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Abstract. We give a general construction of correlation functions in rational conformal ¢eld
theory on a possibly nonorientable surface with boundary in terms of three-dimensional
topological ¢eld theory.The construction applies to any modular category in the sense ofTuraev.
It is proved that these correlation functions obey modular invariance and factorization rules.
Structure constants are calculated and expressed in terms of the data of the modular category.
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1. Introduction

In this paper, we study correlation functions in conformal ¢eld theory from the point
of view of three-dimensional topological ¢eld theory.
The problem of constructing correlation functions in rational conformal ¢eld

theory has two parts. The ¢rst part of the problem is to determine the space of
conformal blocks. The second part is to use this space to construct correlation
functions.
The ¢rst part of the problem is by now well understood in mathematical terms.

One approach, suggested by Witten’s paper [W] on Chern^Simons theory, is given
in terms of three-dimensional topological ¢eld theory (TFT). Such a theory assigns
to every ‘extended surface’ ^ an oriented 2-manifold X with marked points carrying
labels, and certain additional data related to framing ^ a ¢nite dimensional complex
vector spaceHðX Þ, the space of conformal blocks, or of the states of the TFT, and to
every 3-manifold M bounded by X , containing a ‘ribbon graph’, a vector ZðMÞ in
HðX Þ. The ribbon graph is an embedded graph ending at the marked points, with
some additional structure. The spaces HðXÞ and the vectors ZðMÞ are supposed
to obey a number of natural axioms relating to homeomorphisms and cutting
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and pasting. Turaev showed in [T] how every modular category produces a TFT
and, in particular, a space of conformal blocks associated to every extended
surface.
The purpose of this paper is to give a precise meaning in the same terms to the

second part of the problem, the construction of correlation functions out of
conformal blocks, and to present a solution. Let us ¢rst describe the data of the
problem. First, one requires the chiral data of a rational conformal ¢eld theory,
which for us are the data of a modular category. In particular, there is a set I
of distinguished simple objects. These data are needed to de¢ne conformal blocks.
The conformal ¢eld theory itself is given by a system of correlation functions obeying
certain axioms. Each construction of such correlation functions satisfying the
axioms gives a different conformal ¢eld theory with the same underlying modular
category.
We proceed to describe what the axioms are in the simplest situation (the ‘Cardy

case’ [C1]) to which we restrict our attention in this paper. To formulate the axioms
we introduce the notion of a labeled surface. A conformal ¢eld theory is then an
assignment of a correlation function CðX Þ to each labeled surface X . A labeled
surface X consists of a (not necessarily orientable) compact two-dimensional
manifold with (possibly empty) oriented boundary, a set of marked points on it,
and ‘boundary conditions’. The marked points all carry a label from I and certain
local data. The boundary conditions are a coloring by I of the boundary arcs between
marked boundary points. For example, if X is a disk with m marked points on its
boundary, the boundary conditions are a labeling of the m arcs between neighboring
points by elements of I .
The correlation function associated to these data is then a linear map

W@X !HðX̂X Þ from a ‘multiplicity space’, W@X , associated to the boundary
(W@X ¼ C if @X ¼ ;) to the space of conformal blocks, HðX̂X Þ, of the double X̂X
of X . The double of a compact surface is an oriented closed surface with an
orientation reversing involution s so that X is obtained from X̂X by identifying pairs
of points related by s. For example, the double of a disk is a sphere, and the double
of the projective plane is also a sphere, but with a different involution. The torus
is the double of the annulus, the Mo« bius band and the Klein bottle. The double
of a closed orientable surface is the disjoint union of two copies of the surface, with
opposite orientations. The de¢nition of the double also applies naturally to surfaces
with marked points, so that the double of a labeled surface is an extended surface
in the sense of Turaev ([T]).
The description of correlation functions in terms of conformal blocks on

the double goes back to the early days of conformal ¢eld theory ([A1]) and was
formulated in the general context of conformal ¢eld theory in [FS].
The correlation functions are supposed to behave naturally under homeo-

morphisms (the modular invariance of correlation functions) and gluing (the
factorization properties of correlation functions). There are two types of gluing
properties: a (possibly disconnected) surface may be glued by identifying two arcs
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on its boundary or by cutting out two disks in the interior and identifying the bound-
aries of the resulting holes. In both cases these operations induce gluing operations
on the double of the surface, which in turn, by the rules of TFT, induce
homomorphisms between the corresponding spaces of conformal blocks. The
requirement of factorization means that the correlation functions behave naturally
under these homomorphisms.
Our main result is the construction of an assignment X 7!CðX Þ 2

HomCðW@X ;HðX̂X ÞÞ of a correlation function to every labeled surface and a proof
that it obeys the required modular and factorization properties. The basic idea
is that the correlation function CðX Þ is the vector ZðMX Þ 2 HðX̂X Þ associated to a
3-manifold MX with a ribbon graph, the connecting 3-manifold of X , whose
boundary is the double X̂X of X . The vector ZðMX Þ depends linearly on the
colorings of the vertices of the ribbon graphs by morphisms of the modular
category. This space of colorings is identi¢ed with W@X . The connecting manifold
was ¢rst considered by Hor› ava ([H]) in his study of Chern^Simons theory on
Z2-orbifolds.
Let us ¢rst describe our construction in a simple example, suppressing for the

moment the framing. Let X be a disk with n marked points in its interior with labels
i1; . . . ; in 2 I and m points on the boundary, with labels j1; . . . ; jm 2 I . Let the bound-
ary condition on the arcs between the kth and kþ 1st boundary points be labeled
by ak 2 I . Then MX is a 3-ball and the correlation function CðX Þ is the conformal
block on the sphere associated to the ribbon graph depicted in Figure 1. The points

Figure 1.
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zk, �zzk project to the kth interior point on the disk, and xl projects to the lth boundary
point.
In the general case, the main property of the connecting manifold is that it comes

with a projection p: MX ! X whose ¢bers over interior points are closed intervals,
and an inclusion i: X ! MX , which is a homotopy equivalence such that
p � i¼ idX . The ribbon graph then consists of ¢bers of p over the marked points
in the interior, and a loop running close to ið@X Þ and connected by short lines
to the marked boundary points.
After formulating and proving the modular invariance and factorization proper-

ties of our correlation functions, we compute ‘structure constants’, namely the
correlation functions for elementary building blocks: the disk with three boundary
points, the disk with one interior and one boundary point, and the projective plane
with one point. General correlation functions are then in principle obtainable from
these using the factorization theorems. The structure constants are given in terms
of the data (fusing matrices, modular S-matrix) of the modular category.
We also give formulae for the annulus, the Klein bottle and the Mo« bius strip

without marked points. In these cases, the double is a torus; we show that the
coef¢cients of correlation functions with respect to a natural basis of the space
of conformal blocks are integers.
The correlation functions are thus given in our approach as states of a TFT. To get

actual functions of the position of the marked points and moduli, say for WZW
models, one uses the modular category of integrable modules of an af¢ne Lie algebra
([KL, F]). The dependence on the moduli should then be obtained by integrating the
Knizhnik^Zamolodchikov connection. In the case of the sphere and general WZW
models such a construction might be possible along the lines of [K].
The paper is organized as follows. We begin by giving a review of

three-dimensional topological ¢eld theory, following [T], in Section 2. In this section,
modular categories, TFT and modular functors are introduced, and subtleties such
as the framing anomaly are explained. In Section 3 we present our proposal for
correlation functions. We also formulate and prove the factorization and modular
properties they obey. These properties imply, in particular, that correlation
functions on general surfaces may be expressed in terms of basic correlation
functions. We compute these basic correlation functions in Section 4. In
Section 5 we compute correlation functions in the cases where the double has genus
one, and prove integrality results.
In Appendix A we give the de¢nition of modular categories and in Appendix B we

describe how to obtain the real projective space by surgery on the unknot, a result
needed to compute correlation functions on the projective plane.
Finally, in Appendix C, we give a short overview of the physical background of our

results. In particular, we brie£y describe some of the main applications of boundary
conformal ¢eld theory to physical problems.
Some of these results were announced in [FFFS2].
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2. Modular Categories and Three-Dimensional TFT

2.1. MODULAR CATEGORIES

A modular category is a strict monoidal Ab-categoryM (see Appendix A) with unit
object 1 and an additional set of data obeying a system of axioms. The data are

(1) A ¢nite set I of simple objects containing 1.
(2) For each pair of objects V ;W, a braiding morphism cV ;W 2HomðV
W ;W
V Þ.
(3) For each object V , a twist yV 2HomðV ;V Þ.
(4) A duality: for each object V there is a unique dual object V� and morphisms

bV 2Homð1;V
V�Þ and dV 2HomðV�
V ; 1Þ.

These data obey a number of axioms, which we describe in Appendix A (see [T] for
more details). In general modular categories, Homð1; 1Þ is a general ring. Here we
assume that Homð1; 1Þ ¼C. The general case may be dealt with similarly, as we
only use the axioms and results in the general theory of [T]. However, in order
to simplify certain normalizations, we do use the fact thatC is an algebraically closed
¢eld.
The axioms can be best understood in the language of ribbon graphs, i.e., ¢nite

collections of disjoint ribbons, annuli and coupons. Ribbons are oriented rectangles
½�1=10; 1=10� � ½0; 1� embedded in R2

� ½0; 1�, so that ½�1=10; 1=10� � ð0; 1Þ is
entirely contained in R2

�ð0; 1Þ. Annuli are oriented annuli ½�1=10; 1=10� �S1,
embedded in R2

� ð0; 1Þ. Ribbons and annuli are labeled by objects of the category.
The core f0g� ½0; 1� or f0g�S1 of each ribbon or annulus is also given an orientation.
The coupons are oriented rectangles embedded in R2

� ð0; 1Þ with two preferred
opposite sides, the top and the bottom, and are labeled by morphisms of the
category. The ends ½�1=10; 1=10� � f0g, ½�1=10; 1=10� � f1g of the ribbons are glued
to the top or the bottom of coupons, so that the orientations match to give an
oriented (topological) 2-manifold with boundary, or are contained in R2

�f0; 1g.
The coupons are labeled by morphisms from the tensor product of the objects
labeling the ribbons glued to the bottom boundary, or their dual objects, to the
tensor product of the objects labeling the ribbons glued to the top boundary, or
their dual objects. The ordering of the tensor product re£ects the ordering (from
left to right) of the ribbons meeting at the coupon. The dual object is taken when
the orientation of the core points in the upwards (bottom to top) direction. For
example, if the upper side of the coupon
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is the top boundary, and the orientation is the standard orientation of the plane, then
f 2 HomðU� 
V ;W 
X 
Y �Þ.
Using this correspondence the basic morphisms are represented as follows:

Choosing an orientation of a ribbon in an oriented 3-manifold is the same as
choosing a preferred side, which in our drawings will usually face the reader.
The other side is drawn as shaded.
The tensor product of morphisms is represented by the juxtaposition of the

factors, and the composition fg is obtained by drawing f on top of g and gluing
the ends of the ribbons. Then the axioms are such that the morphism corre-
sponding to a ribbon graph depends only on its isotopy class. In particular,
for every ribbon graph G in S3 ¼ R3

[1, we get an isotopy invariant
jGj 2 Homð1; 1Þ ¼ C.
In drawing the graphs representing morphisms we will often make use of the

‘blackboard framing’ notation. Instead of drawing ribbons, we will only draw their
cores, with the understanding that the ribbons are contained in the plane of the page
(or of the screen) and inherit the orientation from the standard orientation of the
plane.
As a consequence of the axioms, one then proves that the objects in I are pairwise

non-isomorphic and are a system of representatives of all isomorphism classes of
simple objects. Also one shows that there is a canonical isomorphism
V ! ðV�Þ

� for all objects V given in terms of braiding, twist and duality. We will
tacitly identify ðV�Þ

� with V via this isomorphism below.
Of particular importance is the (quantum) trace of an endomorphism

f 2HomðV ;V Þ. It is de¢ned by the formula trð f Þ ¼ dV cV ;V� ðyV f 
 idV� ÞbV 2 C.
It obeys trð fgÞ ¼ trðgf Þ (whenever both sides are de¢ned) and trðid1Þ ¼ 1.
Out of the trace one then de¢nes the quantum dimensions of simple objects:?

dimðiÞ ¼ trðidiÞ, and the modular matrix with matrix elements si;j ¼ trðcj;i ci;jÞ. These
numbers depend only on the isomorphism classes of the simple objects i; j. One shows

? We usually denote simple objects by lower case letters i; j; . . . ; and general objects by capital
lettersU;V ; . . . .
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that, as a consequence of the axioms, dimðiÞ ¼ dimði�Þ 6¼ 0, dimð1Þ ¼ 1, and that the
modular matrix obeys si;j ¼ sj;i ¼ si�;j� , si;1 ¼ dimðiÞ.
On the simple modules i, the isomorphism yi acts as a scalar vi 6¼ 0 times the

identity.
A rank of a modular category is a number D2C such that D2 ¼

P
i2I dimðiÞ

2. In
the following, we shall assume that a rank has been ¢xed. Related to the rank is
the charge k of the modular category. It is de¢ned by the formula
k ¼ D�1

P
j2I v�1j dimð jÞ2. The charge appears in the description of the framing

anomaly.
Out of si;j, vi, D one constructs a projective representation of the mapping class

group of the torus, see 2.5.2 below.

EXAMPLES. (1) For any positive integer N, letMN be the category with object set
Z and morphism spaces Hom( j; kÞ ¼ C if j � k mod 2N and Hom( j; kÞ ¼{0}
otherwise. The composition of morphisms is the multiplication of complex numbers.
The tensor structure is de¢ned on objects as j 
 k ¼ j þ k and on morphisms as
f 
 g ¼ ð�1Þjsfg, if f 2 Homðj; j þ 2NkÞ; g 2 Homðr; rþ 2NsÞ. The unit object is
1 ¼ 0. This category can be made into a modular category with I ¼{0; . . . ; 2N � 1}
as follows. Let z ¼ exp ðip=2NÞ. We set j� ¼�j, dj ¼ bj ¼ 1; yj ¼ z�j2 and
cj;k ¼ z�jk. Then

vj ¼ z�j2 ; sj;k ¼ z�2jk; D ¼
ffiffiffiffiffiffiffi
2N

p
; k ¼ eip=4:

In particular, dimð jÞ ¼ 1 for all objects j. An equivalent category appears in con-
formal ¢eld theory and is related to the free boson ¢eld with values in a circle
of radius 1=

ffiffiffiffiffiffiffi
2N

p
.

