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Holomorphic Vanishing Theorems on
Finsler Holomorphic Vector Bundles
and Complex Finsler Manifolds

Bin Shen

Abstract. In this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over
both compact and non-compact complete complex manifolds. We also inquire into the holomorphic
vector fields on compact and non-compact complete complex Finsler manifolds. We get vanishing
theorems in each case according to different certain curvature conditions. This work can be considered
as generalizations of the classical results on Kahler manifolds and hermitian bundles.

1 History and Introduction

A holomorphic section, or specifically, a holomorphic vector field, is the dual of a holo-
morphic form, which is a special kind of harmonic form. The harmonic form, because
of its role in Hodge theory, connects analysis, topology and geometry. The relation of
a holomorphic form and a harmonic form is a classical topic that has achieved some
tremendous results [11].

The vanishing theorem of holomorphic sections on complex vector bundles is
meaningful and has attracted a lot of mathematicians’ attention. In 1946, S. Bochner
proved that a compact Kéhler manifold with negative Ricci curvature admits no non-
zero holomorphic vector fields [4]. This result may seem inconspicuous nowadays,
however, it is the first time to use the so-called Bochner’s technique on complex man-
ifolds. In 1970, S. Kobayashi and H. Wu generalized the result to the case of holo-
morphic vector bundles over compact complex manifolds [8]. Precisely, they showed
that a holomorphic vector bundle over a compact complex manifold with a hermitian
fibre metric whose curvature satisfies that (3; Kjg;i) is a negative definite hermitian
matrix at each point admits no non-zero holomorphic sections.

In 1976, S. Yau discussed the case of holomorphic L?-sections of holomorphic
vector bundles over complex Kéhler manifolds, by studying the L?-harmonic forms.
Actually, he proved the non-existence of non-constant L? holomorphic functions for
p > 0 on a complete Kihler manifold. Moreover, he also proved that there are no
non-zero L? holomorphic n-forms on a complete Kihler manifold with positive to-
tal scalar curvature, which is supposed to be bounded from below by a constant [12].
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Although these results are more general in the sense of vector fields, they are focused
on the Kéhler manifold for the reason of analysis.

In addition to the analysis of L? behaviours of functions on Kéhler manifolds by
using the general maximum principle, there is another method to restrain the vector
fields on non-compact complete complex manifold [3]. In 1981, S. Yorozu used the
method to study the non-existence of non-zero holomorphic vector fields on com-
plete Kihler manifolds [13]. He proved that every holomorphic vector field of type
(1,0) with finite global norm on a complete Kahler manifold with non-positive Ricci
curvature is parallel. Moreover, there is no such vector field, provided the negativeness
of the Ricci curvature. His result generalizes the results of Bochner [4] and Kobayashi
and Wu [8] to non-compact cases on the Kahler manifolds.

The complex Finsler manifolds and complex Finsler vector fields are interesting,
because some curvature properties of them are related to the ampleness of the tauto-
logical bundles [5]. Some important concepts have been introduced and their prop-
erties have been researched [1,2,7]. The curvature properties and different kinds of
Chern forms on Finsler bundles are studied by K. Liu, H. Feng and X. Wang [6].

Recently, the author has obtained some results about vanishing theorems in Finsler
geometry by generalizing the Bochner’s technique [9,10]. The same approach can be
utilized to research the holomorphic vector fields on a complex Finsler manifold and
holomorphic sections in a holomorphic Finsler vector bundle.

In this article, we will look into the holomorphic sections of vector bundles
equipped with some Finsler metrics over a complex or Hermitian manifold and spe-
cially, the holomorphic vector fields on general Finsler manifolds. The main theorems
we get are listed below. In the next statement and in all the rest of the paper, we always
use the notation (A;;j) to denote a hermitian matrix with entries A;;. On a Finsler
holomorphic vector bundle (E, G) over a complex manifold M, we have the following.

Theorem 1.1 Let E be a holomorphic vector bundle over a complex manifold M with
a Finsler fibre metric G such that (¥, 9Rijaa) is a negative semi-definite hermitian
matrix at each point of M. Then every holomorphic section of E with finite global
norm is parallel with respect to the horizontal Chern-Finsler connection. Moreover, if
(X o 9Rijaq) is negative definite, then E admits no non-zero holomorphic sections with
finite global norm.

On a compact complex Finsler manifold, we get the vanishing theorem of holo-
morphic vector field of type (1,0) as follows. More details are shown in Theorem 4.2
in Section 3.

Theorem 1.2 Let (M, G) be a compact complex Finsler manifold. If it has non-positive
(first) G-average Ricci curvature 9 Ric, then every holomorphic vector field of type (1,0)
on M is parallel with respect to the horizontal Chern-Finsler connection. Moreovet, if
the curvature 9 Ric is negative, then M does not admit any non-zero holomorphic vector

field of type (1,0).

