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Holomorphic Vanishing Theorems on
Finsler Holomorphic Vector Bundles
and Complex Finsler Manifolds

Bin Shen

Abstract. In this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over
both compact and non-compact complete complex manifolds. We also inquire into the holomorphic
vector ûelds on compact and non-compact complete complex Finsler manifolds. We get vanishing
theorems in each case according to diòerent certain curvature conditions. his work can be considered
as generalizations of the classical results on Kähler manifolds and hermitian bundles.

1 History and Introduction

A holomorphic section, or speciûcally, a holomorphic vector ûeld, is the dual of a holo-
morphic form, which is a special kind of harmonic form. heharmonic form, because
of its role in Hodge theory, connects analysis, topology and geometry. he relation of
a holomorphic form and a harmonic form is a classical topic that has achieved some
tremendous results [11].

he vanishing theorem of holomorphic sections on complex vector bundles is
meaningful and has attracted a lot of mathematicians’ attention. In 1946, S. Bochner
proved that a compact Kähler manifold with negative Ricci curvature admits no non-
zero holomorphic vector ûelds [4]. his result may seem inconspicuous nowadays,
however, it is the ûrst time to use the so-called Bochner’s technique on complex man-
ifolds. In 1970, S. Kobayashi and H. Wu generalized the result to the case of holo-
morphic vector bundles over compact complex manifolds [8]. Precisely, they showed
that a holomorphic vector bundle over a compact complexmanifold with a hermitian
ûbre metric whose curvature satisûes that (∑i Kγ̄β i ı̄) is a negative deûnite hermitian
matrix at each point admits no non-zero holomorphic sections.

In 1976, S. Yau discussed the case of holomorphic Lp-sections of holomorphic
vector bundles over complex Kähler manifolds, by studying the Lp-harmonic forms.
Actually, he proved the non-existence of non-constant Lp holomorphic functions for
p > 0 on a complete Kähler manifold. Moreover, he also proved that there are no
non-zero L2 holomorphic n-forms on a complete Kähler manifold with positive to-
tal scalar curvature, which is supposed to be bounded from below by a constant [12].
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Although these results are more general in the sense of vector ûelds, they are focused
on the Kähler manifold for the reason of analysis.

In addition to the analysis of Lp behaviours of functions on Kähler manifolds by
using the general maximum principle, there is another method to restrain the vector
ûelds on non-compact complete complex manifold [3]. In 1981, S. Yorozu used the
method to study the non-existence of non-zero holomorphic vector ûelds on com-
plete Kähler manifolds [13]. He proved that every holomorphic vector ûeld of type
(1, 0) with ûnite global norm on a complete Kähler manifold with non-positive Ricci
curvature is parallel. Moreover, there is no such vector ûeld, provided the negativeness
of the Ricci curvature. His result generalizes the results of Bochner [4] and Kobayashi
and Wu [8] to non-compact cases on the Kähler manifolds.

he complex Finsler manifolds and complex Finsler vector ûelds are interesting,
because some curvature properties of them are related to the ampleness of the tauto-
logical bundles [5]. Some important concepts have been introduced and their prop-
erties have been researched [1, 2, 7]. he curvature properties and diòerent kinds of
Chern forms on Finsler bundles are studied by K. Liu, H. Feng and X. Wang [6].

Recently, the author has obtained some results about vanishing theorems in Finsler
geometry by generalizing the Bochner’s technique [9, 10]. he same approach can be
utilized to research the holomorphic vector ûelds on a complex Finsler manifold and
holomorphic sections in a holomorphic Finsler vector bundle.

In this article, we will look into the holomorphic sections of vector bundles
equipped with some Finsler metrics over a complex or Hermitian manifold and spe-
cially, the holomorphic vector ûelds on general Finslermanifolds. hemain theorems
we get are listed below. In the next statement and in all the rest of the paper, we always
use the notation (A i ȷ̄) to denote a hermitian matrix with entries A i ȷ̄. On a Finsler
holomorphic vector bundle (E ,G)over a complexmanifoldM, we have the following.

heorem 1.1 Let E be a holomorphic vector bundle over a complex manifold M with
a Finsler ûbre metric G such that (∑α GRi ȷ̄α ᾱ) is a negative semi-deûnite hermitian
matrix at each point of M. hen every holomorphic section of E with ûnite global
norm is parallel with respect to the horizontal Chern–Finsler connection. Moreover, if
(∑α

GRi ȷ̄α ᾱ) is negative deûnite, then E admits no non-zero holomorphic sections with
ûnite global norm.

On a compact complex Finsler manifold, we get the vanishing theorem of holo-
morphic vector ûeld of type (1, 0) as follows. More details are shown in heorem 4.2
in Section 3.

heorem 1.2 Let (M ,G) be a compact complex Finslermanifold. If it has non-positive
(ûrst) G-average Ricci curvature GRic, then every holomorphic vector ûeld of type (1, 0)
on M is parallel with respect to the horizontal Chern–Finsler connection. Moreover, if
the curvature GRic is negative, then M does not admit any non-zero holomorphic vector
ûeld of type (1, 0).

On a non-compact complete complex Finsler manifold, the following vanishing
theorem holds.
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heorem 1.3 Let (M ,G) be a complete complex Finsler manifold. If it has non-
positive second or third G-average Ricci curvature g Ric or G Ric, then every holomor-
phic vector ûeld of type (1, 0) with ûnite global norm is parallel with respect to the hor-
izontal Chern–Finsler connection. Moreover, if the curvature g Ric or G Ric is negative,
then there is no non-zero holomorphic vector ûeld of type (1, 0) on M with ûnite global
norm.

2 Concepts and Preliminaries

In this section, we will ûrst introduce some basic concepts on holomorphic vector
bundles with Finsler metrics over a complex manifold. hen we will brie�y present
the analog concepts on complex Finsler manifolds. Later, curvatures on bundles and
manifolds are given.

2.1 Complex Finsler Vector Bundles and Complex Finsler Manifolds

Let π∶ E → M be a holomorphic vector bundle on a complex manifold M. A con-
tinuous function G deûned on the bundle E is called a Finsler metric if it satisûes the
following conditions:

(i) G is smooth on the punched bundle Eo = E ∖ O, where O denotes the zero
section of E,

(ii) G(z, λv) = ∣λ∣2G(z, v) for any λ ∈ C,
(iii) G(z, v) ≥ 0 for all (z, v) ∈ E with z ∈ M and v ∈ π−1(z), where the equality

holds if and only if v = 0.