(2) The ‘puri¢ed’ category of representations of the quantum group Uqðsl2Þ with
q ¼ expðpi=ð‘þ 2ÞÞ, which is related to the SU(2) WZW model at level ‘, has
‘þ 1 simple objects 0; . . . ; ‘ up to isomorphism. In this case we have

vj ¼ e�pi
jðjþ2Þ
2ð‘þ2Þ; sj;k ¼

sin
pð j þ 1Þðkþ 1Þ

‘þ 2

� �

sin
p

‘þ 2

� � ; D ¼

ffiffiffiffiffiffiffiffiffiffiffi
‘þ 2
2

r

sin
p

‘þ 2

� � ; k ¼ e
3pi‘
4ð‘þ2Þ:

2.2. SPACES OF MORPHISMS

Let U;V ;W be objects of a modular category. Then we have linear isomorphisms

HomðU 
V ;W Þ ! HomðU;W 
V�Þ;

HomðU 
V ;W Þ ! HomðV ;U� 
W Þ;

FIELD THEORYAND THREE-DIMENSIONAL TOPOLOGY 195

https://doi.org/10.1023/A:1014903315415 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014903315415


given by

f 7! ðf
 idV� Þ � ðidU 
 bV Þ; f 7! ðidU� 
 fÞ � ðbU� 
 idV Þ; ð1Þ

respectively. In particular, we have an isomorphism

Homði1 
 � � � 
 in; j1 
 � � � 
 jmÞ ! Homð1; i�n 
 � � � 
 i�1 
 j1 
 � � � 
 jmÞ;

for any simple objects i1; . . . ; jm.
For nþm ¼ 3, it is then suf¢cient to consider the space

Hi;j;k ¼ Homð1; i
 j
 kÞ:

We have a nondegenerate pairing h ; i : Hk�;j�;i� 
Hi;j;k ! C, given by

hf;ci ¼ dk � ðid
 dj 
 idÞ � ðid
 id
 di 
 id
 idÞ � ðf
 cÞ:

It is useful to ¢x bases ðea½ijk�; a ¼ 1; . . . ;Ni;j;kÞ of the spaces Hi;j;k for i; j; k simple
objects, so that

hea½k�j�i��; eb½ijk�i ¼ da;b: ð2Þ

Graphically, a basis element ea½ijk� is represented by a coupon

or in the simpli¢ed blackboard framing notation by a trivalent vertex with a label a
drawn where the bottom of the coupon should be. The relation ð2Þ may then be
written as

Using the isomorphisms above, the bilinear pairing may also be formulated as a
pairing between Hk

i;j ¼ Homði
 j; kÞ and Hi;j
k ¼ Homðk; i
 jÞ given by the trace:

hf;ci ¼ trðfcÞ. The dimensions (Verlinde numbers) ofHomði 
 j; kÞwill be denoted
by Nk

i;j . Similar notations are used for the other spaces. Thus Ni;j;k ¼ dimðHi;j;kÞ ¼

Nj;k
i� and so on.
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The ¢rst computations with these bases are the following two identities. The ¢rst
identity is

ð3Þ

or ea½ik�j��eb½jki�� ¼ da;b dimðiÞ
�1idi, if ea½ik�j��, eb½jki�� are identi¢ed via (1) with

basis elements of Hi
j;k, Hj;k

i , respectively. The second identity is

ð4Þ

whose meaning is

idi 
 idj ¼
X
k2I;a

dimðkÞea½jk�i�ea½i�kj��;

where ea½jk�i� is identi¢ed with a basis element of Hi;j
k and ea½i�kj�� with a basis

element of Hk
i;j.

The ¢rst identity can be obtained by noticing that both sides of the equations are
elements of the one-dimensional vector space Homði; iÞ ¼ C idi, so they are
proportional. The constant of proportionality is computed by taking the trace
on both sides.
The second identity follows from the domination axiom (Appendix A(xi)) which

implies that the left-hand side can be expressed as a linear combination of the
morphisms on the right-hand side, possibly with different basis elements ea; eb in
the factors. To compute the coef¢cients ca;bðkÞ in

idi 
 idj ¼
X

k2I;a;b

ca;bðkÞea½jk�i�eb½i�kj��;

we compose both sides of the equation with eg½i�lj�� 2 Hl
i;j. Since Homðk; lÞ ¼ 0 for

l 6¼ k, the only term contributing to the sum over k is the one with k ¼ l. Using
the ¢rst identity, we get eg ¼

P
a;b cabðlÞdag dimðlÞ

�1eb, from which the result
ca;bðlÞ ¼ dimðlÞda;b follows.

2.3. FROBENIUS^SCHUR INDICATORS

A self-dual object in a modular category is an object isomorphic to its dual object. To
each simple self-dual object one associates a scalar squaring to one, called the
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Frobenius^Schur indicator. Its role in conformal ¢eld theory was ¢rst emphasized in
[B]. It is a generalization of a classical notion in group representation theory: if V is
an irreducible representation of a group G then there is an action of Z2 on the space
of invariants ðV 
V ÞG by permutation of factors. This space is at most
one-dimensional. If it is nontrivial, the generator of Z2 acts by multiplication by
the Frobenius^Schur indicator.
In the case of a general modular category, the Frobenius^Schur indicator is

de¢ned as follows. Suppose V is a simple self-dual object and f: V� 7! V is an
isomorphism. Then the Frobenius^Schur indicator is the factor of proportionality
nðV Þ in the identity

ðyV� 
 idV Þ cV ;V� bV ¼ nðV Þ ðf�1 
 fÞ bV ;

between two nonzero elements of the one-dimensional space Homð1;V� 
V Þ. Since
V is simple, f is unique up to a nonzero scalar, so nðV Þ is independent of the choice
of isomorphism f.

LEMMA 2.1. Let V be a simple self-dual object. Then

(i) nð1Þ ¼ 1.
(ii) nðV Þ2 ¼ 1.
(iii) If V is isomorphic to W then W is simple and self-dual and nðV Þ ¼ nðW Þ. In

particular nðV�Þ ¼ nðV Þ.

Proof: (i) follows from y1 ¼ id1, c1;1 ¼ id1
 id1. To prove (ii), let us act on the
equation de¢ning n with the morphism ðyV 
 idV� ÞcV�;V . By the naturality of the
braiding, the left-hand side becomes cV�;V cV ;V� ðyV 
 yV� ÞbV , which, by the twist
axiom (Appendix A, (iv)), is equal to yV
V�bV ¼ bVy1 ¼ bV . The right-hand side is

ðyV 
 idV� Þ cV�;V nðV Þ ðf�1
fÞ bV

¼ nðV Þ ðf
f�1Þ ðyV 
 idV� Þ cV ;V� bV

¼ nðV Þ2 bV :

Thus nðV Þ2 ¼ 1.
To prove (iii), let us introduce the dual morphism f �: W � 7! V� of a morphism

f : V 7! W : f � ¼ ðdW 
 idÞðid
 f 
 idÞðid
 bV Þ:

It is easy to see (by drawing the corresponding graphs) that id�V ¼ idV� and that
ð fgÞ� ¼ g�f �, whenever the composition of the morphisms f , g is de¢ned. In par-
ticular, f � is an isomorphism if and only if f is an isomorphism. Moreover,
bW ¼ f 
 ð f �Þ�1 bV if f : V 7! W is an isomorphism. Using the naturality of twist
and braiding, we act by ðf �Þ�1
 f on the equation de¢ning nðV Þ and get

ðyW � 
 idW ÞcW ;W �bW ¼ nðV Þ ð f ��1f�1
 ffÞ bV

¼ nðV Þ ð ff f �Þ�1
 ff f �
� �

bW ;
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Since ff f �: W � 7! W is an isomorphism, it follows that W is self-dual (it is clear
that W is simple) and that nðW Þ ¼ nðV Þ. &

2.4. FUSING MATRICES (6J-SYMBOLS)

A modular category is in principle determined by a set of numerical data.
Additionally to the modular matrix and the scalars vi, one has to specify the
6j-symbols. Let i; j; k; l;m; n be simple objects (in the applications they are either
elements of I or duals of elements of I). Then one shows that the linear
homomorphisms

F :
M
l2I

Hi;j
l 
Hl;k

m ! Homðm; i
 j
 kÞ;

given by f
 c 7! ðf
 idkÞ � c, and

F0 :
M
n2I

Hj;k
n 
Hi;n

m ! Homðm; i
 j
 kÞ;

given by f
 c 7! ðidi
fÞ � c, are isomorphisms. Therefore we have an
isomorphism ðF0Þ�1 � F. Its components are the 6j-symbols:

i j k
l m n


 �
: Hi;j

l 
Hl;k
m ! Hj;k

n 
Hi;n
m :

The matrix elements of the 6j-symbols with respect to the above bases are de¢ned by

i j k

l m n


 �
ea½l�ij� 
 eb½m�lk�

¼
X
g;d

i j k

l m n


 �ab

gd

eg½n�jk� 
 ed½m�in�:

Graphically, these matrix elements are de¢ned by
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We also introduce inverse 6j-symbols as the components of the inverse map F�1 � F0:

2.5. THE THREE-DIMENSIONAL TOPOLOGICAL FIELD THEORY

To every modular category one can associate a three-dimensional topological ¢eld
theory. It is a formalization and generalization of the Chern^Simons path integral
of [W]. The TFT associates a ¢nite-dimensional vector space HðX Þ (the space of
conformal blocks) to each surface X with marked points and some additional
structure, and an element of HðX Þ to each three-dimensional manifold with a graph
of Wilson lines bounding X .
To deal properly with the ‘framing anomaly’, we need to endow surfaces with

additional structures and use ribbons instead of Wilson lines. We start by intro-
ducing the de¢nitions, following [T].
An extended surface is an oriented closed 2-manifold X with a ¢nite set of disjoint

oriented embedded arcs labeled by simple objects, and a Lagrangian subspace lðX Þ
of the ¢rst homology group H1ðX ;RÞ. A homeomorphism of extended surfaces
f : X 7! Y is an orientation preserving homeomorphism mapping arcs to arcs with
the same label and the same orientation. A homeomorphism f : X ! Y of extended
surfaces will be called strong if it also maps lðX Þ to lðY Þ ?. The opposite �X of
an extended surface is the surface X with opposite orientation and the same arcs,
so that if an arc of X is labeled by a simple object i then it has opposite orientation
and it is labeled by i� in �X .
A cobordism of extended surfaces is a triple ðM; @�M; @þMÞ such that

(1) M is a three-dimensional manifold with boundary containing a ribbon graph ??.
A ribbon graph consists of ribbons, annuli and coupons as in 2.1, but the ribbons
and annuli are labeled by simple objects only. Ribbon ends are glued to coupons
or are contained in the boundary @M.

(2) @ M are disjoint disconnected subsets of the boundary @M so that
@M ¼ @þM [ ð�@�MÞ, endowed with Lagrangian subspaces of their ¢rst hom-
ology groups. The marked arcs at which the ribbons in M end are given the label

? As we rarely use strong homeomorphisms we depart here slightly from the notation of [T]:
there a homeomorphism is calledweakhomeomorphism and a strong homeomorphism is called
homeomorphism.

?? Instead of ribbon graphs, one often considers framed graphs, whose edges (assumed to be
smoothly embedded in a smooth manifold) come with a normal vector field. A ribbon graph can
bemade into a framed graph by taking avector field normal to the ribbons.The present approach
[T] works also in the topological category.
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of the ribbons whose core is oriented inwards, and the dual label otherwise. The
Lagrangian subspaces and the oriented labeled arcs give @ M the structure
of extended surfaces.

We say that ðM; @�M; @þMÞ is a cobordism from @�M to @þM.
The TFT ? ðZ;HÞ associated to a modular category M over C consists of the

following data.

(i) For each extended surface X there is a ¢nite-dimensional complex vector space
HðX Þ, the space of states (or of conformal blocks), such that Hð;Þ ¼ C and
HðX t Y Þ ¼ HðX Þ 
 HðY Þ.

(ii) To each homeomorphism of extended surfaces f : X 7! Y there is an
isomorphism f]: HðX Þ 7! HðY Þ.

(iii) If ðM; @�M; @þMÞ is a cobordism of extended surfaces, then theTFTassociates to
it a homomorphism

ZðM; @�M; @þMÞ : Hð@�MÞ ! Hð@þMÞ

depending linearly on the labels of the coupons.

These data obey the following axioms.

(1) (Naturality) Let ðM; @�M; @þMÞ, ðN; @�N; @þNÞ be cobordisms of extended
surfaces. Let f : M ! N be a degree one homeomorphism mapping the ribbon
graph in M onto the ribbon graph in N, restricting to homeomorphisms
f : @ M 7! @ N preserving the Lagrangian subspaces. Then

ð fþÞ] � ZðM; @�M; @þMÞ ¼ ZðN; @�N; @þNÞ � ð f�Þ]

(2) (Multiplicativity) If M1;M2 are two cobordisms of extended surfaces, then under
the identi¢cation

Hð@ M1 t @ M2Þ ¼ Hð@ M1Þ 
 Hð@ M2Þ

we have ZðM1 tM2Þ ¼ ZðM1Þ
ZðM2Þ.
(3) (Functoriality) Suppose a cobordismM is obtained from the disjoint union ofM1

and M2 by gluing @þM1 to @�M2 along a degree one homeomorphism
f : @þM1 ! @�M2 preserving marked arcs with their orientation. Then

ZðM; @�M1; @þM2Þ

¼ km ZðM2; @�M2; @þM2Þ � f] � ZðM1; @�M1; @þM1Þ;

for some integer m.
(4) (Normalization) Let X be an extended surface. Let the cylinder over X be the

3-manifold X � ½�1; 1�, with the ribbon graph consisting of the ribbons
z� ½�1; 1�, where z runs over the marked arcs of X. Their orientation is such

? The notation in [T] for thisTFT is ðte; T e
Þ.
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that they induce the orientation of the arcs on X �f1g.Their core is oriented from
1 to �1. Then

ZðX � ½�1; 1�;X �f�1g;X �f1gÞ ¼ idHðX Þ: ð5Þ

The homomorphism ZðM; @�M; @þMÞ is called the invariant of the cobordism of
extended surfaces ðM; @�M; @þMÞ. By the naturality axiom it is invariant under
degree one homeomorphisms that restrict to the identity on the boundary.
Moreover, the invariant does not change if we remove an edge with label 1 or we

replace the label of an edge by its dual and reverse the orientation of its core.
The TFT gives the system of vector spaces HðX Þ the structure of a modular

functor.
Next we list some of the properties of the modular functor H which we shall use.