On a non-compact complete complex Finsler manifold, the following vanishing
theorem holds.
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Theorem 1.3 Let (M,G) be a complete complex Finsler manifold. If it has non-
positive second or third G-average Ricci curvature ® Ric or © Ric, then every holomor-
phic vector field of type (1,0) with finite global norm is parallel with respect to the hor-
izontal Chern-Finsler connection. Moreover, if the curvature ® Ric or © Ric is negative,
then there is no non-zero holomorphic vector field of type (1,0) on M with finite global
norm.

2 Concepts and Preliminaries

In this section, we will first introduce some basic concepts on holomorphic vector
bundles with Finsler metrics over a complex manifold. Then we will briefly present
the analog concepts on complex Finsler manifolds. Later, curvatures on bundles and
manifolds are given.

2.1 Complex Finsler Vector Bundles and Complex Finsler Manifolds

Let m: E - M be a holomorphic vector bundle on a complex manifold M. A con-
tinuous function G defined on the bundle E is called a Finsler metric if it satisfies the
following conditions:

(i) G is smooth on the punched bundle E° = E \ O, where O denotes the zero
section of E,

(i) G(z,Av) =|A*G(z,v) forany A € C,

(iii) G(z,v) > 0forall (z,v) € E with z € M and v € n7!(z), where the equality
holds if and only if v = 0.

A holomorphic vector bundle E admitting a complex Finsler metric G is called
a holomorphic Finsler vector bundle. For the convenience of application, one often
requires that G is strongly pseudo-convex, that is,

(iv)  the Levi form /~190G on E° is positive-definite along fibres E, = 7n7'(z) for
z€M.

The quotient map q: E° — P(E) = E°/C* defines the holomorphic projective
bundle P(E). Let z = (2!,...,z") be the local coordinate system in M, and let
v = (v!,...,v") be the fibre coordinate system on E/M defined by a local holomor-

phic frame s = {sy,...,s,} of E. Customary symbols used here are
) ) : 0 : 0
Ou = , 0pi= , 0= ——, 0j:= =0,
oz P azB T ovit T o

wherel < a, f < mand1< i, j < r. By the strongly pseudo-convex condition (iv), the
Hermitian matrices (G,- i(z v)) is positive-definite and actually defines a Hermitian
metric K on the pull-back bundle p: 7*E — E°. The following identities proved by
Kobayashi [7] tells us that (G;;(z,v)) can be defined on P(E), hence h® is a Hermit-
ian metric on the pull-back bundle p: 7*E — P(E).
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Lemma 2.1 The following identities hold for any (z,v) € E° and A € C:

G

oovi”

0*G ;

Gij=5 o Cil(aM) =Gij(zv) = Gji(zv),
G(2,v) = Gi(zv)v' = Gj(z,v)¥/ = Gij(2,v)v'?/,

Gij(2:v)v' = Gip(2 )V’ = Gy (z,v)¥ = 0.

Gi(z,Av) = AG;(z,v),

We also write
°G G xz ’G
ovioze’ P 9ze9zB’
Let V™ E be the Chern connection on the holomorphic vector bundle p: (7*E, h®)
— E°. We still use the notation s to denote the sections of 7*E, then the Chern con-
nection (1,0)-forms 0% with respect to the local holomorphic frame s = {sy,...,s,}
are given by

Gig = etc.

V" Es; = 9? ® Sk» 95{ = (aGijij) = riktxdza + Yf‘(zd"l’
(1) I‘k _ aG,]- G]-k yk _ aGlejk
T gze T T et T

where (G’*) denote the inverse of the matrix (G;;). Lemma 2.1 tells us that
k k k i_ ok !
Tio(2,Av) =i (2,v),  yi(zv)v' =y (z,v)v' = 0.

The Chern connection V" £ provides a smooth horizontal-vertical decomposition
of the holomorphic tangent vector bundle TE°® of E°:

TE°=H®V,
where V is called the vertical subbundle of TE® defined by
V = ker(p. : TE® - TM),
and H is called the horizontal subbundle of TE® defined by
H =ker(V7 P: TE® > m*E).

Here P is the tautological section of the bundle p: n*E — E° defined by P(z,v) = v.
Canonically, the vertical subbundle V is holomorphically isomorphic to 7*E. On the
other hand, the horizontal subbundle H is smoothly isomorphic to 7*TM — E. In
local coordinates,

O 9 k90
8z¢  9z% % gyk’

J—C:spanc{ IScxgn},

V:span(c{%,lsiSr}.
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The expression (1) can be rewritten with respect to the horizontal and vertical bases
as

Vs = 0f @5y, 0F = (9G;;GT) = TK, dz* + K, 8",
aG,,G N

0Gi;
= G]k G]k(Giju - Gijlri)’ Yil yll - ov! >

0z*
where F‘i = GG = G Giiav'.
According to the zero-homogeneous of the horizontal connection, the quotient
map g induces a smooth horizontal-vertical decompositions of TP(E) and T*P(E),
ie.,

TP(E)=H eV, T*P(E)=%"eV",

where J( = ¢, 7(, and V = ¢..V. The Finsler metric provides the Fubini-Study form on
each fibre, defined by

2) wy = ?(log G),-j(Svi A S,
A

Lemma 2.2 The vertical metric form wv is compatible with the horizontal covariant
derivative.