A holomorphic vector bundle E admitting a complex Finsler metric G is called
a holomorphic Finsler vector bundle. For the convenience of application, one o�en
requires that G is strongly pseudo-convex, that is,

(iv) the Levi form
√
−1∂∂̄G on Eo is positive-deûnite along ûbres Ez = π−1(z) for

z ∈ M.

he quotient map q∶ Eo → P(E) = Eo/C∗ deûnes the holomorphic projective
bundle P(E). Let z = (z1 , . . . , zn) be the local coordinate system in M, and let
v = (v1 , . . . , vr) be the ûbre coordinate system on E/M deûned by a local holomor-
phic frame s = {s1 , . . . , sr} of E. Customary symbols used here are

∂α ∶=
∂

∂zα
, ∂ β̄ ∶=

∂
∂z̄β

, ∂̇ i ∶=
∂

∂v i , ∂̇ ȷ̄ ∶=
∂

∂v̄ j ,

where 1 ≤ α, β ≤ n and 1 ≤ i , j ≤ r. By the strongly pseudo-convex condition (iv), the
Hermitian matrices (G i ȷ̄(z, v)) is positive-deûnite and actually deûnes a Hermitian
metric hG on the pull-back bundle p∶ π∗E → Eo . he following identities proved by
Kobayashi [7] tells us that (G i ȷ̄(z, v)) can be deûned on P(E), hence hG is a Hermit-
ian metric on the pull-back bundle p∶ π∗E → P(E).
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Lemma 2.1 he following identities hold for any (z, v) ∈ Eo and λ ∈ C:

G i =
∂G
∂v i , G i(z, λv) = λ̄G i(z, v),

G i ȷ̄ =
∂2G

∂v i∂v̄ j , G i ȷ̄(z, λv) = G i ȷ̄(z, v) = Ḡ j ı̄(z, v),

G(z, v) = G i(z, v)v i
= G ȷ̄(z, v)v̄ j

= G i ȷ̄(z, v)v i v̄ j ,

G i j(z, v)v i
= G i ȷ̄k(z, v)v i

= G i ȷ̄ k̄(z, v)v̄
j
= 0.

We also write

G iα =
∂2G

∂v i∂zα
, Gαβ̄ =

∂2G
∂zα∂z̄β

, etc.

Let∇π∗E be the Chern connection on the holomorphic vector bundle p∶ (π∗E , hG)

→ Eo . We still use the notation sk to denote the sections of π∗E, then the Chern con-
nection (1, 0)-forms θk

i with respect to the local holomorphic frame s = {s1 , . . . , sr}
are given by

(1)
∇

π∗E s i = θk
i ⊗ sk , θk

i = (∂G i ȷ̄G ȷ̄k
) = Γk

iαdz
α
+ γk

i ldv
l ,

Γk
iα =

∂G i ȷ̄

∂zα
G ȷ̄k , γk

i l =
∂G i ȷ̄

∂v l G ȷ̄k ,

where (G ȷ̄k) denote the inverse of the matrix (G i ȷ̄). Lemma 2.1 tells us that

Γk
iα(z, λv) = Γk

iα(z, v), γk
i l(z, v)v

i
= γk

i l(z, v)v
l
= 0.

heChern connection∇π∗E provides a smooth horizontal-vertical decomposition
of the holomorphic tangent vector bundle TEo of Eo :

TEo
=H ⊗V,

where V is called the vertical subbundle of TEo deûned by

V = ker(p∗ ∶ TEo
→ TM),

andH is called the horizontal subbundle of TEo deûned by

H = ker(∇π∗E
● P ∶ TEo

→ π∗E).

Here P is the tautological section of the bundle p∶ π∗E → Eo deûned by P(z, v) = v.
Canonically, the vertical subbundle V is holomorphically isomorphic to π∗E. On the
other hand, the horizontal subbundleH is smoothly isomorphic to π∗TM → E. In
local coordinates,

H = spanC{
δ
δzα

=
∂

∂zα
− Γk

jαv
j ∂
∂vk , 1 ≤ α ≤ n} ,

V = spanC{
∂

∂v i , 1 ≤ i ≤ r} .
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he expression (1) can be rewritten with respect to the horizontal and vertical bases
as

∇
π∗E s i = θk

i ⊗ sk , θk
i = (∂G i ȷ̄G ȷ̄k

) = Γk
i ;αdz

α
+ γk

i ; l δv
l ,

Γk
i ;α = G ȷ̄k δG i ȷ̄

δzα
= G ȷ̄k

(G i ȷ̄α −G i ȷ̄ lΓ l
α), γk

i ; l = γk
i l =

∂G i ȷ̄

∂v l G ȷ̄k ,

where Γ l
α = G l m̄Gm̄α = G l m̄G i m̄αv i .

According to the zero-homogeneous of the horizontal connection, the quotient
map q induces a smooth horizontal-vertical decompositions of TP(E) and T∗P(E),
i.e.,

TP(E) = H̃ ⊕ Ṽ, T∗P(E) = H̃∗
⊕ Ṽ∗ ,

where H̃ = q∗H, and Ṽ = q∗V. he Finsler metric provides the Fubini–Study form on
each ûbre, deûned by

(2) ωV =

√
−1

2π
(logG)i ȷ̄δv i

∧ δv̄ j .

Lemma 2.2 he vertical metric form ωV is compatible with the horizontal covariant
derivative.

Proof Denote the horizontal covariant derivative with respect to zα by∇α . For any
1 ≤ k ≤ n, we have

∇α((logG)i ȷ̄(z, v)δv i
∧ δv̄ j)

= (
δ
δzα

(logG)i ȷ̄)δv i
∧ δv̄ j

+ (logG)i ȷ̄(z, v)(∇αδv i
) ∧ δv̄ j

= [
δ
δzα

(
G i ȷ̄

G
−

G iG ȷ̄

G2 ) − (
G l ȷ̄

G
−

G lG ȷ̄

G2 )Γ l
i ;α]δv

i
∧ δv̄ j

= [
∂αG i ȷ̄

G
−

G i ȷ̄∂αG
G2 −

∂αG iG ȷ̄

G2 −
G i∂αG ȷ̄

G2 + 2
G iG ȷ̄∂αG

G3

− Γ l
α(

G i l̄

G
−

G i ȷ̄G l

G2 −
G i lG ȷ̄

G2 −
G iG l ȷ̄

G2 + 2
G iG ȷ̄G l

G3 )

− (
G l ȷ̄

G
−

G lG ȷ̄

G2 )G l m̄
(δαG i m̄)]δv i

∧ δv̄ j

= 0.

he covariant derivative ∇β̄((logG)i ȷ̄(z, v)δv i ∧ δv̄ j) = 0 follows by taking the
conjugation. ∎

A complex Finsler metric on a complex manifold M of complex n-dimension is a
continuous function F∶T 1,0M → [0,+∞) satisfying

(i) F(z, v) ∈ C∞(M̃), M̃ = T 1,0M/{0},
(ii) F(z, λv) = ∣λ∣G(z, v) for λ ∈ C∗ = C ∖ {0},
(iii) F(z, v) ≥ 0, where the equality holds if and only if v = 0.
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A complex Finsler metric is called strongly pseudo-convex if the Levi matrix
(G i ȷ̄(z, v)) is positively deûnite, where

G = F2 , G i ȷ̄ = [G]v i v̄ j = ∂̇ i ∂̇ ȷ̄G .