2.5.1. Duality

The spaceHð�X Þ associated to the opposite of the extended surface X is canonically
isomorphic to the dual space to HðX Þ. The isomorphism is induced by the pairing

ZðX � ½�1; 1�;X t ð�X Þ; ;Þ : HðX Þ 
 Hð�X Þ ! C: ð6Þ

Here X is identi¢ed with X �f1g and �X with X �f�1g.

2.5.2. Mapping Class Group

The action f 7! f] of homeomorphisms may be expressed in terms of the TFT.
Namely, let f : X ! Y be a homeomorphism of extended surfaces. Then the
3-manifold obtained by gluing the cylinder over X to the cylinder over Y de¢nes
a cobordism ðMf ;X ;Y Þ. The normalization and functoriality axioms then imply
that f] ¼ ZðMf ;X ;Y Þ. Moreover, it can be shown, using the naturality axiom, that
if f ; g are homotopic in the class of homeomorphism of extended surfaces, then
f] ¼ g]. In particular, if X ¼ Y , f 7! f] de¢nes a projective representation of the
mapping class group of X .

EXAMPLE. LetX be a torus with nomarked arcs. ViewX as the boundary of a solid
torus H ¼ D2 � S1 and take l ¼ lðX Þ to be the kernel of the map induced by the
inclusion X ,!H. Then a basis of HðX Þ is given by

wjðX Þ ¼ ZððH; jÞ; ;;X Þ;

j 2 I where ðH; jÞ is H with a ribbon graph consisting of an untwisted annulus
½�e; e� � S1 with label j. Let Sðz;wÞ ¼ ðw�1; zÞ, T ðz;wÞ ¼ ðzw; zÞ be the standard gen-
erators of the mapping class group SLð2;ZÞ of X ¼ S1�S1. Then S], T] are rep-
resented in this basis by the matrices S ¼ ðD�1si;jÞ and T̂T ¼ ðv�1i di;jÞ respectively.
The map f 7! f] is a projective representation of the mapping class group: the
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matrices S and T̂T obey the relations S4 ¼ 1, ðT̂TSÞ3 ¼ kS2. Moreover S2 is the matrix
ðdi;j� Þ. Note that if we choose a third root of k, a genuine representation may be
obtained by replacing T̂T by T ¼ ðk�1=3v�1i di;jÞ.

2.5.3. Gluing Homomorphisms

IfX is an extended surface with arcs g, g0 labeled by i, i�, letX 0 be an extended surface
obtained as follows: Let f;f0: D2 ! X be orientation preserving disjoint
embeddings of the unit disk D2#C such that their restriction to ½�1; 1� are
parametrizations of the oriented arcs g; g0. Then X 0 is obtained from X by removing
the interiors of the disks fðD2Þ, f0ðD2Þ and gluing their boundaries by identifying
fðzÞ with f0ð��zzÞ, for z 2 S1. The arcs of X 0 are the remaining arcs of X and the
Lagrangian subspace lðX 0Þ consists of images in X 0 of homology classes of cycles
in X � ðfðD2Þ [ f0ðD2ÞÞ which are mapped by the inclusion to cycles in lðX Þ.
Then one has a gluing homomorphism gX ;X 0 : HðX Þ 7! HðX 0Þ.
The gluing homomorphism is obtained from the TFT: Let M be the 3-manifold

obtained from X � ½�1; 1�, the cylinder over X , by gluing fðD2Þ� f1g to
f0ðD2Þ � f1g via the identi¢cation ðfðzÞ; 1Þ ¼ ðf0ð��zzÞ; 1Þ, z 2 D2. Let the ribbon graph
in M be obtained from the ribbon graph in X � ½�1; 1� by replacing the part of the
ribbon through the glued disks by a narrower one, so as to ¢t inside M. Then
M has boundary �X t X 0 and de¢nes a cobordism of extended surfaces from X
to X 0. Then gX ;X 0 ¼ ZðM;X ;X 0Þ. It is then known that the gluing homomorphism
has the following completeness property.
If Xj is the extended surface X as above, but with g labeled by j and g0 labeled by j�,

then the sum of gluing homomorphisms
L

j2I HðXjÞ ! HðX 0Þ is an isomorphism.

2.5.4. Description of HðX Þ as a Vector Space

LetX be a 2-sphere with nmarked arcs labeled by simple objects j1; . . . ; jn. LetM be a
3-ball with boundary X and a ribbon graph consisting of one vertex connected to the
marked arcs by n ribbons. Then ZðM; ;;X Þ depends linearly on the label of the
vertex and is thus a linear map

ZðM; ;;X Þ : Homð1; j1
 � � � 
 jnÞ ! HðX Þ

By construction of the TFT out of the modular category, this map is an isomorphism.
Combining this result with the completeness of the gluing map, one deduces, by
attaching handles to the sphere, that HðX Þ ’ %k1;...;kg2IHomð1; j1 
 � � � 
 jn




g
s¼1ðks 
 k�s ÞÞ for a surface of genus g with n marked points. Under this

identi¢cation, the invariant of a cobordism changes in a covariant way if we replace
the labels of the edges by equivalent simple objects.

2.6. TRACE FORMULA

One important variant of the functoriality axiom is a formula [T] for the invariant of
a closed 3-manifold of the form M ¼ X �S1, for a closed oriented surface X , with
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some ribbon graph G. We may obtainM by gluing the two components of the bound-
ary of N ¼ X � ½0; 1�. Then the ribbon graph intersects the boundary along arcs and
@þN ¼ X �f1g becomes an extended surface. @�N ¼ X �f0g is then canonically
strongly homeomorphic to the same extended surface, and the trace formula holds:

ZðM; ;; ;Þ ¼ TrHð@þNÞðZðN; @�N; @þNÞÞ: ð7Þ

2.7. FRAMING ANOMALY

We give here the formula for the integer m appearing in the functoriality axiom,
following Section IV.7 of [T]. It is given in terms ofMaslov indices, which we proceed
to de¢ne.
LetH be a symplectic real vector space with symplectic form o, and l1; l2; l3 # H

be Lagrangian subspaces. Then on the subspace ðl1 þ l2Þ \ l3 we have a quadratic
form QðxÞ ¼ oðx2; xÞ, where x ¼ x1 þ x2 with x1 2 l1, x2 2 l2 (QðxÞ does not depend
on the choice of the decomposition of x). The Maslov index mðl1; l2; l3Þ is by de¢-
nition the signature of Q. It is a function which is antisymmetric under permutations
of its three arguments, and in particular vanishes if any two arguments coincide.
If X is an oriented closed 2-manifold, the intersection form on H1ðX ;RÞ is

symplectic. Moreover, if M is a 3-manifold with boundary and
@M ¼ @þM t @�M is a decomposition of the boundary into closed disjoint subsets,
then we have a map N� from the set of the Lagrangian subspaces of
H1ð@�M;RÞ to the set of Lagrangian subspaces of H1ð@þM;RÞ: x 2 N�ðlÞ if and
only if there exists an x0 2 l so that x� x0 is homologous to zero as a cycle in
M. Similarly we have a map N� sending Lagrangian subspaces of H1ð@þM;RÞ

to the Lagrangian subspaces of H1ð@�M;RÞ. Then the integer m appearing in
the functoriality property is

m ¼ mð f�N�lð@�M1Þ; f�lð@þM1Þ;N�lð@þM2ÞÞ

þ mð f�lð@þMÞ; lð@�M2Þ;N�lð@þM2ÞÞ:

The following property is useful for surfaces with orientation reversing involutions,
such as doubles.

LEMMA 2.2. Let H be a real symplectic vector space with symplectic form o.
Suppose s 2 EndRðHÞ is an involution such that s�o ¼ �o. If l1; l2; l3 are
Lagrangian subspaces invariant under s, then

mðl1; l2; l3Þ ¼ 0:

Proof. Let x be an element of the invariant space ðl1 þ l2Þ \ l3. If x ¼ x1 þ x2 with
xi 2 li, then sðxÞ ¼ sðx1Þ þ sðx2Þ is a decomposition of sðxÞ into a sum of elements of
l1, l2. Thus

QðsðxÞÞ ¼ oðsðx2Þ; sðxÞÞ ¼ �oðx2; xÞ ¼ �QðxÞ:
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On the other hand, the signature is an invariant, so the signature of Q is equal to the
signature of Q � s ¼ �Q. Thus the signature vanishes. &

3. Boundary Conditions and Correlation Functions

3.1. THE DOUBLE OF A SURFACE

Suppose that X is a two-dimensional compact manifold with boundary, possibly
nonorientable. Then X may be identi¢ed with X̂X=Z2 for a closed oriented manifold
X̂X , the double of X , with an orientation reversing action of the generator of
Z2 ¼ Z=2Z. The double is constructed by taking the total space of the orientation
bundle p: OrðX Þ ! X (the Z2-bundle over X whose ¢ber at x consists of the
two orientations of the tangent plane at x) and identifying the two points of each
¢ber over the boundary: X̂X ¼ OrðX Þ=' with x' x0 iff pðxÞ ¼ pðx0Þ 2 @X . The double
comes with a projection p: X̂X 7! X and an orientation reversing involution
s: X̂X 7! X̂X exchanging the two sheets and de¢ning the action of Z2.
Here are some examples. If X is closed and orientable, then X̂X consists of two

copies of X with opposite orientations. If X is orientable with nonempty boundary,
X̂X is obtained by taking two copies of X with opposite orientations and gluing
the two copies along the boundary. So if X is a disk, then X̂X can be viewed as
the unit sphere S2 in R3 with Z2 action generated by the re£ection at the x^y plane.
If X is the real projective plane RP2 then X̂X is S2 with Z2 action given by the anti-
podal map x 7! � x of S2 # R3. The annulus X ¼ S1 � ½�1; 1� is X̂X=Z2 with
X̂X ¼ S1 � S1 and involution ðy1; y2Þ 7! ðy1;�y2Þ, yi 2 R=2pZ ¼ S1. Taking
X̂X ¼ S1�S1 with involution ðy1; y2Þ 7! ð�y1; y2 þ pÞ gives the Klein bottle. The
involution ðy1; y2Þ 7! ðy2; y1Þ gives the Mo« bius strip.

3.2. THE CASE OF CLOSED ORIENTABLE SURFACES

Let us ¢rst consider the case of closed orientable surfaces. Suppose X is closed and
orientable, and choose an orientation of X . Then the double of X is
X̂X ¼ X t ð�X Þ, the disjoint union of two copies of X with opposite orientations.
The involution exchanges the two copies. Let X be endowed with n distinct points
z1; . . . ; zn on it, labeled by simple objects i1; . . . ; in. To these data one associates
a correlation function CðX Þ 2 HðX̂X Þ.
To be more precise, we should take care of the framing: so z1; . . . ; zn should be

taken as disjoint arcs rather than points. Also HðX̂X Þ is only unambiguously de¢ned
if X̂X is given a Lagrangian subspace l in its ¢rst homology group with real
coef¢cients. As will be clear below, a convenient choice is to take l to consist of
a% ð�aÞ 2 H1ðX̂X ;RÞ ¼ H1ðX ;RÞ %H1ðX ;RÞ, where a runs over H1ðX ;RÞ. We call
this Lagrangian subspace canonical Lagrangian subspace and denote it by l�ðX̂X Þ.
The natural candidate for CðX Þ is then the element of HðX̂X Þ associated to the

3-manifold X � ½�1; 1�, with ribbon graph consisting of zi� ½�1; 1�, where zi runs
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over the marked arcs on X :

CðX Þ ¼ ZðX � ½�1; 1�; ;; X̂X Þ:

(see 2.5 for the orientations of the ribbons in X � ½�1; 1�Þ. Note that the canonical
Lagrangian subspace is the kernel of the map induced by inclusion of the boundary.
Let us check that this ansatz obeys the modular and factorization properties one

expects for correlation functions.
Let f : X 7! X be a degree one homeomorphism and let f̂f : X̂X ! X̂X be equal to f

on each of the two copies of X . The lift f̂f of f is the unique degree one
homeomorphism of X̂X commuting with the involution and projecting to f .