Proof Denote the horizontal covariant derivative with respect to z* by V. For any
1< k < n, we have

v“((log G)ij(z,v)8v' A 617j)

( :a (logG),J) Sv' A 8W + (log G)ii(z,v)(Vadv') A 87/

6 /G G;G; G G;G; ; .
[620‘(71_ GZJ) (?]_ sz)ril;a]&/ n O
. Gy _ GG _9uGiGy _ GidaGy  GiGiduG
G G2 G2 G2 G3
" (Gi,-_Gile _GuG; GGy | GGG,)
G G2 G2 G2 G3
—(% G1G; )Glm((? G,m)](?v N

=0.

The covariant derivative V ﬁ( (log G)ij(z,v)év' A 6%/ ) = 0 follows by taking the
conjugation. [

A complex Finsler metric on a complex manifold M of complex n-dimension is a
continuous function F: T**M — [0, +o0) satisfying
(i) F(z,v)eC®(M), M=T"M\{0},
(i) F(z,Av) =|A|G(z,v) for A e C* =C~ {0},
(iii) F(z,v) > 0, where the equality holds if and only if v = 0.
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A complex Finsler metric is called strongly pseudo-convex if the Levi matrix
(Gij(z,v)) is positively definite, where

G=F, Gi;=[Gl,y =0:9;G.

Note that in this case the holomorphic bundle 7: T"°M — M, equipped with the
function G, is a strongly pseudoconvex holomorphic Finsler vector bundle, as it has
been defined at the beginning of this section. Since the fibre is the tangent space of
M, customary symbols used here are

0 o9 50 s 0

"o T e T T o

The projective tangent bundle PM over M is defined by PM := M/C*, of which the
fibre is an n — 1 dimensional complex projective space CP" ™",

Canonically, the vertical subbundle V is holomorphically isomorphic to 7n* T M.
On the other hand, the horizontal subbundle J{ is smoothly isomorphic to the pull-
back bundle 7* TM — T M. More details can be found in [1]. In local coordinates,

) i 0

0
H= — = -N;—,1<i,j<ny,
spanc{azi 5 Nigs <z]<n}

\7—span(c{ai 1<1<n}
where N’ G’la 0d;G. Shortly, we denote J; : Z, , 05 := 5‘;, 0; : V, , 8 ,, and
their duahtles by dz', dz', v, 87 with v’ = dv’ + N i 'dzJ. The horizontal covarlant
derivative with respect to z* is denoted by V. Moreover, the non-linear connection
coefficients are N]’f = I‘J‘f;kvk
As m: T M — M is a holomorphic Finsler vector bundle, it is naturally equipped

with the Fubini-Study form wv, defined in (2). Besides, as a hermitian manifold, we
can define the Kdghler form by the Finsler metric on M, i.e.,

W3 =V —lGijdzi AdZ,
where G;; is the Levi matrix. The invariant volume form of PM is

dups; = Wy /\wgf
Heii (n-1)! =nl

The volume form <3¢ = det(G;;)dz' AdZ' A---Adz" AdZ" does not only depend on
the point coordinates 2 z but also on the fibre coordmates v. However, we can define a
mean Hermitian metric by g = g;;dz' ® dz/, with

wi!
: b [ oy
®) 8ij pit/m 7 (n—1)!

We denote dM = (det g;;)dz' Adz' A---Adz" AdZz" as the volume form with respect
to the average Hermitian metric g, which only depends on the point coordinates z.
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2.2 Curvatures on Complex Finsler Bundles and on Complex Finsler Manifolds

Using the Chern-Finsler connection, we can define the Chern curvature form R7E,
The Chern curvature (1,1)-forms are given by
R"Es; = Qf @sp,  QfF =d6f - 0] A 6% = 90%.
In local coordinates, the curvature can be written as
Qf =R’ dz* AdZF + R 6vF AdZF + R dz® A 87" + RE ;6vF A 87,
J jop jkpB jka kI
where
i sk
jaﬁ 6/3 B yjkaﬁr“’
Rig = =0 Yfk Risp
h
Rito = =0T = Vin T
i N i _ pi
R]kl al'y]k = R]’(]l-
Moreover, we set

R,z = R gv = =85(Tj v/ = ~85(Tjv)) = ~ 04T,
There is a well-defined real (1,1)-form ¥ on E?, called the Kobayashi curvature of
the holomorphic Finsler vector bundle (E, G), which is defined by [7]

hS(R™Ep, P)
Y=l = /K, ;dz* A dZF,
1 (P, P) afd4z Ndz

where P is the tautological section of the bundle p: 7*E — E° defined by P(z,v) = v.
Direct calculation shows that

B
K,j = le; G dz ndzP,

if we set K75 = —Gij0p + leGil'aijﬂ- Moreover, it is also equal to
Kup = Ruaﬁ G dz ndzZP.