Note that in this case the holomorphic bundle π∶T 1,0M → M, equipped with the
function G, is a strongly pseudoconvex holomorphic Finsler vector bundle, as it has
been deûned at the beginning of this section. Since the ûbre is the tangent space of
M, customary symbols used here are

∂ i ∶=
∂
∂z i , ∂ ȷ̄ ∶=

∂
∂z̄ j , ∂̇ i ∶=

∂
∂v i , ∂̇ ȷ̄ ∶=

∂
∂v̄ j .

he projective tangent bundle PM̃ over M is deûned by PM̃ ∶= M̃/C∗, of which the
ûbre is an n − 1 dimensional complex projective space CPn−1.
Canonically, the vertical subbundle V is holomorphically isomorphic to π∗TM.

On the other hand, the horizontal subbundleH is smoothly isomorphic to the pull-
back bundle π∗TM → TM. More details can be found in [1]. In local coordinates,

H = spanC{
δ
δz i =

∂
∂z i − N j

i
∂

∂v j , 1 ≤ i , j ≤ n} ,

V = spanC{
∂

∂v i , 1 ≤ i ≤ n} ,

where N i
j = G i l̄ ∂̇ l̄ ∂ jG. Shortly, we denote δ i ∶=

δ
δz i , δ ȷ̄ ∶=

δ
δz̄ j , ∂̇ i ∶=

∂
∂v i , ∂̇ ȷ̄ ∶=

∂
∂v̄ j , and

their dualities by dz i , dz̄ i , δv j , δv̄ j with δv i = dv i + N i
jdz

j . he horizontal covariant
derivative with respect to zk is denoted by ∇k . Moreover, the non-linear connection
coeõcients are N i

j = Γ i
j;kv

k .
As π∶T 1,0M → M is a holomorphic Finsler vector bundle, it is naturally equipped

with the Fubini–Study form ωV, deûned in (2). Besides, as a hermitian manifold, we
can deûne the Kähler form by the Finsler metric on M, i.e.,

ωH =
√
−1G i ȷ̄dz i

∧ dz̄ j ,

where G i ȷ̄ is the Levi matrix. he invariant volume form of PM̃ is

dµPM̃ =
ωn−1
V

(n − 1)!
∧

ωn
H

n!
.

he volume form ωn
H

n! = det(G i ȷ̄)dz1∧dz̄1∧⋅ ⋅ ⋅∧dzn∧dz̄n does not only depend on
the point coordinates z, but also on the ûbre coordinates v. However, we can deûne a
mean Hermitian metric by g = g i ȷ̄dz i ⊗ dz̄ j , with

(3) g i ȷ̄ = ∫
PM̃/M

G i ȷ̄
ωn−1
V

(n − 1)!
.

We denote dM = (det g i ȷ̄)dz1 ∧ dz̄1 ∧ ⋅ ⋅ ⋅ ∧ dzn ∧ dz̄n as the volume form with respect
to the average Hermitian metric g, which only depends on the point coordinates z.
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2.2 Curvatures on Complex Finsler Bundles and on Complex Finsler Manifolds

Using the Chern–Finsler connection, we can deûne the Chern curvature form Rπ∗E .
he Chern curvature (1, 1)-forms are given by

Rπ∗E s i = Ωk
i ⊗ sk , Ωk

i = dθ
k
i − θ j

i ∧ θk
j = ∂̄θk

i .

In local coordinates, the curvature can be written as

Ω i
j = R i

jα β̄dz
α
∧ dz̄β + R i

jk β̄δv
k
∧ dz̄β + R i

j k̄αdz
α
∧ δv̄k

+ R i
jk l̄ δv

k
∧ δv̄ l ,

where
R i

jα β̄ = −δ β̄Γ
i
j;α − γ i

jkδ β̄Γ
k
α ,

R i
jk β̄ = −δ β̄γ

i
jk = R i

k jβ̄ ,

R i
j k̄α = −∂̇ k̄Γ

i
j;α − γ i

jhΓ
h
k̄ ;α ,

R i
jk l̄ = −∂̇ l̄γ

i
jk = R i

k j l̄ .

Moreover, we set

R i
α β̄ ∶= R i

jα β̄v
j
= −δ β̄(Γ

i
j;α)v

j
= −δ β̄(Γ

i
j;αv

j
) = −δ β̄Γ

i
α .

here is a well-deûned real (1, 1)-form Ψ on Eo , called the Kobayashi curvature of
the holomorphic Finsler vector bundle (E ,G), which is deûned by [7]

Ψ =
√
−1

hG(Rπ∗EP, P)
hG(P, P)

=
√
−1Kαβ̄dz

α
∧ dz̄β ,

where P is the tautological section of the bundle p∶ π∗E → Eo deûned by P(z, v) = v.
Direct calculation shows that

Kαβ̄ = K i ȷ̄α β̄
v i v̄ j

G
dzα ∧ dz̄β ,

if we set K i ȷ̄α β̄ = −G i ȷ̄α β̄ +Gk l̄G i l̄ αGk ȷ̄β . Moreover, it is also equal to

Kαβ̄ = R i ȷ̄α β̄
v i v̄ j

G
dzα ∧ dz̄β .

Ψ is actually a well-deûned horizontal (1, 1)-form on P(E) by the homogeneity.
∂∂̄ logG gives the curvature of (hG)−1 on the tautological line bundle OP(E)(−1),

hence it can provide the ûrst Chern form associated to it. hat is,

Ξ ∶= c1(OP(E)(−1), (hG
)
−1) =

√
−1

2π
∂∂̄ logG .

he following lemma due to Kobayashi [7] and Aikou [2] shows the decomposition
of the ûrst Chern form of the tautological line bundle of P(E).

Lemma 2.3 Let π∶ E → M be a holomorphic vector bundle with a strongly pseudo-
convex Finsler metric G. hen

Ξ ∶= c1(OP(E)(−1), (hG
)
−1) = −

1
2π

Ψ + ωV ,

where ωV is the Fubini–Study (1, 1)-form on Eo or P(E).
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Suppose the underlying manifold M admits a Hermitian metric with the Kähler
form ω = gαβ̄dz

α ∧ dz̄β , then the volume form on the projective vector bundle P(E)
can be deûned by

dµP(E) =
ωr−1
V

(r − 1)!
∧

ωn

n!
,

where ω can be li�ed canonically onto the horizontal projective bundle.
Now we deûne the average curvature here. Here and later, we use P(E)/M to de-

note the ûbre of P(E).

Deûnition 2.4 he tensor GR =
√
−1
G

GRi ȷ̄α β̄dz
α ∧ dz̄β ⊗ δv i ⊗ δv̄ j is a well-deûned

curvature on the underlying manifold M, which is called the G-average curvature,
where the components are

(4) GRi ȷ̄α β̄ = ∫
P(E)/M

(R i ȷ̄α β̄ −G i ȷ̄ lR l
α β̄)ω

r−1
V .

Due to Lemma 2.2, we can deûne another kind of average curvature.

Deûnition 2.5 Let (M , g) be a Hermitian manifold, and (E ,G) a Finsler vector
bundle over M. heG-average bundle curvature of E is deûned byBK =

√
−1
G

BKi ȷ̄dv i

⊗ dv̄ j , with

BKi ȷ̄(z) = ∫
P(E)/M

g β̄α(R i ȷ̄α β̄ −G i ȷ̄hRh
αβ̄)

ωr−1
V

(r − 1)!
.