THEOREM 3.1 (Modular invariance). Let X be a closed oriented surface with
labeled arcs z1; . . . ; zn. Let f : X 7! X be a degree one homeomorphism preserving
the marked arcs. Let f̂f be its lift to X̂X. Then f̂f] CðX Þ ¼ CðX Þ:

Proof. Let F : X � ½�1; 1� 7! X � ½�1; 1� be de¢ned by F ðx; tÞ ¼ ðf ðxÞ; tÞ. F is a
homeomorphism that restricts to f̂f on the boundary. Moreover, f̂f� clearly preserves
the Lagrangian subspace. Thus the naturality axiom applies and we get

f̂f] ZðX � ½�1; 1�; ;; X̂X Þ ¼ ZðX � ½�1; 1�; ;; X̂X Þ;

proving the claim. &

It is useful to express the correlation function for more general Lagrangian
subspaces. Let us say that a Lagrangian subspace l of H1ðX̂X ;RÞ is symmetric if
s�l ¼ l. The Lagrangian subspace l�ðX̂X Þ has this property. Let us de¢ne, for
any symmetric Lagrangian subspace l,

ClðX Þ ¼ ðidl;l�Þ] CðX Þ:

Here idl1;l2 denotes the identity map between extended surfaces which differ only in
their distinguished Lagrangian subspaces. Then we get the more general modularity
property: f̂f] ClðX Þ ¼ ClðX Þ. This formula follows from the functoriality formula,
except that we have to check that the framing anomaly term is trivial. The reason
for this is that all Lagrangian subspaces appearing in the calculation of the Maslov
indices are invariant under s�. Therefore the Maslov indices vanish by Lemma 2.2.
In particular, we may choose the symmetric Lagrangian subspace

l% l 2 H1ðX t ð�X Þ;RÞ ¼ H1ðX ;RÞ%H1ðX ;RÞ, for any Lagrangian subspace l
of H1ðX ;RÞ. Under these circumstances we may identify HðX̂X ; l% lÞ ¼
HðX ; lÞ
Hð�X ; lÞ and write

Cl%lðX Þ ¼
X

j

bjðX ; lÞ 
 bjð�X ; lÞ;

for any basis bjðX ; lÞ of HðX ; lÞ and dual basis bjð�X ; lÞ with respect to the pairing
(6). In this form, the modular invariance is less apparent.
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EXAMPLE. Let X ¼ S1�S1 be a torus with no marked arcs. LetD2#C be the unit
disk and view X as the boundary of a solid torus H ¼ D2 � S1. Take l ¼ lðX Þ to be
the kernel of the map induced by the inclusion X ,!H. Then a basis of HðX Þ is given
by wjðX Þ ¼ ZððH; jÞ; ;;X Þ, j 2 I , see 2.5.2. Let Sðz;wÞ ¼ ðw�1; zÞ, T ðz;wÞ ¼ ðzw; zÞ be
the standard generators of the mapping class group SLð2;ZÞ of X ¼ S1�S1. Then
S], T] are represented in this basis by the matrices s ¼ ðD�1si;jÞ and t ¼ ðv�1i di;jÞ,
respectively.
The map yðz;wÞ ¼ ð�zz;wÞ is a homeomorphism X !�X , preserving orientation

and Lagrangian subspace. Therefore a basis of Hð�X Þ is wjð�X Þ ¼ y] wj� ðX Þ. This
basis is dual to the basis ðwjÞj2I , as the pairing between wjðX Þ and wkð�X Þ is the
invariant of S2�S1 with two annuli running along S1. This invariant is dj;k, by
the trace formula. Thus

Cl%lðX Þ ¼
X
j2I

wjðX Þ 
 wjð�X Þ:

As S � y ¼ y � S�1 and T � y ¼ y � T�1, S], T] are represented in the basis ðwjð�X ÞÞj2I

by the matrices Sy ¼ CS�1C, T̂Ty ¼ CT̂T�1C, with

Ci;j ¼
1; i ’ j�;
0; otherwise:



ð8Þ

(The anomaly does not contribute as in each Maslov index there are two coinciding
arguments.) The statement of modular invariance thus reduces to
tT̂T T̂Ty ¼

tS Sy ¼ 1. These identities may also be checked directly, using the relations
of S, T̂T of 2.5.2, the fact that S is a symmetric matrix, and the relations vi ¼ vi� ,
S2 ¼ C.
We turn to the factorization properties of correlation functions. Let X be a closed

oriented surface with marked oriented labeled arcs. Suppose two of the marked arcs
carry label j, j� respectively. Let X 0 be obtained by removing from X a small open
disk around each of the two arcs, and gluing their boundaries by an orientation
reversing homeomorphism. We say that we obtain X 0 by gluing X at the two marked
arcs. Then X̂X 0 is obtained from X̂X by performing this operation twice, at each of the
inverse images of the two arcs. Therefore we have a gluing homomorphism
gX̂X ;X̂X 0 : HðX̂X Þ 7! HðX̂X 0Þ, which is the composition of the two gluing homomorphisms
(in either order) with ðidl0;l�ðX̂X 0Þ

Þ]. Here l0 is the symmetric Lagrangian subspace
of H1ðX̂X 0;RÞ obtained form the canonical Lagrangian subspace l�ðX̂X Þ of X̂X by
the gluing prescription of 2.5, and idl0;l�ðX̂X 0Þ

is the identity map from X̂X 0 with
Lagrangian subspace l0 to X̂X 0 with canonical Lagrangian subspace.

THEOREM 3.2 (Factorization). Let X be as in Theorem 3.1. Let X 0 be obtained from
X by gluing X at two marked arcs with labels j, j�. Let Xj be the surface X, with j 2 I
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arbitrary, and with all other labels ¢xed. Then

CðX 0Þ ¼
X
j2I

D�1dimð jÞ gX̂Xj ;X̂X 0CðXjÞ:

Proof. Let Mj ¼ Xj � ½�1; 1�. Then gX̂Xj ;X̂X 0CðXjÞ is, by 2.5.3, the invariant
ZðM0

j; ;; X̂X 0Þ of a cobordism. The 3-manifold M0
j is obtained from Mj by gluing

two disks around the two chosen marked arcs on X �f1g, and also on X �f�1g.
The ribbons ending at the marked arcs are then glued together to form an
annulus.
It is not too hard to see that X 0 � ½�1; 1� is homeomorphic to the manifold we

obtain fromM0
j by performing a surgery at this annulus. The surgery is, by de¢nition,

the following construction: we ¢rst parametrize a tubular neighborhood U of the
annulus by a homeomorphism f: D2�S1 7! M0

j in such a way that the annulus
is contained in fð½�1; 1� �S1Þ. Then we glue S1�D2 to M0

j � intðUÞ via the map
f restricted to S1�S1. Figure 2 is supposed to illustrate the homeomorphism of
the resulting manifold with X 0 � ½�1; 1�: on the left, we embed the region of interest
of M0

j � intðUÞ in R3 and on the right we draw S1�D2. The ¢bers fxg� ½�1; 1�
in a plane section are drawn.
Let M00 ¼ M0

j � intðUÞ and wjðS
1�S1Þ ¼ ZððH; jÞ; ;;S1�S1Þ, as in the example

above. By the functoriality axiom,

ZðM0
j; ;; X̂X 0Þ ¼ ZðM0; @U; X̂X 0Þ � f] wjðS

1 � S1Þ:

The Maslov indices vanish by Lemma 2.2. Indeed, the involution of the double
extends to an involution of the boundary ofM00 and of S1 � S1 so that all Lagrangian
subspaces involved are symmetric under the involution.
On the other hand, using the surgery presentation of X 0 � ½�1; 1�, we have

CðX 0Þ ¼ ZðX 0 � ½�1; 1�; ;; X̂X 0Þ

¼ ZðM0; @U; X̂X 0Þ � f] � S]w1ðS
1�S1Þ:

Figure 2.
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Again, the Maslov indices vanish by symmetry. The claim then follows from the
modular property

S] w1ðS
1�S1Þ ¼

X
j2I

Sj;1 wjðS
1�S1Þ: &

3.3. THE CASE OF THE ðn;mÞ-POINT FUNCTION ON THE DISK

We consider the case of the correlation function for n interior points andm boundary
points on the disk (the ðn;mÞ-point function). The double of the disk is a 2-sphere S2,
which we view as the unit sphere inR3. The projection p: S2 7! D2 is the orthogonal
projection onto the x^y plane and the involution s is the re£ection at the x^y plane.
Let X be the disk D2 with n distinct labeled marked points in its interior and m

labeled points on its boundary. Let the interior points be labeled by i1; . . . ; in,
and the boundary points, cyclically ordered along the orientation of the circle,
be labeled by j1; . . . ; jm. The segment between the rth and the rþ 1st point is given
a boundary condition, a simple object ar.
Moreover, the correlation function depends also on an additional datum at each

boundary point: the correlation function CðX Þ is a linear map from a tensor product
of multiplicity spaces

Nm
r¼1 War�1;arðjrÞ to HðX̂X Þ (we set a0 ¼ am). The presence of

these multiplicity spaces re£ects the multiplicities of boundary ¢elds. From the
physical point of view, one understands these multiplicities as a consequence of
the ¢eld-state correspondence of the conformal ¢eld theory, implying that they
can be read off the annulus multiplicities, which for the boundary conditions of
our interest coincide with fusion rule coef¢cients.
Accordingly, we assume that the multiplicity spaces are identi¢ed with the space of

conformal blocks on the sphere with three points:Wa;bð jÞ ¼ Homðb; j
 aÞ. Using the
identi¢cation Homðb; j
 aÞ ¼ Homð1; b� 
 j
 aÞ, we have a basis ðea½b�ja�,
a ¼ 1; . . . ;Nj;a

b Þ of each multiplicity space obeying the orthogonality properties
of 2.2.
Our ansatz for the CðX Þ evaluated on a product ea1 
 � � � 
 eam of basis elements is

the element of HðX̂X Þ associated to the graph in the 3-ball in Figure 1.
To give the precise de¢nition we should again take the framing into account. So the

marked interior points onD2 should be taken to be disjoint oriented arcs. The bound-
ary points are replaced by arcs on the boundary, oriented along the orientation of the
boundary. The modular invariance property proven below will imply that these
choices are irrelevant up to canonical isomorphisms.
The graph in Figure 1 is made into a ribbon graph as follows: the vertical lines are

the cores of ribbons whose sides are the inverse images by p of the marked arcs and
vertical lines connecting the endpoints of the marked arcs. The orientation of
the ribbons is chosen so that they induce the orientation of the arcs on the upper
hemisphere. The part of the graph connected to the equator is the core of an annulus
lying in the x^y plane to which ribbons also lying in the x^y plane are glued along a
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side. The opposite sides of these ribbons coincide with the marked arcs on the
boundary. The orientation of the ribbon graph is such that it induces the orientation
of the boundary arcs.
Let us call equatorial graph the component of the ribbon graph connected to the

equator. The remaining components we call vertical ribbons.
Let M be the unit ball with this ribbon graph. Then we set

CðX Þ ¼ ZðM; ;; X̂X Þ 2 HomCð

m
r¼1War�1;ar ð jrÞ;HðX̂X ÞÞ:

In this formula we regard ZðM; ;; X̂X Þ as a multilinear function of the labelings of
vertices.

Let us check that this ansatz is modular invariant. If f : D2 7! D2 is a degree one
homeomorphism of the disk preserving the marked arcs, then there exists a unique
degree one homeomorphism f̂f of S2, the lift of f , so that p � f̂f ¼ p � f . It preserves
the inverse images of the arcs.

THEOREM 3.3 (Modular invariance). Let X be a disk with n marked arcs in the
interior and m marked arcs on the boundary. Let f : X 7! X be a degree one
homeomorphism preserving the marked arcs and their orientations. Let f̂f be its lift
to X̂X. Then f̂f] CðX Þ ¼ CðX Þ:

Proof.Denote by x; y; z the standard coordinates ofR3. ViewD2 as the unit disk in
the x-y plane. Let F ðx; y; zÞ ¼ ð f ðx; yÞ; rðx; yÞzÞ, with rðx; yÞ ¼ ð1� x2 � y2Þ�1=2

ð1� j f ðx; yÞj2Þ1=2. Then F is a degree one homeomorphism of the ball D3 whose
restriction to S2 is f̂f . The image of the ribbon graph g in D3 by F is isotopic to
g. Therefore, by the naturality axiom, f̂f] ZðM; ;; X̂X Þ ¼ ZðM; ;; X̂X Þ. &

We turn to the factorization properties. In the case of surfaces with boundary there
are two kinds of factorizations. One may either cut the surface along a loop in the
interior, as in the case of closed surfaces, or along a path joining points on the
boundary. In the ¢rst case, factorization is analyzed analogously as for closed
surfaces. Thus we consider here only the latter possibility.
Let X 0, X 00 be two oriented disks with marked labeled arcs as above. Let n0; n00

denote the numbers of interior arcs and m0;m00 the numbers of boundary arcs.
Suppose that a marked arc x0 on the boundary of X 0 has label j and that a marked
arc x00 on the boundary of X 00 has dual label j�. Then we may glue X 0 to X 00 along
an orientation reversing homeomorphism from x0 to x00. We assume that the labels
of the boundary segments on the sides of these two arcs match, so that the gluing
results in a disk X with n0 þ n00 interior marked arcs and m0 þm00 � 2 boundary
marked arcs. We say that X is obtained by gluing X 0, X 00 at x0, x00. Then the double
X̂X may be obtained by gluing the extended surface X̂X 0 t X̂X 00 at the inverse image
of x0, x00, and we have a gluing homomorphism gX̂X 0tX̂X 0;X̂X : HðX̂X

0Þ 
HðX̂X 00Þ 7! HðX̂X Þ.
We need not care about Lagrangian subspaces since the ¢rst homology groups are

trivial in this case.
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THEOREM3.4 (Factorization). Let X be a disk obtained by gluing disks X 0, X 00 at the
marked arcs x0, x00 with labels j, j�. Let the labels of the boundary segment preceding
and following x0 be a, b respectively. Let X 0

j be the surface X 0, with j running over
I with all other labels ¢xed. Similarly, let X 00

j� be the surface X 00, with j running over
I with all other labels ¢xed. Let us order the boundary arcs in a way compatible with
the cyclic ordering, so that x0 is the last arc of X 0 and x00 is the ¢rst arc of X 00. Then
for any choice of basis ea½b�ja� of Hb�;j;a and dual basis ea½a�j�b� of Ha�;j�;b as in 2.2,

CðX Þðu1
 � � � 
 um0þm00�2Þ

¼
X
j2I;a

dimð jÞ gX̂X 0
jtX̂X 00

j� ;X̂X

�
CðX 0

j Þðu1
 � � � 
 um0�1
 ea½b�ja�Þ 



 CðX 00
j� Þðea½a

�j�b� 
 um0 
 � � � 
 um0þm00�2Þ
�
:

Proof. By the gluing construction (see 2.4.3), the summand labeled by j; a on the
right-hand side is dimð jÞZðMj;a; ;; X̂X Þ, where Mj;a is a ball obtained by gluing
two balls de¢ning CðX 0

j Þ and CðX 00
j� Þ. Mj;a contains a ribbon graph gj;a obtained

by the gluing prescription. Thus gj;a has vertical lines and a piece lying in the
x-y plane obtained by gluing two equatorial graphs. We have to show that the
sum over the labelings j and a of the invariant of the cobordism with this graph
gives the same as if we replace it by an equatorial graph.
In the vicinity of the point at which the gluing was performed the ribbon graph

looks like

Applying (4), after summing over j and a, we can replace this part of the graph by two
horizontal bands. In this way gj;a is replaced by the equatorial graph appearing on the
left-hand side as desired. &

3.4. THE GENERAL CASE

We now turn to the general case of a compact surface, possibly with boundary,
possibly nonorientable. There is a subtlety that arises when one considers
nonorientable surfaces. Namely a label of a point by a simple object is only de¢ned
if one chooses a local orientation. This is formalized by the following de¢nitions
of labeled surfaces and their doubles. The correlation functions will then be de¢ned
for labeled surfaces and they will take values in the space of states of their doubles,
which are extended surfaces (see 2.5).
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3.4.1. Labeled Surfaces and their Doubles

A labeled surface is a compact two-dimensional manifold X with (possibly empty)
oriented boundary and with marked disjoint arcs (embedded closed intervals).
The arcs lie either in the interior or on the boundary and carry labels. Boundary
arcs are labeled by simple objects. The connected components of the complement
in @X of the boundary arcs also carry labels, called boundary conditions, which
are also simple objects. The label of an interior arc z is an equivalence class of triples
ði; or; or0Þwhere i is a simple object, or is a local orientation of the surface at z, and or0

is an orientation of the arc. Two triples are equivalent if they are equal or if one is
obtained from the other by taking the dual object and reversing the orientations
or, or0.
We call boundary segments the connected components of the complement in @X of

the boundary arcs. If a boundary arc x lies between two boundary segments labeled
by boundary conditions a, b in the order given by the orientation of the boundary,
we say that x changes the boundary conditions from a to b.
The double X̂X of a labeled surface is an extended surface associated to a labeled

surface. It is, as an oriented 2-manifold, the double X̂X of X , with projection
p: X̂X 7! X and orientation reversing involution s: X̂X 7! X̂X . The double is made
into an extended surface, by taking as arcs the inverse images of the arcs of X .
The boundary arcs have one inverse image and are labeled by the labels in X . Their
orientation is inherited from the orientation of the boundary of X . Each interior
arc z of X has two inverse images. They are labeled and oriented by the two labels
in the equivalence class labeling z, in such a way that the local orientation or appear-
ing in the label agrees with the orientation of X̂X . The Lagrangian subspace of
H1ðX̂X ;RÞ is the eigenspace of s� to the eigenvalue �1. It is called canonical
Lagrangian subspace and denoted by l�ðX̂X Þ.
This de¢nition makes sense because of the following lemma.