¥ is actually a well-defined horizontal (1,1)-form on P(E) by the homogeneity.
09log G gives the curvature of (h°)™" on the tautological line bundle Opg)(-1),
hence it can provide the first Chern form associated to it. That is,

VAL
== C](OP(E)(—l),(hG) 1) = ZaalogG

The following lemma due to Kobayashi [7] and Aikou [2] shows the decomposition
of the first Chern form of the tautological line bundle of P(E).

Lemma 2.3 Let m:E — M be a holomorphic vector bundle with a strongly pseudo-
convex Finsler metric G. Then

_ 1
:CI(OP(E)(_I),(]’IG) 1) :—E\I—’ﬁ-a)v,
where wy is the Fubini-Study (1,1)-form on E° or P(E).
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Suppose the underlying manifold M admits a Hermitian metric with the Kéhler
form w = g,zdz" A dzP, then the volume form on the projective vector bundle P(E)
can be defined by

wr—l "

_ v el
dup) = (r-1)! N

where w can be lifted canonically onto the horizontal projective bundle.
Now we define the average curvature here. Here and later, we use P(E)/M to de-
note the fibre of P(E).

Definition 2.4 The tensor IR = ggﬂlijal;dz“ AndzP ® 8v' ® 67/ is a well-defined
curvature on the underlying manifold M, which is called the G-average curvature,
where the components are

1 r—
(4) IR, up = (Rijup —GiﬂRaﬁ)wvl.

P(E)/M
Due to Lemma 2.2, we can define another kind of average curvature.

Definition 2.5 Let (M, g) be a Hermitian manifold, and (E, G) a Finsler vector
bundle over M. The G-average bundle curvature of E is defined by X = @BZK ijdv’
® dv’, with

wi!

(r-1)0"

On Finsler manifolds, the Chern curvature (1,1)-forms are given by

(Bj{ij(z) = gﬂa(Rijth - GiithaB)

P(E)/M

k
Qe; = Q; ®eg,
Q=R _dZFadzZ' + R ovE A dZ' + RE. dZF A8+ RE v A SV
) jskl Jjksl jlsk jkl
Some Bianchi identities on complex Finsler manifolds can be derived from V3 =

V(Gij0v' ® 6%/) = 0, which is equal to dG;; - ij@gc - Gi,-COT? = 0. Taking another
derivative gives that

k k m ‘nk
0=dGyj A O] + GijdO; +dG A 0% + G;3dO]
= Gyj(d6} +6F A 6}) + G,z (d6% + 6F A 6))
= GyO! + G ©k
k =l k -l
= (Rij;kl‘ - Rji;ik)dz nNdZ + (Rijk;z' - Rjik;i)5V ndz
k o8-l k sl
+ (Riji;k - R]—il’;k)dz NGV + (Rijki - Rjiik)(sv NSV,
It asserts that
Rij;ki - Rji;ik =0, Rijk;i - Rjik;i =0,
Riji;k - Rjii;k =0, Rijki - Rjiik =0.
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As in [10], some special combinations of Finsler curvatures and their integrals are
needed in the vanishing theorems.
The G-average h-h curvature of the Finsler manifold (M, F), denoted by 9R =

%%kaidzk Adz' ® 8v' ® 7/, is the curvature IR, defined in (4), of the holo-
morphic Finsler bundle T° M.

Definition 2.6 ~ We call 9 Ric = /-19R;;dz" A dz/ the (first) G-average Ricci cur-
vature, where

S .. _ Tk o _(._ph oy, n-1
RU = /I.)M/M G (Rij;kl GijnR ;kl)wv .
Using (3), we can define two more kinds of average curvatures.

Definition 2.7 The second G-average Ricci curvature is defined by 9 Ric = \/-19R;dz’
A dZz, with

detG,']- w(’,’l
detg;; (n-1)!"

- Ik ] h
Ry(2) = [ G R~ Gplly)
By the same method, we also can define the following curvature.

Definition 2.8 The third G-average Ricci curvature is defined by © Ric = /-1°R;;dz’
A dzl, with

detG;; wf!

o(z) (n-1)V

® _ Tk -G R
SJE{if(z)—/PM/]\/IG (Rij;kl GuhR;kl)

where 0(z) = (27,71)_1 [pM/M detGi}%'

Remark 2.9  All the first, second and third G-average Ricci curvatures are reduced
to the Ricci curvature when the Finsler manifold is a Kahler manifold.

3 Vanishing Theorem of Holomorphic Sections of Certain
Holomorphic Finsler Bundles

In this section, we will discuss the vanishing theorems of holomorphic sections of
holomorphic bundles equipped with some Finsler metrics. The situations over com-
pact manifolds and non-compact complete manifolds are different.

