I'(v) N T'(w3)| > 2, it follows that w3 is adjacent to uy. Moreover,
I'v) NnT'(wy) = {uy, up}. It follows that [I'(x) N I'(z)| = 2 for every 2-geodesic (x, y, 7).

Now suppose that ', (v) N T'(u) = {w1, wg, ws}. Since [[(v) N T'(up) NT(u3)| = 1 and
u3, wi are not adjacent, it follows that u3 is adjacent to exactly one of wy, ws. Suppose
that u3 is adjacent to w4. By noting that [[2(v) NT'(up) NT(ug)| = 1, T(v) NT(w))| =2
where j=1,2,3,4,5, T'(v) N T(wy) = {uy,up} and I'(v) N T'(wy) = {uy, u3}, we see that
uy is adjacent to ws.

Assume that I',(v) N T(u3) = {wa, wa, we}. Since [I2(v) NT(u3) NT'(uy)| = 1 and
uy is not adjacent to wy, wy, it follows that uy is adjacent to wg. Thus I(v) =
(w1, wa, w3, wa, ws, we}.
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If wy is adjacent to one of wy, ws, wy, ws, then girth(I') = 3, which contradicts the
assumption girth(I') = 4. Suppose that w; is adjacent to wg. Then since I' is 3-
geodesic transitive, w; is adjacent to one of w3, wy, ws, we. If wy is adjacent to wy,
then diam(I") = 2 and T" is distance transitive of 11 vertices. By inspecting candidates
from [2, page 222], such a graph does not exist, giving a contradiction. If w; is
adjacent to w3 or wy, then (w,, w3, uy) or (wp, wy, u3) is a triangle, which contradicts
the assumption that girth(I') = 4. Thus w, is adjacent to ws. Similarly, w3 is adjacent
to wy. Thus I'(up) = {v, wy, wa, ws} CT'(uy) UT(uy), and so I'(up) N T3(u;) = 0. Since
up € I'y(uy) and I is 3-geodesic transitive, it follows that diam(I') = 2 and I is distance
transitive with 11 vertices. By inspecting the graphs of [2, page 222], such a graph
does not exist, giving a contradiction. Thus I'(w;) N T (v) =0, so [T'(wy) NT3(v)| = 2.

Now suppose that I'3(v) N T'(wy) = {r, rz}. Then I'(wy) = {uy, u, r, r}. Since
(w1,uy, wp)is a2-geodesic and [I'(w;) N T'(w,)| = 2, and since w; is not adjacent to uy, it
follows that w; is adjacent to exactly one of r, r,. Without loss of generality, suppose
that w, is adjacent to r;. Similarly, each of ws, w4, ws, is also adjacent to exactly
one of ry, ry. Thus {wy, wo, ws, wg, ws} C T(v) N [['(r;) NT'(r)]. By the 3-geodesic
transitivity, [To(v) NT'(ry)| = 3. If [[(v) NT'(r)| =4, then I is geodesic transitive
with diameter 3 and 14 vertices. Hence I is distance transitive. By inspecting the
graphs of [2, page 222], only the incidence graph of 2-(7,4,2) design has 14 vertices
and diameter 3. However, by Lemma 3.6, this graph is not 3-geodesic transitive,
giving a contradiction. Hence [['3(v) N T'(r;)| = 3, and so [[4(v) N T'(r;)| =1 or 0. If
[T4(v) NT(r1)| = 0, then T is geodesic transitive of diameter 3, with 15 vertices and
intersection array (4, 3,2; 1,2, 3). By checking the distance transitive graphs of valency
4 of [2, page 222], such a graph does not exist. If [I['4(v) N T'(r)| = 1, then by Lemma
3.1, T is geodesic transitive, and so is distance transitive. In particular, a part of its
intersection array is (4,3,2,1,...;1,2,3,...). Checking the distance transitive graphs
of valency 4 of [2, page 222], only H(4, 2) has such a property. Further, it follows from
Lemma 2.1 that H(4, 2) is also geodesic transitive. O

The proof of Theorem 1.3 follows from Lemmas 3.2, 3.3, 3.5 and 3.7.
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