On Finsler manifolds, the Chern curvature (1, 1)-forms are given by

Ωe i = Ωk
i ⊗ ek ,

Ω i
j = R i

j;k l̄dz
k
∧ dz̄ l

+ R i
jk ; l̄ δv

k
∧ dz̄ l

+ R i
j l̄ ;kdz

k
∧ δv̄ l

+ R i
jk l̄ δv

k
∧ δv̄ l .

Some Bianchi identities on complex Finsler manifolds can be derived from ∇G =

∇(G i ȷ̄δv i ⊗ δv̄ j) = 0, which is equal to dG i ȷ̄ − Gk ȷ̄θk
i − G i k̄θk

j = 0. Taking another
derivative gives that

0 = dGk ȷ̄ ∧ θk
i +Gk ȷ̄dθk

i + dG i k̄ ∧ θk
j +G i k̄dθk

j

= Gk ȷ̄(dθk
i + θk

l ∧ θ l
i) +G i k̄(dθk

j + θk
l ∧ θ l

j)

= Gk ȷ̄Θk
i +G ī kΘk

j

= (R i ȷ̄;k l̄ − R ȷ̄ i ; l̄ k)dz
k
∧ dz̄ l

+ (R i ȷ̄k ; l̄ − R ȷ̄ i k ; l̄)δv
k
∧ dz̄ l

+ (R i ȷ̄ l̄ ;k − R ȷ̄ i l̄ ;k)dz
k
∧ δv̄ l

+ (R i ȷ̄k l̄ − R ȷ̄ i l̄ k)δv
k
∧ δv̄ l .

It asserts that

R i ȷ̄;k l̄ − R ȷ̄ i ; l̄ k = 0, R i ȷ̄k ; l̄ − R ȷ̄ i k ; l̄ = 0,
R i ȷ̄ l̄ ;k − R ȷ̄ i l̄ ;k = 0, R i ȷ̄k l̄ − R ȷ̄ i l̄ k = 0.
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As in [10], some special combinations of Finsler curvatures and their integrals are
needed in the vanishing theorems.

he G-average h-h curvature of the Finsler manifold (M , F), denoted by GR =
√
−1
G

GRi ȷ̄;k l̄dz
k ∧ dz̄ l ⊗ δv i ⊗ δv̄ j , is the curvature GR, deûned in (4), of the holo-

morphic Finsler bundle T 1,0M.

Deûnition 2.6 We call G Ric =
√
−1GRi ȷ̄dz i ∧ dz̄ j the (ûrst) G-average Ricci cur-

vature, where

GRi ȷ̄ = ∫
PM̃/M

G l̄ k
(R i ȷ̄;k l̄ −G i ȷ̄hRh

;k l̄)ω
n−1
V .

Using (3), we can deûne two more kinds of average curvatures.

Deûnition 2.7 he secondG-average Ricci curvature is deûned by g Ric=
√
−1gRi ȷ̄dz i

∧ dz̄ j , with

gRi ȷ̄(z) = ∫
PM̃/M

G l̄ k
(R i ȷ̄;k l̄ −G i ȷ̄hRh

;k l̄)
detG i ȷ̄

det g i ȷ̄

ωn−1
V

(n − 1)!
.

By the same method, we also can deûne the following curvature.

Deûnition 2.8 he third G-average Ricci curvature is deûned byG Ric=
√
−1GRi ȷ̄dz i

∧ dz̄ j , with

GRi ȷ̄(z) = ∫
PM̃/M

G l̄ k
(R i ȷ̄;k l̄ −G i ȷ̄hRh

;k l̄)
detG i ȷ̄

σ(z)
ωn−1
V

(n − 1)!
,

where σ(z) = 1
(2π)n−1 ∫PM̃/M detG i ȷ̄

ωn−1
V

(n−1)! .

Remark 2.9 All the ûrst, second and third G-average Ricci curvatures are reduced
to the Ricci curvature when the Finsler manifold is a Kähler manifold.

3 Vanishing Theorem of Holomorphic Sections of Certain
Holomorphic Finsler Bundles

In this section, we will discuss the vanishing theorems of holomorphic sections of
holomorphic bundles equipped with some Finsler metrics. he situations over com-
pact manifolds and non-compact complete manifolds are diòerent.

3.1 On Finsler Vector Bundles over Compact Complex Manifolds

In this subsection, we aim to prove that a certain holomorphic vector bundle E over
a complex or Hermitian manifoldM admits no non-zero holomorphic sections. his
vanishing theorem generalizes the results of Kobayashi and Wu [8].

Suppose E is a holomorphic vector bundle over a compact complex manifold M.
Let (z1 , . . . , zn) be a local coordinate system of M, and {s1 , . . . , sr} be holomorphic

631

https://doi.org/10.4153/S0008439518000127 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000127


B. Shen

local sections of E. A holomorphic section of E is locally expressed by ξ = ξ i s i .
We ûrst derive the Ricci identity for ξ. It shows that

∇α ξ =
δξ i

δzα
s i + ξ i∇α s i = (

δξ i

δzα
+ ξkθ i

k(
δ
δzα

)) s i

= (
δξ i

δzα
+ ξk

δGk ȷ̄

δzα
G ȷ̄ i

) s i = (
δξ i

δzα
+ ξkΓ i

k ;α) s i

and

∇β̄ ξ =
δξ i

δz̄β
s i + ξ i∇β̄s i =

δξ i

δz̄β
s i = 0.

herefore,

∇β̄∇α ξ = ∇β̄[(
δξ i

δzα
+ ξkΓ i

k ;α) s i] = (ξ jδ β̄Γ
i
j;α)s i ,

and

∇β̄∇α ξ i
−∇α∇β̄ ξ

i
= ξ jδ β̄Γ

i
j;α = ξ j

(γ i
jkR

k
αβ̄ − R i

jα β̄).

We now get the Ricci identity for any holomorphic section ξ.

Lemma 3.1 For any holomorphic section ξ = ξ i s i of a Finsler vector bundle E on a
complex manifold M, the Ricci identity reduces to

∇β̄∇α ξ i = −ξkG i ȷ̄
(Rk ȷ̄α β̄ −Gk ȷ̄lR l

α β̄).

he Ricci identity can be used to prove the following vanishing theorem.

Lemma 3.2 Let E be a holomorphic vector bundle over a compact complex mani-
fold M with a Finsler ûbre metric F such that (∑α(Rk ȷ̄αᾱ − Gk ȷ̄lR l

α ᾱ)) is a negative
semi-deûnite hermitian matrix at each point of P(E). hen every holomorphic section
of E is parallel with respect to the horizontal Chern–Finsler connection. Moreover, if
(∑α(Rk ȷ̄αᾱ − Gk ȷ̄lR l

α ᾱ)) is negative deûnite, then E admits no non-zero holomorphic
sections.

Proof Denote a holomorphic section ξ locally by ξ = ξ i s i . Let f = ∣ξ∣2 = G i ȷ̄ξ i ξ̄ j .
We have

∇α f = G i ȷ̄(∇α ξ i)ξ̄ j .