3.1 On Finsler Vector Bundles over Compact Complex Manifolds

In this subsection, we aim to prove that a certain holomorphic vector bundle E over
a complex or Hermitian manifold M admits no non-zero holomorphic sections. This
vanishing theorem generalizes the results of Kobayashi and Wu [8].

Suppose E is a holomorphic vector bundle over a compact complex manifold M.
Let (z',...,2") be a local coordinate system of M, and {s,...,s,} be holomorphic
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local sections of E. A holomorphic section of E is locally expressed by & = &'s;.
We first derive the Ricci identity for &. It shows that

Veb= s = (5 o (2))s
(B 2y = (2 gy, )
and
vﬁ£—6£is,+£lvﬁs,-§—i =0.
Therefore,
ViV = vﬁ[(g‘f + 8T )| = (F85TL)sin
and

ViVad' = VaVpd' = F0Tj0 = F (ViR 5~ Rip).
We now get the Ricci identity for any holomorphic section €.

Lemma 3.1 For any holomorphic section & = &'s; of a Finsler vector bundle E on a
complex manifold M, the Ricci identity reduces to

i k if !
vﬁva‘f :_f GJ(RkjaB_ijlR al})'
The Ricci identity can be used to prove the following vanishing theorem.

Lemma 3.2 Let E be a holomorphic vector bundle over a compact complex mani-
fold M with a Finsler fibre metric F such that (¥, (Rjas — GkjiR'sz)) is a negative
semi-definite hermitian matrix at each point of P(E). Then every holomorphic section
of E is parallel with respect to the horizontal Chern-Finsler connection. Moreover, if
(Za(Rk]—M - Gk]—lRlad)) is negative definite, then E admits no non-zero holomorphic
sections.

Proof Denote a holomorphic section & locally by & = &s;. Let f = |¢* = G;;E'&.
We have

vaf: Gij(vafi)gj'
Hence by the Ricci identity,
(5) VBVuf:Gij(VBVu‘fi)gj+Gij(vtx£i)(vl§£j)
= ~(Rijop ~ GiiR' 1) '8 + Gy (Vo) (V58)).

Taking the trace by §4p in (5), the left-hand side is an elliptic operator on f, hence
must be negative semi-definite at the maximum point of f. To see this, we expand the
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left-hand side of (5) as

o' f of 0% f - o*f
Vo f = - —(GG;) =L -GG ;—2— — GGy ——
VgVaf 9789z ( ! )aw P Jipp gz 1% 9zB9yi
i o of i O f
Pq o . Y2 Pq alirean
+G Gqﬁw(c G]a)avi+G GypG a2
= SOP(V;Vaf) + FOP(V4Vaf),
where
P(o. _Pf pan  Of
SOP(VpVef) = 52552 ~ G G555

- 2 a2
_thGjaa ﬁf GMGqﬁGz]G]aa Pg
Vl

(Giija)af GMG ‘fG,a) f

0
FOP(VI;Vaf) = _82:8

The second order part can be expressed by
*f  *f
6o¢y ) 0270%% 0z70vP ( 65[3 )

SOP(VBVaf) = (_GajGji azf aZf _G[”]G _
oviozt oviovr a*

qﬁap

with1l < «,8,9,& < n,1<i,j,p,q < r. Let A= (A}, A;) be a complex matrix,
where A; is an n x n identity matrix and A, is an n x r matrix whose entries are
Aai = =% Ga]-Gji, and let the matrix of second derivatives of f be H(f). Then it
deduces that

SOP(V;Vaf) = AH(f)A".

It is easy to see that H(f) is the locally complex Hessian of f with respect to z, v.
Therefore, SOP(V 3V« f) is a Hermitian matrix and SOP(V 3V« f) is an elliptic oper-
ator of f. It indicates that V4V f = 845V 3Vaf is an elliptic operator of f.

On the other hand, the last term is always non-negative. It follows that & must
vanish identically when ( Yo (Rijaa = Giiji R, )) is a negative definite hermitian ma-
trix at each point of E°, hence of P(E) by the homogeneity. Furthermore, £ must be
parallel with respect to the horizontal Chern-Finsler connection when it is negative
semi-definite. ]

Indeed we have proved that
(6) vdvaf = _(R,’jaﬁ - GilelaB)fiéj + Gij(vzxfi)(vdéj)-
The curvature condition is related both on the underlying manifold and the fibre,
which cannot be considered as the direct generalization of Kobayashi and Wu's re-

sult[8]. Before improving the above vanishing lemma, we need the following lemma.