LEMMA 3.5. Let s: X̂X 7! X̂X be an orientation reversing homeomorphism of a surface
X̂X such that s � s ¼ id. Then the induced map s�: H1ðX̂X ;RÞ 7! H1ðX̂X ;RÞ is
diagonalizable and its eigenspaces are Lagrangian.

Proof. The induced map s� is a linear involution of a real vector space. Thus
p ¼ 12ð1 s�Þ are projections onto the eigenspaces l corresponding to the
eigenvalues  1. Since pþ þ p� ¼ id, s� is diagonalizable. Let o denote the
intersection pairing on H1ðX̂X ;RÞ. Since s reverses the orientation, we have
oðs�a; s�bÞ ¼ �oða; bÞ for all a; b 2 H1ðX̂X ;RÞ. Therefore o vanishes identically
on lþ and l�. Since lþ % l� ¼ H1ðX̂X ;RÞ, the subspaces l are of maximal
dimension with this property, i.e., Lagrangian. &

PROPOSITION 3.6. Let X̂X be a double of the labeled surface X. Let AutðX̂X ; sÞ be the
group of degree one homeomorphisms of X̂X preserving the marked arcs with their
orientation and commuting with the involution s. Then f 7! f] de¢nes a represen-
tation (not just a projective representation) of AutðX̂X ; sÞ on HðX̂X Þ.
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Proof. Let f 2 AutðX̂X ; sÞ. Since f and s commute, the induced maps f�, s� also
commute. It follows that the eigenspaces of s� are preserved by f�. In particular,
the Lagrangian subspace of X̂X is preserved by elements of AutðX̂X ; sÞ. Under these
circumstances the anomaly is trivial and we have the representation property
ðf � gÞ] ¼ f] � g]. &

3.4.2. Connecting 3-Manifolds

To each compact surface X we associate a connecting 3-manifold MX . The
connecting 3-manifold MX is a three-dimensional oriented manifold with boundary
X̂X . It is used to construct the correlation functions and reduces to the cylinder
X � ½�1; 1� if X is closed and orientable and to the ball if X is a disk.
We ¢rst describe MX as an oriented manifold. If X has no boundary, MX is

ðX̂X � ½�1; 1�Þ=Z2, where Z2 acts on the ¢rst factor by the involution s and on
the second by t 7! � t. This action preserves the product orientation, so that
MX is naturally an oriented manifold. It comes with a projection ½ðx; tÞ� 7! pðxÞ
to X . The ¢ber of this projection over y 2 X is an interval, the connecting interval
over y, connecting the two inverse images of y in X̂X . If X has a boundary, MX

is obtained from ðX̂X � ½�1; 1�Þ=Z2 by contracting the ¢bers over the boundary to
single points.
Alternatively, let r: X 7! ½0;1Þ be any nonnegative function such that rðxÞ ¼ 0 if

and only if x 2 @M. Then we may de¢ne MX to consist of ½ðx; tÞ� 2 ðX̂X �RÞ=Z2 such
that t2W rðpðxÞÞ. The points with t2 ¼ rðpðxÞÞ form the boundary which is obviously
homeomorphic to X̂X . Connecting manifolds corresponding to different choices of r
are canonically homeomorphic. The homeomorphism commutes with p and reduces
to the identity on X̂X ’ @MX .

PROPOSITION 3.7. Let X̂X be the double of X, p: X̂X 7! X the projection, l�ðX̂X Þ the
canonical Lagrangian subspace of H1ðX̂X ;RÞ.

(i) MX is a compact manifold with boundary @MX ¼ X̂X.
(ii) The restriction of p: MX ! X, ½ðx; tÞ� 7! pðxÞ to p�1ðX � @X Þ is a ¢ber bundle

whose ¢ber over y is an interval with boundary p�1ðyÞ.
(iii) l�ðX̂X Þ is the kernel of the homomorphism H1ðX̂X ;RÞ ! H1ðMX ;RÞ induced by

inclusion.
(iv) The involution s: X̂X ! X̂X extends to the involution ½ðx; tÞ� 7! ½ðx;�tÞ� of MX. Its

¢xed point set is the image of X under the embedding i: y 7! ½ðx; 0Þ� for any x with
pðxÞ ¼ y.

Proof. Choose a function r as above. Let ffa: Ua ! R2
g be an atlas of X with

connected charts Ua. Let ea;b be the sign of the Jacobian of fa � f
�1
b . Then MX

is homeomorphic toG
a

fðy; tÞ 2 Ua�R j t2 W rðyÞg ='
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with equivalence relation ðx 2 Ua; tÞ ' ðx 2 Ub; ea;b tÞ. The projection to X is
pðy; tÞ ¼ y and the involution is sðy; tÞ ¼ ðy;�tÞ. Therefore, we have a surjective
map X̂X � ½�1; 1� onto M given by ððy; tÞ; sÞ 7! ðy; tsÞ. The ¢bers of this map consist
of two points related by the Z2 action, except if y 2 @X where the ¢ber is an interval.
This presentation of MX implies (i) and (ii).
To prove (iii), notice that if a is a loop on X̂X , then a� s � a is the boundary of a

surface in MX consisting of connecting intervals ending at points of a. Thus if c
is a cycle on X̂X such that s�c is homologous to �c, then c is homologous to zero
in MX . This shows that l�ðX̂X Þ is contained in the kernel K of the homomorphism
induced by inclusion. On the other hand, it is a general fact that the intersection
form vanishes on K . Therefore the dimension of K cannot be larger than the
dimension of the Lagrangian subspace l�ðX̂X Þ.
(iv) is obvious. &

3.4.3. Multiplicity Spaces

Suppose that X is a labeled surface. If x is a marked arc on the boundary labeled by a
simple object j and changing the boundary condition a to the boundary condition b,
the multiplicity space of x is Wa;bð jÞ ¼ Homðb; j
 aÞ. The multiplicity space W@X

of a labeled surface X is the (unordered) tensor product of the multiplicity spaces
of its boundary arcs. If there are no boundary arcs, we set W@X ¼ C.

3.4.4. Construction of Correlation Functions

We are ready to de¢ne correlation functions for general labeled surfaces. Let X be a
labeled surface, MX be its connecting manifold and X̂X ¼ @MX the double of X , with
its structure of extended surface. Let i: X 7! MX be the inclusion ofX as zero section
(Proposition 3.7(iv)). We construct a ribbon graph in MX . It consists of vertical
ribbons and an equatorial graph for each connected component of @X .
The vertical ribbons are associated to interior arcs of X̂X : if z, z0 are interior arcs

projecting to an interior arc of X , the corresponding vertical ribbon is the union
of the connecting intervals ending at z and z0. It is an embedded rectangle with
two sides equal to z, z0. The orientation of the vertical ribbon is chosen so as to
induce the orientations of z, z0. If we orient the core from z to z0, the label of
the ribbon is equal to the label of z. The equatorial graphs consist of annuli and
joining ribbons. The annuli lie in the zero section iðX Þ of MX and their cores
are obtained by moving ið@X Þ into MX by a short amount, where ‘short’ means away
from the vertical ribbons. The joining ribbons are short ribbons in iðX Þ connecting
boundary arcs to the annuli at trivalent vertices. They are labeled by the label
of the corresponding boundary arcs and their cores are oriented inward. The labels
of the parts of the annuli between trivalent vertices are the boundary conditions
between the corresponding arcs. The orientation of the equatorial graphs is chosen
so as to induce the orientation of the boundary arcs. This does not ¢x the orientation
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of the annuli that are not connected to the boundary; but this does not matter since
the correlation function will not depend on the choice of that orientation.
Then the correlation function of the labeled surface X is

CðX Þ ¼ ZðMX ; ;; X̂X Þ : W@X !HðX̂X Þ;

considered as a multilinear function of the labels of the trivalent vertices. Thus if
u ¼ 
xux 2 W@X with x running over the boundary arcs, CðX Þu ¼ ZðMX ;u; ;; X̂X Þ,
where MX ;u is the connecting 3-manifold with its ribbon graph, such that the
trivalent vertex connected to x by a joining ribbon is labeled by ux.

3.4.5. Modular Invariance

If f : X ! X is a homeomorphism of the labeled surface X , preserving the
orientation and the marked arcs of the boundary and mapping interior marked arcs
to interior marked arcs with the same label,? then there exists a unique degree
one homeomorphism f̂f of X̂X , the lift of f , so that p � f̂f ¼ f � p. It preserves the
inverse images of the arcs and their orientation. f commutes with s and therefore
preserves the canonical Lagrangian subspace of H1ðX̂X ;RÞ.

THEOREM 3.8 (Modular invariance). Let X be a labeled surface. Let f : X 7! X be
a homeomorphism preserving the orientation of the boundary and mapping marked
arcs to marked arcs with the same label and boundary segments to boundary segments
with the same boundary condition. Let f̂f be its lift to X̂X. Then f̂f] CðX Þ ¼ CðX Þ:

Proof. Let F : MX 7! MX be the map ½ðx; tÞ� 7! ½ð f̂f ðxÞ; tÞ� of
MX # ðX̂X � ½�1; 1�Þ=Z2. It is clear that F is a well-de¢ned degree one
homeomorphism of MX . It maps vertical ribbons to vertical ribbons with the same
label. The equatorial graphs are mapped to slight deformations of the equatorial
graphs. As the boundary arcs are ¢xed, we may compose F with a homeomorphism
G of MX with support in the vicinity of ið@X Þ and restricting to the identity on
the boundary, in such a way that the equatorial graphs are also kept ¢xed. Then
G � F preserves the ribbon graph and restricts to f̂f on the boundary. Therefore,
by the naturality axiom, f̂f] ZðM; ;; X̂X Þ ¼ ZðM; ;; X̂X Þ. &

Remark. We may relax the condition that f preserves the boundary arcs and the
orientation of the boundary. We may just assume that f maps boundary arcs to
boundary arcs with the same label, or the dual label, depending on whether f
preserves the local orientation of the boundary. Similarly f should be compatible
with the labeling of boundary segments. Then the modular invariance reads
f̂f] CðX Þ ¼ CðX Þrð f Þ, for a suitable action on the multiplicity spaces. We leave
the details to the reader.

?Recall that a label ofan interior arc is an equivalence class of triples ½ði; or; or0Þ�.The condition
for an interior arc z means that f maps z to an arc z0, and if z has label ½ði; or; or0Þ�, z0 has label
½ði; f�or; f�or0Þ�.
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3.4.6. Factorization

If X is a surface, we can obtain a new surface X 0 by cutting and pasting in two basic
ways: either we can cut out disks around two interior marked arcs and glue their
boundaries together or we can glue two boundary arcs.
In both cases we want to relate the correlation functions on X 0 to the correlation

functions on X . In the ¢rst case the relation between correlation functions is called
bulk factorization. In the second case it is called boundary factorization.
Let z1; z2 be two interior arcs of a labeled surface. We say that the labels of z1, z2

match if they are of the form ½ði; or1; or01Þ� and ½ði
�; or2; or02Þ�, respectively. In this

case we construct a labeled surface X 0 as follows. Choose representatives
ði; or1; or01Þ, ði

�; or2; or02Þ so that the arcs are oriented and we have local orientations
around the arcs. Let f;f0: D2 7! X be orientation preserving disjoint embeddings
of the unit disk D2#C such that their restriction to ½�1; 1� are parametrizations
of the oriented arcs z1; z2. Then X 0 is obtained from X by removing the interiors
of the disks fðD2Þ and f0ðD2Þ, and gluing their boundaries by identifying fðzÞ with
f0ð��zzÞ, for z 2 S1. The arcs of X 0 are the remaining arcs of X .
We say that X 0 is obtained from X by gluing z to z0.
The double of X 0 is then obtained from the double of X by gluing the inverse

images of z1 to the inverse images of z2: the inverse image of z1 with orientation
or1 is glued to the inverse image of z2 with orientation or2 and the inverse image
of z1 with the opposite orientation �or1 is glued to the inverse image of z2 with
the orientation �or2.
Then we have a gluing homomorphism gX̂X ;X̂X 0 : HðX̂X Þ 7! HðX̂X 0Þ, which is the com-

position of the two gluing homomorphisms (in either order) with ðidl0;l�ðX̂X 0Þ
Þ]. Here

l0 is the symmetric Lagrangian subspace of H1ðX̂X 0;RÞ obtained form the canonical
Lagrangian subspace l�ðX̂X Þ of X̂X by the gluing prescription of 2.5, and idl0;l�ðX̂X 0Þ

is the identity map from X̂X 0 with Lagrangian subspace l0 to X̂X 0 with canonical
Lagrangian subspace.