Hence by the Ricci identity,

∇β̄∇α f = G i ȷ̄(∇β̄∇α ξ i)ξ̄ j
+G i ȷ̄(∇α ξ i)(∇β̄ ξ̄

j
)

= −(R i ȷ̄α β̄ −G i ȷ̄ lR l
α β̄)ξ

i ξ̄ j
+G i ȷ̄(∇α ξ i)(∇β̄ ξ̄

j
).

(5)

Taking the trace by δαβ in (5), the le�-hand side is an elliptic operator on f , hence
must be negative semi-deûnite at the maximum point of f . To see this, we expand the
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le�-hand side of (5) as

∇β̄∇α f =
∂2 f

∂z̄β∂zα
−

∂
∂z̄β

(G i ȷ̄G ȷ̄α)
∂ f
∂v i −G p̄qGqβ̄

∂2 f
∂v̄ p∂zα

−G i ȷ̄G ȷ̄α
∂2 f

∂z̄β∂v i

+G p̄qGqβ̄
∂

∂v̄ p (G
i ȷ̄G ȷ̄α)

∂ f
∂v i +G p̄qGqβ̄G

i ȷ̄G ȷ̄α
∂2 f

∂v̄ p∂v i

= SOP(∇β̄∇α f ) + FOP(∇β̄∇α f ),

where

SOP(∇β̄∇α f ) =
∂2 f

∂z̄β∂zα
−G p̄qGqβ̄

∂2 f
∂v̄ p∂zα

−G i ȷ̄G ȷ̄α
∂2 f

∂z̄β∂v i +G p̄qGqβ̄G
i ȷ̄G ȷ̄α

∂2 f
∂v̄ p∂v i ,

FOP(∇β̄∇α f ) = −
∂

∂z̄β
(G i ȷ̄G ȷ̄α)

∂ f
∂v i +G p̄qGqβ̄

∂
∂v̄ p (G

i ȷ̄G ȷ̄α)
∂ f
∂v i .

he second order part can be expressed by

SOP(∇β̄∇α f ) = (
δαγ

−Gα ȷ̄G ȷ̄ i)
⎛
⎜
⎝

∂2 f
∂zγ∂z̄ ξ

∂2 f
∂zγ∂v̄ p

∂2 f
∂v i ∂z̄ ξ

∂2 f
∂v i ∂v̄ p

⎞
⎟
⎠
(

δξβ
−G p̄qGqβ̄

) ,

with 1 ≤ α, β, γ, ξ ≤ n, 1 ≤ i , j, p, q ≤ r. Let A = (A1 ,A2) be a complex matrix,
where A1 is an n × n identity matrix and A2 is an n × r matrix whose entries are
aαi = −∑ j Gα ȷ̄G ȷ̄ i , and let the matrix of second derivatives of f be H( f ). hen it
deduces that

SOP(∇β̄∇α f ) = AH( f )A∗ .

It is easy to see that H( f ) is the locally complex Hessian of f with respect to z, v.
herefore, SOP(∇β̄∇α f ) is a Hermitian matrix and SOP(∇β̄∇α f ) is an elliptic oper-
ator of f . It indicates that ∇ᾱ∇α f = δαβ∇β̄∇α f is an elliptic operator of f .

On the other hand, the last term is always non-negative. It follows that ξ must
vanish identically when (∑α(Rk ȷ̄αᾱ −Gk ȷ̄lR l

α ᾱ)) is a negative deûnite hermitianma-
trix at each point of Eo , hence of P(E) by the homogeneity. Furthermore, ξ must be
parallel with respect to the horizontal Chern–Finsler connection when it is negative
semi-deûnite. ∎

Indeed we have proved that

(6) ∇ᾱ∇α f = −(R i ȷ̄α β̄ −G i ȷ̄ lR l
α β̄)ξ

i ξ̄ j
+G i ȷ̄(∇α ξ i)(∇ᾱ ξ̄ j

).

he curvature condition is related both on the underlying manifold and the ûbre,
which cannot be considered as the direct generalization of Kobayashi and Wu’s re-
sult[8]. Before improving the above vanishing lemma, we need the following lemma.

Lemma 3.3 he volume of each ûbre is invariant under the horizontal parallel trans-
lation.
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Proof We only need to prove that the volume form ωr−1
V is invariant under the hor-

izontal parallel translation, i.e., ∇αωV = 0. It is because in local coordinates,

∇α(
∂2 logG
∂v i∂v̄ j ) = ∇α(

G i ȷ̄

G
−

G iG ȷ̄

G2 )

=
δ
δzα

(
G i ȷ̄

G
−

G iG ȷ̄

G2 ) − (
Gk ȷ̄

G
−

G iG ȷ̄

G2 )Γk
i ;α

=
G i ȷ̄α

G
−

G i ȷ̄Gα

G2 −
G iαG ȷ̄ +G iG ȷ̄α

G2 + 2
G iG ȷ̄Gα

G3

− Γk
α(

G i ȷ̄k

G
−

G i ȷ̄Gk

G2 −
G i kG ȷ̄ +G iG ȷ̄k

G2 + 2
G iG ȷ̄Gk

G3 )

− (
Gk ȷ̄

G
−

GkG ȷ̄

G2 )(Gk l̄G i l̄ α −Gh l̄G l̄ αG i m̄hGkm̄
)

= −
G i ȷ̄Gα

G2 −
G iG ȷ̄α

G2 + 2
G iG ȷ̄Gα

G3

−Gk l̄G l̄ α(−
G i ȷ̄Gk

G2 −
G iG ȷ̄k

G2 + 2
G iG ȷ̄Gk

G3 )

= 0. ∎

Using Lemmas 3.2 and 3.3 and Deûnition 2.4, we can prove the following theorem.

heorem 3.4 Let E be a holomorphic vector bundle over a compact complex mani-
fold M with a Finsler ûbre metric G such that (∑α GRi ȷ̄α ᾱ) is a negative semi-deûnite
hermitian matrix at each point of M. hen every holomorphic section of E is parallel
with respect to the horizontal Chern–Finsler connection. Moreover, if (∑α GRi ȷ̄α ᾱ) is
negative deûnite, then E admits no non-zero holomorphic sections.

Proof Taking the integral of (6) on each ûbre of P(E) yields that

∇β̄∇α(∫
P(E)/M

f ωr−1
V )

= ∫
P(E)/M

∇β̄∇α f ωr−1
V

= −∫
P(E)/M

[R i ȷ̄α β̄ −G i ȷ̄ lR l
α β̄]ξ

i ξ̄ jωr−1
V + ∫

P(E)/M
G i ȷ̄(∇α ξ i

)(∇β̄ ξ̄
j
)ωr−1

V

= −∫
P(E)/M

[R i ȷ̄α β̄ −G i ȷ̄ lR l
α β̄]ω

r−1
V ξ i ξ̄ j

+ ∫
P(E)/M

G i ȷ̄(∇α ξ i
)(∇β̄ ξ̄

j
)ωr−1

V

= −
GRi ȷ̄α β̄ ξ

i ξ̄ j
+ ∫

P(E)/M
G i ȷ̄(∇α ξ i

)(∇β̄ ξ̄
j
)ωr−1

V .