Lemma 3.3  The volume of each fibre is invariant under the horizontal parallel trans-
lation.

https://doi.org/10.4153/50008439518000127 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000127

634 B. Shen

Proof We only need to prove that the volume form w?;" is invariant under the hor-
izontal parallel translation, i.e., V,wy = 0. It is because in local coordinates,

9%log G Gij GiG;
(i) =75 - &")

oviovi G G?
_ é G,] G;G ) ( ij ) k
= 5 G2 G G2 e
Gija G,]G G,aG] + G,G]a GiG;G,
G G2 G2 G3
1“" Gijk G,'J-Gk G,'kG]- + G,'ij G G; Gk
- rx( G G2 G2 G3 )
Gy  GiG;
(%O @G, 67616
GiiGe GiGj _GiGiG,
= - +
G2 G2 G?
i GG G;G; G;G;G
_leGZ_ (_ j k_ i 1k+ k)
¢ G? G? G3
=0.

Using Lemmas 3.2 and 3.3 and Definition 2.4, we can prove the following theorem.
Theorem 3.4 Let E be a holomorphic vector bundle over a compact complex mani-
fold M with a Finsler fibre metric G such that (¥, SR;jaa) is a negative semi-definite
hermitian matrix at each point of M. Then every holomorphic section of E is parallel
with respect to the horizontal Chern-Finsler connection. Moreover, if (3., IRijaa) is
negative definite, then E admits no non-zero holomorphic sections.

Proof Taking the integral of (6) on each fibre of P(E) yields that

M V“(fm:")/M %1)
) [P(E)/M vﬁv“qu;l
_'/}:(E)/M[Rijzxﬁ —GilelaB]Eigng;l + [P(E)/M Gij(Vafi)(Vﬁfj)wK;I
_fP(m/M[ gop ~ GinR gl £+ fP(E)/M Gis(Vat)(VE)y!
Rffaﬁgiéj+_/P(E)/MGij(V(xfi)(Vng)w(;l.
Taking the trace by 8,4 as in Lemma 4.1 yields that
ViVa (fP(E)/Mfw ) > -IRij0aE'E,

whose left-hand side is an elliptic operator on |, P(E)/M fw¥ . On the other hand, the
right-hand side must be positive when ¢ does not vanish, provided that (¥, 9

Rijaa)
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is a negative definite hermitian matrix at each point of M. Then [, peym S wh ! must
be constant on M, and 9IR,~jm £ = 0. Since (>, 99%,7“&) is negative definite, £ must

vanish.
Moreover, fP(E)/Mfwﬁ;l is a constant on M, if (3, 93%,-]-0“3) is negative semi-
definite. Thus, fp(E)/M G,-,—(vaf")(vﬁéf)wg;l = 0 hence V¢ = 0 in this case. ]

3.2 On Finsler Vector Bundles over Non-compact Complete Complex Manifolds

In this subsection, we aim to obtain the results in the last section for non-compact
complete complex manifolds. This work is based on the method used in [13]. How-
ever, it is more general. First, we deal with the Hermitian manifolds case.

Firstly, we need the global scalar product of bundle sections. For any two holo-
morphic sections &, 7 of a Finsler bundle, we define the global scalar product {( , })
by

(e = [ (Emdupg = [ 5 GIET; durcs).
L]

Let L,(TE) denote the completion of the space of all holomorphic sections with
compact support, with respect to the scalar product ({, }). A complex holomorphic
section & of M is said to have a finite global norm if the following integral is finite,

€= (e 8= [ edurn = [, 3 GTEE durr < oo.
Y

Secondly, a cut-off function and the distance function are needed in taking the in-
tegral on a non-compact manifold. Let O be a fixed point of M. For each point p € M,
we denote p(p) by the geodesic distance from O to p. Since any complex Finsler met-
ric is absolutely homogeneous, hence reversible, there is no difference between for-
ward and backward distances (or completeness). Let B(¢) = {p € M | p(p) < t} for
t > 0. We choose a C*°-function ¢ on R satisfying

(i) O0<u(s)<lonR,
(i) u(s)=1fors<1,
(iii) p(s)=p'(s)=0fors>2.
We set w,(p) = u(p(p)/t) for t being some positive real numbers. Then we have
the following lemma.

Lemma 3.5 There exists a positive number A, depending only on y, such that
A
|VW[|¢U < )
t
where | - |, denotes the norm with respect to the Kahler from w.
Proof From the definition,
|1 ( A

1y VP s)|
—| <—IVplo <
W(s)~F|, < vple < 7

[Vwelo =

where A is the upper bound of ¢’ (s) on [1,2]. ]
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Now we can prove the following theorem.

Theorem 3.6 Let (M, w) be a complete Hermitian manifold with the Kéhler form
w= \/—_lgaB dz® AdzP, and let E be a holomorphic vector bundle over M with a strongly

pseudo-convex Finsler metric G. If it has non-positive G-average bundle curvature 2K,
then every holomorphic section of E with finite global norm is parallel with respect to
the Chern-Finsler connection. Moreover, if the curvature X is negative, then there is
no non-zero holomorphic section of E with finite global norm.