EXAMPLE. Let z1, z2 be twomarked arcs on a sphereX . Choose an orientation or of
the sphere and let ði1; or; or01Þ, ði2; or; or02Þ be representatives of the labels of these two
arcs chosen to agree with the global orientation. If i2 ¼ i�1, the labeled surface
obtained by gluing z to z0 is a torus. If i2 ¼ i1, we may take the other representative
ði�2 ¼ i�1;�or;�or02Þ and obtain a Klein bottle as a result of gluing. In the ¢rst case,
X̂X 0 is obtained from the disjoint union of the two spheres by gluing pairs of arcs
on the same connected component. In the second case, X̂X 0 is obtained by gluing arcs
on one connected component to arcs of the other.

THEOREM 3.9 (Bulk factorization). Let X be a labeled surface. Let X 0 be obtained
from X by gluing X at two interior marked arcs with labels ½ð j; or1; or01Þ�,
½ð j�; or2; or02Þ�. Let Xj be the surface X, with j running over I with all other labels
¢xed. Then
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CðX 0Þ ¼
X
j2I

D�1dimð jÞ gX̂Xj ;X̂X 0CðXjÞ:

The proof of this theorem is the same as the proof of Theorem 3.2.
We now turn to the boundary factorization. Let x, x0 be boundary arcs with the

orientation induced by the orientation of the boundary. Suppose that the label
of x is j and that the label of x0 is j�. Assume that x changes the boundary conditions
from a to b and that x0 changes the boundary conditions from b to a. Under these
circumstances, we may glue x to x0 via an orientation reversing homeomorphism
and obtain a surface X 0. We say that X 0 is obtained from X by gluing x to x0.
The double X̂X 0 of X 0 may then be identi¢ed with the surface obtained from X̂X by

gluing the inverse image in X̂X 0 of x to the inverse image in X̂X 0 of x0. The Lagrangian
subspace of H1ðX̂X 0;RÞ obtained by the gluing prescription coincides in this case with
the canonical Lagrangian subspace l�ðX̂X 0Þ. We thus have a gluing homomorphism
gX̂X ;X̂X 0 : HðX̂X Þ ! HðX̂X 0Þ.
To formulate the boundary factorization properties of correlation functions, we

need to compare the multiplicity spaces of X and X 0.
Note that W@X ¼ W@X 0 
Wa;bð jÞ
Wb;að j�Þ, and that Wa;bð jÞ is dual to Wb;að j�Þ.

We thus have a natural map gX 0;X : W@X 0 !W@X obtained by taking the tensor
product with the canonical tensor. In terms of the bases of 2.2,

gX 0;X ðwÞ ¼ w

X
a

ea½b�ja� 
 ea½a�j�b�:

THEOREM 3.10 (Boundary factorization). Let X 0 be obtained by gluing two marked
boundary arcs x0, x00 with labels j, j� of a labeled surface X. Let Xj be the surface X,
with j running over I with all other labels ¢xed. Then

CðX 0Þ ¼
X

j

dimð jÞ gX̂Xj ;X̂X 0 � CðX Þ � gX 0;X

This theorem is proved in the same way as Theorem 3.4.

4. Structure Constants

It is clear that using the factorization property of correlation functions (Theorems
3.9 and 3.10) the calculation of any correlation function can be reduced to four basic
cases: the sphere with three points, the disk with three boundary points, the disk with
one interior point and one boundary point, and the real projective plane with one
point.
We compute the correlation functions in these four cases. The special cases of two

points on the sphere and on the disk and one interior point on the disk can be in
principle deduced by setting one of the labels to 0. But since the results are particu-
larly simple we compute them separately.
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The calculation of the two-point functions also explains the appearance of the
factors of dimð jÞ and D�1 in the factorization formulae.

4.1. TWO-POINT FUNCTIONS

We calculate the two-point functions on the sphere and on the disk.
Let X ¼ ðS2; j; j�Þ be the unit sphere in R3 with two points, say at the north pole

with label j and at the south pole with label j�. We give S2 the standard orientation.
As usual, we rather have to specify two arcs than two points. Let the arc at the
north pole be a short arc in the x-z plane oriented in the positive x direction,
and let the arc at the south pole be a short arc in the x-z plane, pointing in the
negative direction. X may be both viewed as a labeled surface and as an extended
surface. There are no Lagrangian subspaces here since the ¢rst homology of the
sphere is trivial.
The correlation function CðX Þ on the sphere takes its values in

HðX t ð�X ÞÞ ¼ HðX Þ 
 Hð�X Þ. A basis of the one-dimensional vector space
HðX Þ is given by

bðX Þ ¼ ZððD3; jÞ; ;;X Þ;

associated to the unit ball MX ¼ D3 endowed with a ribbon D3 \ ð½�e; e� � f0g�RÞ.
The ribbon has label j; it runs vertically along the z-axis and its core is oriented
from top to bottom. The orientation of the ribbon is such that it induces the
orientation of the arcs.
A basis ofHð�X Þ is given by bð�X Þ ¼ y]bðX Þ, where y is the re£ection with respect

to the x-z plane.
To compute the two-point function on the sphere, we have to compute the

proportionality constant c inCðS2; j; j�Þ ¼ c bðX Þ
 bð�X Þ. This can be done by using
the functoriality of the invariant Z. If we glue two balls, each with a ribbon inside, to
S2 � ½�1; 1�we get S3 with an unknot labeled by j. These two balls may be viewed as a
cobordism from S2 t S2 to the empty set. Applying its invariant to CðS2; j; j�Þ, we get
D�1dimðiÞ, the invariant of S3 with the unknot. Applying the invariant of the same
cobordism to bðX Þ 
 bð�X Þ, we get the invariant D�2dimð jÞdimð j�Þ of a closed
manifold with two connected components, each of which is a 3-sphere with an
unknot labeled by j and j�, respectively. As dimð jÞ ¼ dimðj�Þ 6¼ 0, we get
c ¼ D dimð jÞ�1, with the result

CðS2; j; j�Þ ¼
D

dimð jÞ
bðS2; j; j�Þ 
 bð�ðS2; j; j�ÞÞ:

Let us turn to the case of the disk with two boundary points labeled by j, j�, and
boundary conditions a; b. The two-point correlation function CðD2; j; j�; a; bÞ is a
map from Wabð jÞ 
Wbað j�Þ to the space HðS2; j; j�Þ of conformal blocks on the
sphere. Evaluating the correlation function on basis vectors ea 
 eb ¼ ea½ jba�� 

eb½ j�ab�� we get the invariant of D3 with an equatorial graph with two outgoing
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lines. This graph may be replaced by a single ribbon using (3). The result is

CðD2; j; j�Þ ea 
 eb ¼
da;b

dimð jÞ
bðS2; j; j�Þ:

Remark. Our two-point correlation functions have a somewhat nonstandard
normalization, which avoids square root ambiguities. For any choice of square roots
one may de¢ne ‘normalized correlation functions’. If X is a labeled surface with
interior arcs labeled by i1; . . . ; in and m boundary arcs labeled by j1; . . . ; jm, let

CnormðX Þ ¼
Yn

n¼1

ffiffiffiffiffiffiffiffiffi
Sin;1

p Ym

n¼1

ffiffiffiffiffiffiffiffiffi
Sjn;1

S1;1

s
CðX Þ: ð9Þ

(Recall that D�1 ¼ S1;1 and that dimð jÞ ¼ Sj;1=S1;1.) For these correlation functions
there are no factors of dimð jÞ or D in the two-point functions or in the factorization
theorems.

4.2. THE 3-POINT FUNCTION ON THE SPHERE

Let X ¼ ðS2; i; j; kÞ be the sphere with three marked arcs labeled by i, j and k. To ¢x
the conventions let us take the sphere as the unit sphere in R3, with standard
orientation and have the three marked arcs on the equator. We orient the equator
counterclockwise and orient the arcs in the same direction. The correlation function
then takes values in HðX t ð�X ÞÞ ¼ HðX Þ 
 Hð�X Þ. A basis of HðX Þ is given by
eaðX Þ ¼ ZðMX ;a; ;;X Þ, a ¼ 1; . . . ;Nk;j;i, where the connecting 3-manifold MX ;a is
the 3-ball with a ribbon graph in the x-y plane with one trivalent vertex at the origin.
The vertex is labeled by the basis element ea½kji� of Hk;j;i. A basis of Hð�X Þ is
eað�X Þ ¼ y]eaðX Þ, where y is the re£ection at the x-y plane.
As in the case of the two-point function, to compute the correlation function

ZðX � ½�1; 1�; ;;X t ð�X ÞÞ in terms of the basis eaðX Þ 
 ebð�X Þ of
HðX t ð�X ÞÞ ¼ HðX Þ 
 Hð�X Þ, we use the functoriality of Z and act on CðX Þ with
ZðMX ;a;b;X t ð�X Þ; ;Þ. Here, MX ;a;b is the disjoint union of two 3-balls, each with
a ribbon graph with one vertex labeled by ea; eb respectively. The result is the
invariant of S3 with the ‘theta graph’, which has two vertices connected by three
ribbons. By the orthogonality relations of basis elements this invariant is D�1da;b.
On the other hand, if we act with ZðMX ;a;b;X t ð�X Þ; ;Þ on egðX Þ 
 edð�X Þ, we

obtain the invariant of S3 t S3 with a theta graph in each copy of S3, which is
D�2da;gdb;d. The result is thus

CðS2; i; j; kÞ ¼ D
XNk;j;i

a¼1

eaðS2; i; j; kÞ 
 eað�ðS2; i; j; kÞÞ:

As usual, Nk;j;i is the dimension of Homð1; k
 j 
 iÞ. With the normalization (9) we
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then have

CnormðS2; i; j; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si;1Sj;1Sk;1

p
S1;1

XNk;j;i

a¼1

eaðS2; i; j; kÞ 
 eað�ðS2; i; j; kÞÞ:

4.3. THE ð1; 0Þ-POINT FUNCTION ON THE DISK

Let X ¼ ðD2; i; aÞ be the unit disk with an arc labeled by i at the origin and boundary
condition a. The correlation function CðX Þ takes values inHðX̂X Þ with X̂X ¼ ðS2; i; i�Þ,
the sphere with two marked arcs as in 4.1. We have, by construction,

CðX Þ ¼ ZðM; ;; X̂X Þ:

The 3-manifold M is a 3-ball with a vertical ribbon and an equatorial graph
consisting of an annulus labeled by a. We want to express CðX Þ in terms of the basis
bðS2; i; i�Þ (the ‘Ishibashi boundary state’) of the one-dimensional vector spaceHðX̂X Þ.
We do this as above, by gluing a ball with a vertical ribbon inside onto M and using
the functoriality ofZ. The resulting closed 3-manifold is a 3-sphere with two unknots
with linking number 1. It has invariant D�1si;a. This has to be compared with the
3-manifold obtained by gluing the same ball to D3 with a vertical ribbon, which
is S3 with an unknot and has invariant D�1si;1 ¼ Si;1. The result is

CðD2; i; aÞ ¼
Si;a

Si;1
bðS2; i; i�Þ:

Implementing the normalization as given in Equation (9), the corresponding
normalized correlation function is

CnormðD2; i; aÞ ¼
Si;affiffiffiffiffiffiffiffi
Si;1

p bðS2; i; i�Þ:

In conformal ¢eld theory, this formula for the one-point functions on the disk was
¢rst obtained in [C1].

4.4. THE ð1; 1Þ-POINT FUNCTION ON THE DISK

We calculate the correlation function in the case of n ¼ 1 point in the interior of the
disk D2 and m ¼ 1 point on its boundary. The label of the interior point is i
and the label of the boundary point is j. The double X̂X of the disk with these points
is the 2-sphere S2 with one point on the equator labeled by j and two points,
say the north and south pole, labeled by i, i�. Then the correlation function with
boundary condition k maps Wk;kð jÞ ¼ Homðk; j
 kÞ to HðX̂X Þ ¼ Homð1; i
 i� 
 jÞ.
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Its matrix elements Rab with respect to the chosen bases are given by the formula

To calculate Rab, we compose this morphism with the basis element eg½j�ii�� of
Homðj 
 i; iÞ ’ Homð1; j� 
 i
 i�Þ and obtain

The left-hand side may be evaluated in terms of fusing matrices, with the result:

The expression appearing on the right may be further simpli¢ed:
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Putting everything together, we arrive at the result

Rab ¼
X
l;E

vl

vivk

i i� j
k k l


 �ba

ee
:

4.5. THREE BOUNDARY POINTS ON THE DISK

The correlation function for three points on the boundary of a disk can be computed
in an analogous way. In this case X̂X is the 2-sphere with three points on the equator.
Let us orient the boundary of the unit disk counterclockwise and denote the labels
of the three points i, j, k. The boundary conditions are labeled by a; b; c. Then
CðX Þ is a map from Wc;aðiÞ 
Wa;bð jÞ 
Wb;cðiÞ to HðX̂X Þ ¼ Homð1; k
 j 
 iÞ. The
structure constants Cd

abg are in this case de¢ned by

CðX Þ ea½a�ic� 
 eb½b�ja� 
 eg½c�kb� ¼
X
d

Cd
abg ed½kji�;

in terms of the bases of Wc;aðiÞ ’ Homð1; a� 
 i
 cÞ, etc. The connecting 3-manifold
is in this case a ball with an equatorial graph. The computation of the structure
constants then goes as follows.

The diagram appearing on the right-hand side can be deformed to

with the result

Cd
abg ¼

1
dimðkÞ

j i k
c b a


 �dg

ab
:
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The normalized correlation function is then

CnormðX Þ ea½a�ic� 
 eb½b�ja� 
 eg½c�kb� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si;1Sj;1

Sk;1S1;1

s X
d

j i k
c b a


 �dg

ab
ed½kji�;

cf. [R, BPPZ, FFFS1].