(7)

Taking the trace by δαβ as in Lemma 4.1 yields that

∇ᾱ∇α(∫
P(E)/M

f ωr−1
V ) ≥ −

GRi ȷ̄α ᾱ ξ i ξ̄ j ,

whose le�-hand side is an elliptic operator on ∫P(E)/M f ωr−1
V . On the other hand, the

right-hand side must be positive when ξ does not vanish, provided that (∑α GRi ȷ̄α ᾱ)
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is a negative deûnite hermitian matrix at each point of M. hen ∫P(E)/M f ωr−1
V must

be constant on M, and GRi ȷ̄α ᾱ ξ i ξ̄ j = 0. Since (∑α GRi ȷ̄α ᾱ) is negative deûnite, ξmust
vanish.

Moreover, ∫P(E)/M f ωr−1
V is a constant on M, if (∑α GRi ȷ̄α ᾱ) is negative semi-

deûnite. hus, ∫P(E)/M G i ȷ̄(∇α ξ i)(∇β̄ ξ̄
j)ωr−1

V = 0 hence ∇ξ = 0 in this case. ∎

3.2 On Finsler Vector Bundles over Non-compact Complete Complex Manifolds

In this subsection, we aim to obtain the results in the last section for non-compact
complete complex manifolds. his work is based on the method used in [13]. How-
ever, it is more general. First, we deal with the Hermitian manifolds case.
Firstly, we need the global scalar product of bundle sections. For any two holo-

morphic sections ξ, η of a Finsler bundle, we deûne the global scalar product ⟨⟨ , ⟩⟩
by

⟨⟨ξ, η⟩⟩ = ∫
P(E)

⟨ξ, η⟩ dµPM̃ = ∫
P(E)
∑
i , j

G i ȷ̄ξ iη j dµP(E) .

Let L2(ΓE) denote the completion of the space of all holomorphic sections with
compact support, with respect to the scalar product ⟨⟨ , ⟩⟩. A complex holomorphic
section ξ of M is said to have a ûnite global norm if the following integral is ûnite,

∥ξ∥2
= ⟨⟨ξ, ξ⟩⟩ = ∫

P(E)
∣ξ∣2G dµP(E) = ∫

P(E)
∑
i , j

G i ȷ̄ξ i ξ j dµP(E) < ∞.

Secondly, a cut-oò function and the distance function are needed in taking the in-
tegral on a non-compact manifold. Let O be a ûxed point ofM. For each point p ∈ M,
we denote ρ(p) by the geodesic distance from O to p. Since any complex Finsler met-
ric is absolutely homogeneous, hence reversible, there is no diòerence between for-
ward and backward distances (or completeness). Let B(t) = {p ∈ M ∣ ρ(p) < t} for
t > 0. We choose a C∞-function µ on R satisfying
(i) 0 ≤ µ(s) ≤ 1 on R,
(ii) µ(s) = 1 for s ≤ 1,
(iii) µ(s) = µ′(s) = 0 for s ≥ 2.

We set wt(p) = µ(ρ(p)/t) for t being some positive real numbers. hen we have
the following lemma.

Lemma 3.5 here exists a positive number A, depending only on µ, such that

∣∇wt ∣ω ≤
A
t
,

where ∣ ⋅ ∣ω denotes the norm with respect to the Kähler from ω.

Proof From the deûnition,

∣∇wt ∣ω = ∣ µ′(s)
∇ρ
t

∣
ω
≤

∣µ′(s)∣
t

∣∇ρ∣ω ≤
A
t
,

where A is the upper bound of µ′(s) on [1, 2]. ∎
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Now we can prove the following theorem.

heorem 3.6 Let (M ,ω) be a complete Hermitian manifold with the Kähler form
ω =

√
−1gαβ̄dz

α∧dz̄β , and let E be a holomorphic vector bundle over M with a strongly
pseudo-convex Finsler metric G. If it has non-positive G-average bundle curvature BK,
then every holomorphic section of E with ûnite global norm is parallel with respect to
the Chern–Finsler connection. Moreover, if the curvature BK is negative, then there is
no non-zero holomorphic section of E with ûnite global norm.

Proof For any holomorphic section ξ of E, let ft = w2
t f , where f = G i ȷ̄ξ i ξ̄ j . Con-

sidering the Schwartz and Young’s inequalities, we get

g β̄αwt∇β̄wt∇α f ≥ −wt ∣∇wt ∣ω ∣∇ f ∣ω

≥ −
Awt

t
∣∇ξ ⋅ ξ∣ω

= −
Awt

t

√

g β̄α(∇β̄ ξ̄ iG i ȷ̄ξ i)(∇α ξpGpq̄ ξ̄q)

≥ −
1
4
w2

t (g
β̄α
∇β̄ ξ̄

iG i ȷ̄∇α ξ j
) −

4A2

t2
(Gpq̄ ξp ξ̄q)

= −
1
4
w2

t ∣∇ξ∣2 −
4A2

t2
∣ξ∣2G ,

where ∣∇ξ∣2 = g β̄α∇β̄ ξ̄
iG i ȷ̄∇α ξ j and ∣ξ∣2G = Gpq̄ ξp ξ̄q . So it implies that

g β̄α∇β̄∇α ft − 2g β̄α∇β̄[(wt∇αwt) f ]

= g β̄α∇β̄(w
2
t∇α f )

≥
1
2
w2

t ∣∇ξ∣2 −
8A2

t
∣ξ∣2G −w2

t g
β̄α

(R i ȷ̄α β̄ − g i ȷ̄hRh
αβ̄)ξ

i ξ̄ j .

Taking the integral on both sides gives that

0 = ∫
B(2t)
∫

P(E)/M
{g β̄α∇β̄wt∇α f − 2g β̄α∇β̄[(wt∇αwt) f ]} dµP(E)

≥
1
2 ∫B(2t)

w2
t
ωn

n! ∫P(E)/M
∣∇ξ∣2

ωr−1
V

(r − 1)!
−
8A2

t ∫B(2t) ∫P(E)/M
∣ξ∣2G dµP(E)

− ∫
B(2t)

w2
t
ωn

n! ∫P(E)/M
g β̄α(R i ȷ̄α β̄ −G i ȷ̄hRh

αβ̄)ξ
i ξ̄ j ωr−1

V

(r − 1)!

=
1
2 ∫B(2t)

w2
t
ωn

n! ∫P(E)/M
∣∇ξ∣2

ωr−1
V

(r − 1)!