Proof For any holomorphic section £ of E, let f; = w2 f, where f = G,»jf’fj. Con-
sidering the Schwartz and Young’s inequalities, we get

gﬁ“WtVBthtxf > —Wt|th|w|vf|w

Athv& Elo

7\/gﬁ“(VﬁéiGijfi)(Vaprpqéq)
2
>_7wt(gﬁavﬁ£1 UVaf]) ﬂ(qugpfq)

= —ZWﬂVﬂZ - 7|f|%;,
where |V E]* = gﬁ“vﬁé"Gﬁva{f and |&]% = qufpfq. So it implies that
gﬁavgvaﬂ - 2gBuVB[(WtszWt)f]
= "YWV f)
> Lo - g e (R - R E D
Taking the integral on both sides gives that

= /I;(zt) /I;(E)/M{gﬁ“VBWtVaf—Zgﬁ“VB[(thawt)f]}d‘uP(E)

1 2 w”l [ 2 wV 8A2 f f )
2 T d
) B(2t) Wi n! P(E)/M| | ( 1)' ¢ B(2t) P(E)/M|£|G ."lP(E)

r 1

an Ba h
- £ R.. ;- GimR j
./B(zt) e n! P(E)/Mg ( ijop ih ﬁ)ff (r=1)!
1 n
- [ g A
2 JB@y " n! JpE)/M (r-1)!

8A2 am o
j(: > I
fB(zt) fP(E)/MIEIG UP(E) — f w; (&8 i
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Since & has finite global norm and the average curvature is non-positive by the as-
sumption, t tending to infinity yields that

" 1
0> i B (wy, — > [ 2d > 0.
im sup - (W&, wié) o o(E) V&I dupr)

t—oo B 2

Therefore, £ vanishes when ® X is negative, and is parallel when ® X is non-positive.
]

By replacing gﬁ * by 8P in the proof of Theorem 3.6, we can prove the following.

Theorem 3.7 Let M be a complete complex manifold, and let E be a holomorphic
vector bundle over M with a strongly pseudo-convex Finsler metric G. If (¥4 S Rija)
is a negative semi-definite hermitian matrix at each point of M, then every holomorphic
section of E with finite global norm is parallel with respect to the Chern—-Finsler connec-
tion. Moreover, if the matrix (3., 9R;jaa) is negative definite, then there is no non-zero
holomorphic section of E with finite global norm.

Theorem 1.1 follows from Theorems 3.4 and 3.7 obviously.

4 Vanishing Theorems of Holomorphic Vector Fields on Complex
Finsler Manifolds

Vanishing theorems of some holomorphic sections of certain bundles can be traced
back to Bochner [4], Kobayashi and Wu [8], and Yau [12]. In this section, we will
discuss the vanishing theorems of holomorphic vector fields on both complex and
non-compact complete Finsler manifolds.

4.1 On Compact Complex Finsler Manifolds

In this subsection, we want to show the results on Finsler manifolds, namely, to prove
that any holomorphic vector field over a complex Finsler manifold with negative def-
inite Ricci curvature is a zero vector field.

A complex vector field & of type (1,0) on M is called a holomorphic vector field
if its components &' are all holomorphic functions, for all 1 < i < n. It is denoted
by & = &'(2)0;. Since we are working with the Finsler metric, which is defined on
the pullback bundle, a holomorphic vector field can be horizontal lifting to a section
in 3. Still denoted by &, it is locally expressed by & = &'(z)6;. The following lemma
is just a corollary of Lemma 3.2 for the holomorphic bundle : T"°M — M.

Lemma 4.1 Let (M, G) be a compact complex Finsler manifold, on which the curva-
ture (Zm (Rijimm — GkﬂRl;mm)) is a negative semi-definite hermitian matrix at each
point of PM. Then every holomorphic vector field of type (1,0) is parallel with respect
to the horizontal Chern-Finsler connection. Moreover, if(Zm(Rkj;mﬂ-1 - GkﬂRl;m,h))

is negative definite, then M does not admit any non-zero holomorphic vector field of

type (1,0).
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Indeed we obtain that
(8) ViVif = —(Rijui = Gith}zki)fiéj + Gij(kai)(Viéj)-

The curvature condition is related both to the underlying manifold and the fibre,
which cannot be considered as the direct generalization of Kobayashi and Wu’s result
[8] in the case of vector fields.

By Lemma 4.1 and Definition 2.6, we can prove the following theorem, which is a
generalization of the main result in [8] on the tangent bundle case. Here (A;;) denotes
a Hermitian matrix.

Theorem 4.2 Let (M, G) be a compact complex Finsler manifold, on which the cur-
vature (¥, IRizmm) or (9R;;) is a negative semi-definite hermitian matrix at each
point of M. Then every holomorphic vector field of type (1,0) on M is parallel with
respect to the horizontal Chern-Finsler connection. Moreover, if (SR;jmim) or (9R;;)
is negative definite, then M does not admit any non-zero holomorphic vector field of

type (1,0).