4.6. ONE POINT ON THE PROJECTIVE PLANE

We consider the one-point correlation function on the projective plane. Thus our
labeled surface X ¼ ðRP2; iÞ is RP2 ¼ S2=Z2 with a marked arc labeled by i 2 I
and some local orientation. The connecting 3-manifold is here ðS2� ½�1; 1�Þ=Z2.
View S2 as the unit sphere in R3, and let us put the marked arc z at the north
(= south) pole  ð0; 0; 1Þ 2 S2=Z2 of the projective plane. The local orientation is
obtained by identifying, locally around the arc, the projective plane with the upper
hemisphere of S2. Then the correlation function is the element of HðX̂X Þ associated
to the ribbon graph given by the ¢ber over z, i.e., the image in ðS2� ½�1; 1�Þ=Z2

of the interval ð0; 0; 1Þ � ½�1; 1�. The framing is determined by taking a neighboring
point, say ðe; 0;

ffiffiffiffiffiffiffiffiffiffi
1�e2

p
Þ and taking at each point of the ¢ber a vector pointing to

the ¢ber over the neighboring point.
The space of states HðX̂X Þ is one-dimensional in this case. A basis of this space is

given by the ‘Ishibashi cross cap state’ ci. Before giving its de¢nition we notice that
there are two natural candidates for a basis. Namely, we can take any of the
two states c i associated to the ribbon graphs in the 3-ball D3 of Figure 3. The
two states differ by a twist, so cþi ¼ vic

�
i . To de¢ne the cross cap state we choose

square roots of vi and normalize the cross cap state salomonically as

ci ¼ v1=2i c�i ¼ v�1=2i cþi :

Our task is to express the one-point function CðX Þ on the projective plane in terms of

Figure 3. The vectors cþi , c
�
i are associated to the ribbon graphs in D3 on the left and on the right,

respectively.
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this basis:

CðX Þ ¼ ci ci ¼ ci v1=2i c�i :

In other words, we have to compute the constant of proportionality civ
1=2
i between

two states in HðX̂X Þ given by ribbon graphs in 3-manifolds with the same boundary
S2. This can be done using the functoriality axiom by attaching a 3-ball with a ribbon
graph consisting of a single ribbon connecting the north pole with the south pole to
S2, and comparing the corresponding (scalar) invariants of ribbon graphs in closed
3-manifolds.
If we attach a 3-ball to a 3-ball we get a 3-sphere. If we choose the ribbon graph in

the 3-ball properly, we get in S3 an unknotted circle with zero framing. Its invariant
is D�1 dimðiÞ, where D�1 is the invariant of S3. This proper choice of the ribbon
may be described as follows. Suppose for de¢niteness that the upper and lower sides
of the ribbon de¢ning c�i are centered at the poles ð0; 0; 1Þ of S2 and lie in the x2^x3
plane. The ribbon graph in the 3-ball we attach to S2 should be chosen so that it can
be deformed to a ribbon lying on the surface S2 whose midline follows a ‘tennis ball
pattern’ joining the north pole to the south pole: this pattern may be parametrized
by r 2 ½0; p�:

xðrÞ ¼ 1
2 sin 2r;

1
2 ð1� cos 2rÞ; cos r

� �
:

If we attach a 3-ball to the boundary of ðS2� ½�1; 1�Þ=Z2 we get the real projective
space RP3 ¼ S3=Z2. Indeed the map S2� ½�1; 1�,!S3:

ðx; tÞ 7! ðx cos pt=4; sin pt=4Þ 2 S3 # R4;

de¢nes an embedding of the connecting manifold into RP3. Its image is the comp-
lement of the ball in RP3 determined by the equation x24 > 1=2.
It is known that RP3 can be obtained from S3 by surgery on the unknot with

framing �2, see Appendix B. If we follow how the ribbon graph is mapped by
the surgery and view S3 as the one point compacti¢cation of R3, we may describe
the situation as in Figure 4. The region depicted is contained in a ball in R3 which
after surgery on the annulus drawn as horizontal is mapped to the connecting
3-manifold ðS2� ½�1; 1�Þ=Z2. The vertical line is mapped to the ribbon graph in
the connecting 3-manifold. If we attach the 3-ball onto S2 and compute with the
formulae of Appendix B the image of the tennis ball pattern, we see that the vertical
line matches the ribbon graph in the 3-ball to give an unframed unknot linked
to the horizontal unknot. According to the Reshetikhin^Turaev surgery formula
(12) the resulting invariant is

D�1D�1
X
j2I

v�2j dimð jÞ si;j;
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with D ¼
P

i2I v�1i dimðiÞ2. By using k ¼ DD�1 we then get

ci ¼ v�1=2i D�1
X
j2I

v�2j
dimð jÞ
dimðiÞ

si;j ¼ v�1=2i k�1
X
j2I

Si;j v�2j
Sj;1

Si;1
:

This result can be expressed in terms of the matrix P [BS], which is de¢ned in terms of
the representation of SLð2;ZÞ:

P ¼ k�1T̂T1=2ST̂T2ST̂T 1=2 ¼ T 1=2ST2ST 1=2:

The square root is de¢ned using the choice of square roots of the vi. The matrix P is
symmetric. Its square is the conjugation matrix C ¼ ðdi;j� Þ.
We then have ci ¼ Pi;1=Si;1.
Summarizing, our result is CðRP2; iÞ ¼ ðPi;1=Si;1Þci. The corresponding

normalized correlation function agrees with the result CnormðRP2; iÞ ¼
ðPi;1=

ffiffiffiffiffiffiffi
Si;1

p
Þci obtained in conformal ¢eld theory (see, e.g., [PSS1]).

5. Annulus, Klein Bottle, Mo« bius Strip

We consider here the three cases of surfaces whose double is a torus: the annulus, the
Klein bottle and the Mo« bius strip. The correlation function with no marked points
(partition function) can then be expressed in terms of the basis wjðS

1 � S1Þ of
invariants of the solid torus. It is then expected on physical grounds that the
coef¢cients of the partition functions obey certain integrality conditions. We com-
pute the partition function in these three cases and show that these conditions
are obeyed. Different ways of computing correlation functions implies remarkable
properties of the SLð2;ZÞ representations arising frommodular categories. The most

Figure 4.
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well-known one is the Verlinde formula

Nj;k;l ¼
X
r2I

Sr;jSr;kSr;l

Sr;1
;

which may be understood as the result of two different computation of the annulus
partition function.

5.1. ANNULUS PARTITION FUNCTION

Let X ¼ ðA; a; bÞ be an annulus whose boundary has connected components labeled
by a and b. The double X̂X is then a torus and the connecting 3-manifold is a solid
torus D2�S1 with two equatorial graphs without outgoing edges. To be concrete,
let us think of A as the region between two circles centered at the origin of the
x^y plane. The two circles forming the boundary are oriented counterclockwise.
Then X̂X may be thought of as the surface obtained by revolution around the z-axis
of a circle C in the x^z plane with center on the x-axis. Then the projection
p: X̂X 7! X is the orthogonal projection onto the x^y plane and the involution s
is the re£ection at the x^y plane. The connecting 3-manifold M is the solid obtained
by revolution of the disk in the x^z plane with boundary C. It contains two annuli
in the x^y plane oriented counterclockwise and labeled by a, b. A well-known
calculation using (4) and (3) shows that ZðM; ;;S1�S1Þ ¼

P
k Nk

a;b wkðS
1�S1Þ. Thus

CðA; a; bÞ ¼
X
k2I

Nk
a;b wkðS

1�S1Þ:

The alternative way of doing this calculation is to glue another solid torus with an
annulus graph to obtain the invariant of S3 with three unknots. The identity between
the two results is the Verlinde formula, see [W]. Our result can therefore be under-
stood as a three-dimensional version of the derivation of the Verlinde formula
in [C1], and shows that at this level the arguments of [C1] are completely equivalent
to those given in [W].
A similar reasoning will be used below for the Mo« bius strip.

5.2. THE PARTITION FUNCTION OF THE KLEIN BOTTLE

Let Z2 act on S1�S1 via the involution s: ðz;wÞ 7! ðz�1;�wÞ. The quotient space
is the Klein bottle K ¼ ðS1�S1Þ=Z2, with double K̂K ¼ S1�S1. We compute the
correlation function CðKÞ 2 HðK̂KÞ of the Klein bottle with no marked points. A basis
of HðK̂KÞ is given by

wjðS
1�S1Þ ¼ ZððH; jÞ; ;;S1�S1Þ; j 2 I;

with H ¼ D2�S1 containing an annulus labeled by j, as above.
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So

CðKÞ ¼
X
i2I

ciðKÞwiðS
1�S1Þ;

for some complex coef¢cients ciðKÞ. The convention we have chosen here is that the
¢rst factor of S1 in K̂K ¼ S1�S1, which becomes a contractible cycle in the solid
torus H, generates the kernel of p�: H1ðK̂K;RÞ 7! H1ðK;RÞ.
We compute cjðKÞ by composing both sides of the above equation with the

invariant Zðð�H; j�Þ;S1�S1; ;Þ. If we compose this invariant with wiðS
1�S1Þ

we get di;j, the invariant of S2�S1 with two annuli z1�S1, z2�S1 labeled by
i; j�. Therefore the right-hand side becomes cjðKÞ.
The left-hand side is then the invariant of the 3-manifold M0 obtained by gluing

ð�H; j�Þ to the connecting manifold MK of the Klein bottle. We claim that this
3-manifold is homeomorphic to S2�S1 with a certain annulus labeled by j.
To see this, let us identify S2 with CP1 ¼ C [ f1g. The connecting manifold MK

consists of classes ½ðz;w; tÞ� of triples ðz;w; tÞ 2 S1�S1� ½�1; 1� modulo

ðz;w; tÞ ' ðz�1;�w;�tÞ:

Then we have the embedding MK ,!CP1�S1 given by

i : ½ðz;w; tÞ� 7! 2w
etz� 1
etzþ 1

;w2
� �

:

The complement of iðKÞ in S2 � S1 is the interior of a solid torus D2 � S1, embedded
via ðz;wÞ 7! ð2wðe�1z�1Þ=ðe�1zþ 1Þ;w2Þ. The image of the ribbon graph
½�e; e� �S1 # D2�S1 inM0 ¼ S2�S1 is an annulus. The intersection of this annulus
with the ¢ber over u 2 S1 consists of two segments centered at 2

ffiffiffi
u

p
and is contained

in the straight line connecting these two points. As u runs over the unit circle, the two
points rotate around the origin by 180 degrees. By the trace formula (7), the invariant
of M0 is the trace

ZðM0Þ ¼ TrHðS2;j;jÞðFjÞ

over the space of states for the sphere with two marked arcs of the morphism Fj

represented by the graph

in S2 � ½0; 1�, where we think of S2 as the x� y plane in R3 by stereographic
projection. If j 6’ j�, HðS2; j; jÞ ¼ f0g and ZðM0Þ vanishes. If j ’ j�, HðS2; j; jÞ is
one-dimensional with a basis given by the invariant of a ball with a ribbon graph
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consisting of ribbons connecting the two arcs to a two-valent vertex labeled by any
nonzero morphism m 2 Homð1; j
 jÞ. Any such morphism may be written as
m ¼ ðidj 
fÞ � bj for any isomorphism f: j� 7! j. Then we have
ðyj 
 idjÞ � cj;j �m ¼ nð jÞm, see 2.3, where nð jÞ ¼  1 is the Frobenius^Schur indicator
of j. The morphism Fj is then the Frobenius^Schur indicator times the identity, as
can be seen by acting on the basis element:

Therefore ZðM0Þ ¼ nðjÞ. We conclude that

CðKÞ ¼
X
j’j�

nð jÞ wjðS
1 � S1Þ;

in agreement with [HSS]. The summation is over all self-dual objects j 2 I .

5.3. THE MO« BIUS STRIP

We now consider the correlation function of the Mo« bius strip with no marked point
and boundary condition a 2 I . The double of the Mo« bius strip is S1�S1 with
involution s: ðz;wÞ 7! ðw=z;wÞ. Thus if Mo« is the Mo« bius strip, its connecting
manifold is MM €oo ¼ ðS1�S1� ½�1; 1�Þ=Z2 and is degree one homeomorphic via

ðz;w; tÞ 7!
1þ t
2

zþ
1� t
2

wz�1;w
� �

;

toD2�S1. The equatorial graph consists of an annulus lying in the zero section t ¼ 0
and running close to the boundary, see Figure 5. The correlation function has then
the form

CðM€oo; aÞ ¼
X
j2I

ma;j wjðS
1�S1Þ:

The coef¢cients ma;j may be computed by composing both sides of the equation with
the invariant of a solid torus with a ribbon graph consisting of an annulus labeled by
l 2 I , in such a way that the manifold obtained by gluing is the 3-sphere. The
right-hand side becomes

P
j ma;jD

�1sj;l , and the left-hand side is D�1 times the
invariant of the link represented in Figure 6. The invariant may be further simpli¢ed,
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by ¢rst £attening the ribbon onto a plane:

The expression in the sum is then v2kv�2l dimðkÞda;a. The sum over the Nk
a;l possible

values of a may be performed, with the result

X
j

ma;jsj;l ¼
X

k

v2kv�2l dimðkÞNk
a;l :

Figure 5. A solid torus with a ribbon graph, whose invariant is the correlation functions of the Mo« bius strip
with boundary condition a.

Figure 6. A link in S3 used to compute the partition function of the Mo« bius strip.
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By using the relation
P

l si;lsl;j� ¼ D
2di;j, and expressing our result in terms of the

matrix S ¼ D�1s, we obtain:

CðM€oo; aÞ ¼
X
j2I

ma;j wjðS
1�S1Þ;

with

ma;j ¼
X
k;l2I

v2kv�2l S1;kNk
a;lSl;j� : ð11Þ

An alternative way to do the computation is to cut out a ball in the solid torus of
Figure 5 intersecting the ribbon graph in two segments, and use (4) with
i ¼ j ¼ a. Then the ribbon graph may be replaced by a ribbon labeled by the sum-
mation index k which starts and ends at a two-valent vertex after going once around
the solid torus. The two-valent vertex is labeled by dimðkÞ times the morphism
represented by the graph

The sum over a is
P

a ea½a�ka��Fa;k ea½ak�a�, with ea½ak�a�, a ¼ 1Na;k�;a, regarded as a
basis of Homðk; a
 aÞ and ea½a�ka�� as a basis of Homða
 a; kÞ. Fa;k is the linear
endomorphism of Homðk; a
 aÞ given by Fa;kðxÞ ¼ ðya
 idaÞ � ca;a � x. Since
ea½ak�a� � eb½a�ka�� ¼ dimðkÞ�1da;b (Equation (3)), the quantum dimensions cancel,
and we are left with ma;k ¼ TrHomðk;a
aÞ Fa;k. Moreover, F2

a;k ¼ vk id, as may be seen
by deforming the graph representing this morphism put on top of itself or by using
axioms (iv), (v) of Appendix A. It follows that Fa;k is diagonalizable with eigenvalues
 

ffiffiffiffiffi
vk

p
. Therefore we have

ma;k ¼ Ma;kv1=2k ; Ma;k 2 Z; Ma;k � Nk
a;a2; jMa;kjWNk

a;a

The two different ways of calculating the Mo« bius strip partition function implies the
following result, essentially due to Bantay [B], on representations of SLð2;ZÞ arising
from modular categories.