−
8A2

t ∫B(2t) ∫P(E)/M
∣ξ∣2G dµP(E) − ∫

B(2t)
w2

t
BK(ξ, ξ)

ωn

n!
.
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Since ξ has ûnite global norm and the average curvature is non-positive by the as-
sumption, t tending to inûnity yields that

0 ≥ lim sup
t→∞

∫
B(2t)

BK(wt ξ,wt ξ)
ωn

n!
≥

1
2 ∫P(E)

∣∇ξ∣2 dµP(E) ≥ 0.

herefore, ξ vanishes when BK is negative, and is parallel when BK is non-positive.
∎

By replacing g β̄α by δ β̄α in the proof of heorem 3.6, we can prove the following.

heorem 3.7 Let M be a complete complex manifold, and let E be a holomorphic
vector bundle over M with a strongly pseudo-convex Finsler metric G. If (∑α GRi ȷ̄α ᾱ)

is a negative semi-deûnite hermitian matrix at each point of M, then every holomorphic
section of E with ûnite global norm is parallel with respect to the Chern–Finsler connec-
tion. Moreover, if the matrix (∑α

GRi ȷ̄α ᾱ) is negative deûnite, then there is no non-zero
holomorphic section of E with ûnite global norm.

heorem 1.1 follows from heorems 3.4 and 3.7 obviously.

4 Vanishing Theorems of Holomorphic Vector Fields on Complex
Finsler Manifolds

Vanishing theorems of some holomorphic sections of certain bundles can be traced
back to Bochner [4], Kobayashi and Wu [8], and Yau [12]. In this section, we will
discuss the vanishing theorems of holomorphic vector ûelds on both complex and
non-compact complete Finsler manifolds.

4.1 On Compact Complex Finsler Manifolds

In this subsection, we want to show the results on Finsler manifolds, namely, to prove
that any holomorphic vector ûeld over a complex Finsler manifold with negative def-
inite Ricci curvature is a zero vector ûeld.
A complex vector ûeld ξ of type (1, 0) on M is called a holomorphic vector ûeld

if its components ξ i are all holomorphic functions, for all 1 ≤ i ≤ n. It is denoted
by ξ = ξ i(z)∂ i . Since we are working with the Finsler metric, which is deûned on
the pullback bundle, a holomorphic vector ûeld can be horizontal li�ing to a section
in H. Still denoted by ξ, it is locally expressed by ξ = ξ i(z)δ i . he following lemma
is just a corollary of Lemma 3.2 for the holomorphic bundle π∶T 1,0M → M.

Lemma 4.1 Let (M ,G) be a compact complex Finsler manifold, on which the curva-
ture (∑m(Rk ȷ̄;mm̄ − Gk ȷ̄lR l

;mm̄)) is a negative semi-deûnite hermitian matrix at each
point of PM̃. hen every holomorphic vector ûeld of type (1, 0) is parallel with respect
to the horizontal Chern–Finsler connection. Moreover, if (∑m(Rk ȷ̄;mm̄ − Gk ȷ̄lR l

;mm̄))

is negative deûnite, then M does not admit any non-zero holomorphic vector ûeld of
type (1, 0).
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Indeed we obtain that

(8) ∇ l̄∇k f = −(R i ȷ̄;k l̄ −G i ȷ̄hRh
;k l̄)ξ

i ξ̄ j
+G i ȷ̄(∇k ξ i)(∇ l̄ ξ̄

j
).

he curvature condition is related both to the underlying manifold and the ûbre,
which cannot be considered as the direct generalization of Kobayashi andWu’s result
[8] in the case of vector ûelds.
By Lemma 4.1 and Deûnition 2.6, we can prove the following theorem, which is a

generalization of themain result in [8] on the tangent bundle case. Here (A i ȷ̄) denotes
a Hermitian matrix.

heorem 4.2 Let (M ,G) be a compact complex Finsler manifold, on which the cur-
vature (∑m

GRi ȷ̄;mm̄) or (GRi ȷ̄) is a negative semi-deûnite hermitian matrix at each
point of M. hen every holomorphic vector ûeld of type (1, 0) on M is parallel with
respect to the horizontal Chern–Finsler connection. Moreover, if (GRi ȷ̄;mm̄) or (GRi ȷ̄)

is negative deûnite, then M does not admit any non-zero holomorphic vector ûeld of
type (1, 0).

Proof By the same method in the proof of Lemma 4.1, the claim concerning
(GRi ȷ̄;mm̄) is simply heorem 3.4 for the holomorphic Finsler bundle π∶ E = T 1,0M
→ M.

To prove the result in the condition of (GRi ȷ̄), we only need to ûnd an inequality
like (7). Taking the trace of (8) by G i ȷ̄, which are the components of the inverse of
Levi matrix G i ȷ̄, yields that

(9) G l̄ k
∇ l̄∇k f = −G l̄ k

(R i ȷ̄;k l̄ −G i ȷ̄hRh
;k l̄)ξ

i ξ̄ j
+G l̄ kG i ȷ̄(∇k ξ i)(∇ l̄ ξ̄

j
).

It follows by taking the integral of (9) on each ûbre of TM̃ that

∫
PM̃/M

G l̄ k
∇ l̄∇k f ωn−1

V = −
GRi ȷ̄ξ i ξ̄ j

+ ∫
PM̃/M

G l̄ kG i ȷ̄(∇k ξ i)(∇ l̄ ξ̄
j
)ωn−1

V ,

whose le�-hand side is equal to zero. So we get

GRi ȷ̄ξ i ξ̄ j
= ∫

PM̃/M
G l̄ kG i ȷ̄(∇k ξ i

)(∇ l̄ ξ̄
j
)ωn−1

V ≥ 0.

It follows from the assuption that ξmust vanish when (GRi ȷ̄) is negative deûnite, and
that ξ must be parallel when (GRi ȷ̄) is negative semi-deûnite. ∎

heorem 1.2 follows from heorem 4.2 immediately.

Remark 4.3 he curvature tensor∑m(Rk ȷ̄;mm̄ −Gk ȷ̄lR l
;mm̄)δvk ∧ δv̄ l appearing in

Lemma 4.1 and GRi ȷ̄;mm̄δv i ∧ δv̄ j appearing in heorem 4.2 reduce to the same one,
Rk ȷ̄;mm̄dvk ∧ dv̄ j , when G is a Hermitian metric.

Moreover, if the hermitian metric is Kähler, then the G-average curvature G Ric
is the Ricci curvature of M. By the analogous method of [9], one can use the Ricci
(Kobayashi) curvature to get the same result as in heorem 4.2 in this case.
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4.2 On Non-compact Complete Complex Finsler Manifolds

Let Λp ,q(M) be the space of all (p, q)-forms on M, and Λp ,q
o (M) be the subspace of

Λp ,q(M) composed of forms with compact support. On a complex Finsler manifold,
a (p, q)-form η ∈ Λp ,q(M) may be expressed locally as

η =
1

p!q!
∑ η i1 , . . . ip ȷ̄1 ⋅⋅⋅ ȷ̄q(z)dz

i1 ∧ ⋅ ⋅ ⋅ ∧ dz ip ∧ dz̄ j1 ∧ ⋅ ⋅ ⋅ ∧ dz̄ jq .

For any ξ, η ∈ Λp ,q
o (M), we deûne the global scalar product ⟨⟨ , ⟩⟩ by

⟨⟨ξ, η⟩⟩ = ∫
PM̃

⟨ξ, η⟩ dµPM̃

= ∫
PM̃

1
p!q!
∑G k̄1 i1 ⋅ ⋅ ⋅G k̄p ipG ȷ̄1 l1 ⋅ ⋅ ⋅G ȷ̄q lq

× ξ i1 ⋅⋅⋅ip ȷ̄1 ⋅⋅⋅ ȷ̄qηk1 ⋅⋅⋅kp l̄1 ⋅⋅⋅ l̄q dµPM̃ .