Proof By the same method in the proof of Lemma 4.1, the claim concerning
(5Ri5,mim) is simply Theorem 3.4 for the holomorphic Finsler bundle m: E = T"°M
- M.

To prove the result in the condition of (9R; 7)> we only need to find an inequality
like (7). Taking the trace of (8) by G*/, which are the components of the inverse of
Levi matrix G, yields that

) GV, Vi f = _Gik(Rij;ki - GiR" )EE + G™* G (V&) (V).
It follows by taking the integral of (9) on each fibre of TM that
[ Grevifeyt = SR+ [ GRGi(7E) (78w
PM/M PM/M
whose left-hand side is equal to zero. So we get
IR;EE = fPM/M GikGij(kai)(Vigj)wQ7_l > 0.

It follows from the assuption that £ must vanish when (9R;;) is negative definite, and
that & must be parallel when (9%, 7) is negative semi-definite. ]

Theorem 1.2 follows from Theorem 4.2 immediately.

Remark 4.3  The curvature tensor 3., (Rgj;mm — GkﬂRl;Wh )6vk A SV appearing in
Lemma 4.1 and 9R; j;m,h(?vi A 8%/ appearing in Theorem 4.2 reduce to the same one,
Rijmindv® A dv/, when G is a Hermitian metric.

Moreover, if the hermitian metric is Kahler, then the G-average curvature ¢ Ric
is the Ricci curvature of M. By the analogous method of [9], one can use the Ricci
(Kobayashi) curvature to get the same result as in Theorem 4.2 in this case.
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4.2 On Non-compact Complete Complex Finsler Manifolds

Let A”9(M) be the space of all (p, q)-forms on M, and A5*?( M) be the subspace of
AP1(M) composed of forms with compact support. On a complex Finsler manifold,
a (p,q)-form n € AP9(M) may be expressed locally as

= q' > Miipjij, (2)d2" Ao A dZ'? AdZ A A2

For any &, 17 € AD?(M), we define the global scalar product ({ , )) by
(e = [ ~(£, ) ditpsy

f ZG’WI. .GReirGith ... Gala
PM p! q'
X iy oo Mgy o, AT

Let L27(M) denote the completion of A5*? (M) with respect to the scalar product
((, )). A complex vector field & of type (1,0) on M is said to have a finite global norm
if the corresponding holomorphic (0, 1)-form ¢ satisfies £ € LY"' (M) n A%!(M). That
is, the following integral is finite,

2
= ((§, = ,€)dupi < oo.
7 = (&) = [ (88 dung
The following lemma is the tangent bundle version of Lemma 3.5.
Lemma 4.4  There exists a positive number A, depending only on y, such that
v < %
Wl < —.
Tt
Now we can prove Theorem 1.3 according to Definitions 2.7 and 2.8.

Proof For any holomorphic vector field § of type (1,0), let f; = w2 f, where f =
G;;¢'&. Using the Schwartz and Young inequalities, we get

G w Viw Vi f > —wi|Vwi| |V f]

> -2 ge. g

= Awt\/G”‘(V EGUEJ)(kapGP‘qu)

4A%
2 tIVfI - 14

This implies that
GikVinft - ZGI-kvl’[(WthWt)f]
= G V(Wi f)

>1W2|Vf|z—g|€|2—W2Gik(R = G- Rh )Elg]
=5 P t ij;kl ifh kg .
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Taking the integral on both side gives that

0= Jion (G ViwiVif =26 Vil (weViwn) f1) dupsy
n n-1 2
S (L B N R T
B(2t) n! JpM/M (n-1)! t JPB(2t)
n n-1
2 Wg¢ Tk ho Ngigi 9V
- iy G™(R,- ;- Gi;R" YEEH -V
/B(zt) Y PH/M (Rijd Rog)Se (n-1)!
_ 1 Zw;(f | |2 w% !
2@y ' on! Jeim (n=1)!
8A? 5
- dppri — 28 Ric(&, &) dM
t JPB(2t) |E| Hpit B(2t) e 1c(f E)
1 2 Wi , Wy
o e [ e
B(2t) n! JpM/M (n-1)!
8A? )
- dppz — 28 Ric(&, &) dM
t JPB(2t) 1 Hem B(2t) Wi ie(5:6)

where dM = (det g;;)dz' AdZ' A+~ Adz" Adz" and AM = 6(2)dz' AdZ' A+ AdZ" A
dz". Since & has finite global norm and the average curvature is non-positive by the
assumption, ¢ tending to infinity yields that

w?
0 > lim sup B(z)gRlc(wtf w,E)dM>—/1;[ o fM/M E|2 v ) 0,

t—o0

and

0 > lim sup 520 Rlc(wtf wé) dM> >yt pr/M f|

t—o0

1)' B
Therefore, £ vanishes when 9 Ric or © Ric is negative, and is parallel when ? Ric or
® Ric is non-positive. |
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