THEOREM 5.1. Let S ¼ ðD�1sj;kÞ, T̂T ¼ ðv�1j dj;kÞ the matrices de¢ning the projective
representation of SLð2;ZÞ associated to a modular category with rank D, see 2.5.2,
and let Ni

j;k ¼ Ni�;j;k 2 ZX 0 be the corresponding Verlinde numbers (10). Let
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Q ¼ ST̂T2S�1. Then the numbers

Ma;k ¼ v�1=2k

X
r2I

ðQ�1Þ1;r
Sa;r

S1;r
Qk;r;

are integers and obey Ma;k � Nk
a;a2, jMa;kjWNk

a;a.

The above expression for Ma;k was obtained from (11) by using the Verlinde
formula (10).

Remarks. (1) The above formula amounts to not completely trivial identities even
for the simple Z2N example of 2.1. There we have

Sa;r

S1;r
¼ e�piar=N ; Qk;r ¼

1ffiffiffiffiffi
N

p e
ip
4�

ip
4Nðk�rÞ2 ; if k�rþN is even;

0; otherwise;

8<
:

and, with v�1=2k ¼ expðpik2=4NÞ,

Ma;k ¼
1; if k is even and a � k=2 mod 2N;
0; otherwise:




Note that being even is well de¢ned inZ2N , and that if k is even the above choice of
square root of vk is unambiguous.
(2) More generally one expects ([PSS1]) the numbers

Yk
a;j ¼ v�1=2k v1=2j

X
r

ðQ�1Þj;r
Sa;r

S1;r
Qk;r

to be integer for any j. This has been recently shown to be true under some additional
assumptions (see [Gan]).

Appendix A. Modular Categories

We give here the precise de¢nition of modular categories, following [T]. A monoidal
(¼ tensor) category with product
 and unit 1 for the product is called strict if for any
objects U;V ;W , we have ðU 
V Þ
W ¼ U 
 ðV 
W Þ, and V 
 1 ¼ 1
V ¼ V . A
monoidal Ab-category is a monoidal category such that morphisms between any
two objects U;V form an additive Abelian group HomðU;V Þ, and such that
compositions and tensor products of morphisms are bilinear. In particular, the
endomorphisms of the unit 1 of the tensor product form a ring with unit. This ring
is called the ground ring. The groups of morphisms are naturally modules over
the ground ring. An object V of a monoidal Ab-category is called simple if
HomðV ;V Þ ’ K as a K-module.
A ribbon category is a strict monoidal category with additional data: a braiding, a

twist and a duality.
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A braiding associates to any pair of objects V , W an isomorphism
cV ;W 2 HomðV 
W ;W 
V Þ. A twist associates to any object V an isomorphism
yV 2 HomðV ;V Þ. A duality associates to any object V a dual object V� and
morphisms bV 2 Homð1;V 
V�Þ, dV 2 HomðV� 
V ; 1Þ.
These data obey the following set of axioms:

(i) cU ;V
W ¼ ðidV 
 cU ;W ÞðcU ;V 
 idW Þ.
(ii) cU
V ;W ¼ ðcU;W 
 idV ÞðidU 
 cV ;W Þ.
(iii) g
 fcV ;W ¼ cV 0;W 0 f 
 g.
(iv) yV
W ¼ cW ;V cV ;W ðyV 
 yW Þ.
(v) yV 0 f ¼ f yV .
(vi) ðidV 
 dV ÞðbV 
 idV Þ ¼ idV .
(vii) ðdV 
 idV� ÞðidV� 
 bV Þ ¼ idV� .
(viii) ðyV 
 idV� ÞbV ¼ ðidV 
 yV� ÞbV.

HereU;V ; . . . are arbitrary objects and f 2 HomðV ;V 0Þ, g 2 HomðW ;W 0Þ are arbi-
trary morphisms.
Finally amodular category is a ribbon Ab-category with a ¢nite family I of simple

objects such that:

(ix) 1 2 I .
(x) For every i 2 I, i� is isomorphic to an object in I.
(xi) Every morphism f : V ! V 0 may be decomposed into a ¢nite sum

P
r grhr,

where hr 2 HomðV ; iÞ and gr 2 Homði;V 0Þ for some i ¼ iðrÞ.
(xii) The matrix ðsi;jÞ ¼ ðtrðcj;ici;jÞÞ indexed by i; j 2 I is invertible.

Appendix B. Surgery on the Unknot

Here we describe explicitly the homeomorphism between RP3 and the 3-manifold
obtained by surgery on the unknot in S3 with framing  2.
Let us ¢rst ¢x some conventions about orientations. We give an orientation to the

boundary of an oriented manifold M by the ‘outward normal ¢rst’ rule. This means
that a basis ðb1; . . . ; bnÞ of the tangent space Tx@M at a boundary point x is positively
oriented if and only if ðb0; b1; . . . ; bnÞ is a positively oriented basis of TxM for any b0
pointing outwards. The orientations of the disksDn ¼ fx 2 Rn

j jxjW 1g are inherited
from Rn. They de¢ne orientations of the spheres Sn�1 ¼ @Dn. We orient Cn via the
isomorphism ðx1 þ iy1; . . . ; xn þ iynÞ 7! ðx1; y1; . . . ; xn; ynÞ with R2n, and view odd
dimensional spheres S2n�1 as subsets of Cn.
Recall that if L is the image of a smooth embedding of S1 in S3, and n is an integer,

then the surgery on L with framing n is the following construction. Let U be a closed
tubular neighborhood of L. Fix an embedding j: S1�D2 ,! S3 with imageU so that
S1�f0g is sent to L, and S1�f1g is sent to a knot L0 whose linking number with L is n.
The linking number is calculated using the orientations of L, L0 coming from the
orientation of S1 via j. We may think that L with framing n as an embedded annulus
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with boundary L [ L0. Let S3ðL;nÞ be the manifold obtained by gluing the complement
S3 � intU of the interior of U to D2�S1 via the restriction to S1�S1 of the map j:
S3
ðL;nÞ ¼ ðS

3 � intUÞ t ðD2�S1Þ=ðx ' jðxÞ; x 2 S1�S1Þ. The orientation of S3
ðL;nÞ

is de¢ned to be the orientation that extends the standard orientation of S3 �U # S3.
If L is the unknot de¢ned, say, by the embedding z 7! ðz; 0Þ of S1 # C into

S3 # C
2, and the framing is n, then we may take, for small e > 0,

jðz;wÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jewj2
p ðz; ewznÞ; ðz;wÞ 2 S1�D2:

The image is U ¼ fðu; vÞ 2 S3#C
2
j ejuj X jvjg. The 3-manifold S3

ðL;nÞ obtained by
surgery on this link is (for n 6¼ 0) homeomorphic to the lens space S3=Zjnj, with
Zjnj action generated by ðu; vÞ 7! ðzu; zvÞ, z ¼ expð2pi=jnjÞ.
Indeed the map

in : ðu; vÞ 7!
v
jvj

� ��1=n

ðu; jvjÞ;

is a homeomorphism S3 � L ! ðS3 � LÞ=Zjnj (L is invariant under the Zjnj action),
with inverse map ðu; vÞ 7! ðuv�1jvj; v�njvjnþ1Þ. This homeomorphism extends to a
homeomorphism from S3

ðL;nÞ onto S3=Zjnj. This follows from the fact that

in � j
����
S1 �S1

: ðz;wÞ 7!
w�1=nffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p ð1; ez�1Þ

extends to the homeomorphism

ðz;wÞ 7!
w�1=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2jzj2

p ð1; e�zzÞ

from D2�S1 onto a tubular neighborhood of L=Zjnj in S3=Zjnj.
The sign of n is connected with the orientation. Since the Zjnj action on S3

preserves the orientation, the lens space S3=Zjnj inherits an orientation from S3.
The map in is then orientation preserving if n< 0 and orientation reversing if
n> 0, as can be seen by linearizing in at ð0; 1Þ.
Let us summarize the results.

PROPOSITION B.1. Let L be the image of the embedding z 7! ðz; 0Þ of S1 7! S3.
Then, for each n 2 Z� f0g, the map in: S3 � L 7! ðS3 � LÞ=Zjnj

ðu; vÞ 7!
v
jvj

� ��1=n

ðu; jvjÞ;

extends uniquely to a homeomorphism from the manifold S3
ðL;nÞ obtained by surgery on

L with framing n onto the lens space S3=Zjnj. The degree of this homeomorphism is
�signðnÞ. In particular, i�2 is a degree one homeomorphism from S3ðL;�2Þ onto RP3.
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Moreover we have the Reshetikhin^Turaev formula for the invariant of a ribbon
graph in a manifold obtained from S3 by surgery, see [T]. It can be deduced from
the functoriality axiom applied to a solid torus. In the case of an unknot with framing
n< 0, assuming that the ribbon graph does not intersect the solid torus at which we
perform the surgery, it reads

ZðS3ðL;nÞ;GÞ ¼ D
X
j2I

dimð jÞZðS3;GjÞ; ð12Þ

with D ¼
P

i2I v�1i dimðiÞ2. The ribbon graph Gj is obtained from G by adding L,
viewed as an embedded annulus in S3, with label j. This involves a choice of
orientation of L, but the result does not depend on this choice.
To visualize the results it is useful to stereographically project S3 � fptg toR3. For

our application, a useful projection is

ðx1 þ ix2; x3 þ ix4Þ 7!
1

1þ x3
ðx1; x2; x4Þ:

It preserves the orientation. Then the link L at which we do surgery is mapped to the
unit circle in the x1-x2 plane.

Appendix C. Physical Motivation

Two-dimensional conformal ¢eld theory plays a fundamental role in several distinct
areas of physics. In particular, it can be used to describe universality classes of
two-dimensional critical systems of classical statistical mechanics ([FQS]) and of
quasi one-dimensional condensed matter physics ([Af]). For instance, the scaling
behavior of such a system is encoded in so-called ‘critical exponents’. They are
related to conformal weights, which, in turn, determine the twist in the tensor
categories we consider in this paper. Similarly, the ¢nite size scaling behavior is
governed by the value of the conformal central charge, which, in turn, gives the
charge k of the tensor category. In string and superstring theory ([GSW]), all aspects
involving the world sheet that is swept out by the string moving in space-time can be
understood in terms of a conformal ¢eld theory model on the world sheet. The
correlation functions of the conformal ¢eld theory model are the building blocks
for the string scattering amplitudes.
Each physical state of a chiral conformal ¢eld theory is a ray in some irreducible

module of a ‘chiral algebra’. One mathematical formalization of chiral algebras
is the notion of a conformal vertex-operator algebra. It is believed, though not
proven so far, that the category of representations of every rational vertex-operator
algebra gives rise to a modular tensor category, as studied in the main text. As
a consequence, the study of conformal ¢eld theories has two main aspects, a
representation theoretic one, related to the theory of vertex-operator algebras,
and another one that can be formulated entirely in terms of the tensor category
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of representations. The present paper is devoted to the latter aspect of conformal
¢eld theory.
There are many reasons to consider conformal ¢eld theory also on surfaces with

boundaries. Boundaries can describe, e.g., the presence of a point-like defect in
systems of condensed matter physics ([OA]). In such applications space is
(effectively) one-dimensional, a half-line, with the defect sitting at the end-point
of the line; the second dimension is identi¢ed with (imaginary) time. Another appli-
cation of boundary conformal ¢eld theory is the study of (critical) percolation
probabilities ([C2]), which have been argued to coincide with certain correlation
functions of a nonunitary conformal ¢eld theory on a disk.
In string theory, boundaries appear as soon as open strings are present, namely as

the world lines of the end points of the open string. Moreover, (perturbative)
superstring theory can be regarded as providing a perturbative quantization of
certain classical ¢eld theories, supergravity theories. These theories possess
nontrivial classical solutions, so-called string solitons. One important recent insight
in string theory is that there exists a string perturbation theory for one class of these
solitons, the so-called D-branes. It is formulated ([P]) in terms of open string world
sheets and thus provides another reason to study conformal ¢eld theories on surfaces
with boundaries. Finally, there is also a class of superstring theories, so-called type I
theories, which forces one to analyze conformal ¢eld theory on nonorientable
surfaces.
String theory amplitudes are de¢ned as sums over world sheets of arbitrary genus.

Such sums can be expected to behave reasonably only if the terms in the sum are
related to each other. The factorization constraints that we prove in this paper show
that nontrivial relations between correlation functions on surfaces of different
topology indeed exist.
The following features have become clear in the study of conformal ¢eld theory on

surfaces with boundaries: To each component of the boundary one must associate a
‘boundary condition’, which encodes what happens when ¢elds are located close
to the boundary. In string theory, in the regime of small curvature, many boundary
conditions have a geometric interpretation in terms of submanifolds of spacetime,
so-called D-branes. Associating a boundary condition to a component of the bound-
ary of a world sheet has the geometric interpretation of constraining the image of the
component, which is the world line of a string end point, to lie on some D-brane. As a
consequence, the correlation functions of conformal ¢eld theory on surfaces with
boundaries depend on these boundary conditions. Also, in addition to the bulk ¢elds
which correspond to insertions in the interior of the world sheet, there are also
so-called boundary ¢elds; they are inserted on the boundary of the worldsheet
and may separate regions of the boundary with different boundary conditions.
All boundary conditions considered in the present paper are compatible with the
full chiral symmetry that is present in the bulk of the worldsheet. Such boundary
conditions are labelled by irreducible representations of the chiral algebra ([C1]).
More general boundary conditions are, however, possible. They preserve only a
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subalgebra of the chiral algebra. If that subalgebra contains the Virasoro element,
then they are conformally invariant. A general theory of conformally invariant
boundary conditions remains to be developed.
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