Let Lp ,q
2 (M) denote the completion of Λp ,q

o (M)with respect to the scalar product
⟨⟨ , ⟩⟩. A complex vector ûeld ξ of type (1, 0) on M is said to have a ûnite global norm
if the corresponding holomorphic (0, 1)-form ξ satisûes ξ ∈ L0,1

2 (M)∩Λ0,1(M). hat
is, the following integral is ûnite,

∥ξ∥2
= ⟨⟨ξ, ξ⟩⟩ = ∫

PM̃
⟨ξ, ξ⟩ dµPM̃ < ∞.

he following lemma is the tangent bundle version of Lemma 3.5.

Lemma 4.4 here exists a positive number A, depending only on µ, such that

∣∇wt ∣ ≤
A
t
.

Now we can proveheorem 1.3 according to Deûnitions 2.7 and 2.8.

Proof For any holomorphic vector ûeld ξ of type (1, 0), let ft = w2
t f , where f =

G i ȷ̄ξ i ξ̄ j . Using the Schwartz and Young inequalities, we get

G l̄ kwt∇ l̄wt∇k f ≥ −wt ∣∇wt ∣ ∣∇ f ∣

≥ −
Awt

t
∣∇ξ ⋅ ξ∣

= −
Awt

t

√

G l̄ k(∇ l̄ ξ̄ iG i ȷ̄ ξ̄ j)(∇k ξpGpq̄ ξ̄q)

≥ −
1
4
w2

t ∣∇ξ∣2 −
4A2

t2
∣ξ∣2 .

his implies that

G l̄ k
∇ l̄∇k ft − 2G l̄ k

∇ l̄ [(wt∇kwt) f ]

= G l̄ k
∇ l̄(w

2
t∇k f )

≥
1
2
w2

t ∣∇ξ∣2 −
8A2

t
∣ξ∣2 −w2

t G
l̄ k
(R i ȷ̄;k l̄ −G i ȷ̄hRh

;k l̄)ξ
i ξ̄ j .
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Taking the integral on both side gives that

0 = ∫
PB̃(2t)

{G l̄ k
∇ l̄wt∇k f − 2G l̄ k

∇ l̄ [(wt∇kwt) f ]} dµPM̃

≥
1
2 ∫B(2t)

w2
t
ωn
H

n! ∫PM̃/M
∣∇ξ∣2

ωn−1
V

(n − 1)!
−
8A2

t ∫PB̃(2t)
∣ξ∣2 dµPM̃

− ∫
B(2t)

w2
t
ωn
H

n! ∫PM̃/M
G l̄ k

(R i ȷ̄;k l̄ −G i ȷ̄Rh
;k l̄)ξ

i ξ̄ j ωn−1
V

(n − 1)!

=
1
2 ∫B(2t)

w2
t
ωn
H

n! ∫PM̃/M
∣∇ξ∣2

ωn−1
V

(n − 1)!

−
8A2

t ∫PB̃(2t)
∣ξ∣2 dµPM̃ − ∫

B(2t)
w2

t
g Ric(ξ, ξ) dM

=
1
2 ∫B(2t)

w2
t
ωn
H

n! ∫PM̃/M
∣∇ξ∣2

ωn−1
V

(n − 1)!

−
8A2

t ∫PB̃(2t)
∣ξ∣2 dµPM̃ − ∫

B(2t)
w2

t
G Ric(ξ, ξ) dM̃ ,

where dM = (det g i ȷ̄)dz1 ∧dz̄1 ∧⋅ ⋅ ⋅∧dzn ∧dz̄n and dM̃ = σ(z)dz1 ∧dz̄1 ∧⋅ ⋅ ⋅∧dzn ∧

dz̄n . Since ξ has ûnite global norm and the average curvature is non-positive by the
assumption, t tending to inûnity yields that

0 ≥ lim sup
t→∞

∫
B(2t)

g Ric(wt ξ,wt ξ) dM ≥
1
2 ∫M

ωn
H

n! ∫PM̃/M
∣∇ξ∣2

ωn−1
V

(n − 1)!
≥ 0,

and

0 ≥ lim sup
t→∞

∫
B(2t)

G Ric(wt ξ,wt ξ) dM̃ ≥
1
2 ∫M

ωn
H

n! ∫PM̃/M
∣∇ξ∣2

ωn−1
V

(n − 1)!
≥ 0,

herefore, ξ vanishes when g Ric or G Ric is negative, and is parallel when g Ric or
G Ric is non-positive. ∎

Acknowledgement he author would like to express gratitude to the anonymous
reviewer for his helpful suggestions.

References

[1] M. Abate and G. Patrizio, Finsler Metrics: A Global Approach. Lecture Notes in Math. 1591,
Springer-Verlag, 1994.

[2] T. Aikou, Finsler Geometry on complex vector bundles. In: Riemann–Finsler Geometry, MSRI
Publications 50, 2004, pp. 83–105.

[3] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace–Beltrami equation on complex
manifolds. Inst. Hautes Etudes Sci. Publ. Math. 25(1965), 313–362.

[4] S. Bochner, Vector ûelds and Ricci curvature. Bull. Amer. Math. Soc. 52(1946), 776–797.
[5] J. Cao and P. Wong, Finsler geometry of projectivized vector bundles. J. Math. Kyoto Univ. 43(2003),

369–410.
[6] H. Feng, K. Liu, and X. Wan, Chern forms of holomorphic Finsler vector bundles and some

applications. Internat. J. Math. 27(2016), 1650030, 22 pp.
[7] S. Kobayashi, Complex Finsler vector bundles. Contemp. Math. 196, Amer. Math. Soc., Providence,

RI, 1996, pp. 133–144.

640

https://doi.org/10.4153/S0008439518000127 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000127


Holomorphic Vanishing heorems

[8] S. Kobayashi and H. H. Wu, On holomorphic sections of certain Hermitian vector bundles. Math.
Ann. 189(1970), 1–4.

[9] B. Shen, Frankel’s reûnement of Bochner’s theorem on forward complete Finsler manifolds.
Diòerential Geom. Appl. 51(2017), 65–75.

[10] B. Shen, Vanishing of Killing vector ûelds on Finsler manifolds. Kodai Math. J., to appear.
[11] Y. T. Siu,he complex-analyticity of harmonic maps and the strong rigidity of compact Kähler

manifolds. Ann. Math. 112(1980), 73–111.
[12] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications

to geometry. Indiana Univ. Math. J. 25(1976), 7, 659–670.
[13] S. Yorozu, Holomorphic vector ûelds on complete Kähler manifolds. Ann. Sci. Kanazawa Univ.

17(1980), 17–21.

School of Mathematics, Southeast University, 211189, Nanjing, P. R. China
e-mail : shenbin@seu.edu.cn

641

https://doi.org/10.4153/S0008439518000127 Published online by Cambridge University Press

mailto:shenbin@seu.edu.cn
https://doi.org/10.4153/S0008439518000127



