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Abstract. We give a general construction of correlation functions in rational conformal field
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1. Introduction

In this paper, we study correlation functions in conformal field theory from the point
of view of three-dimensional topological field theory.

The problem of constructing correlation functions in rational conformal field
theory has two parts. The first part of the problem is to determine the space of
conformal blocks. The second part is to use this space to construct correlation
functions.

The first part of the problem is by now well understood in mathematical terms.
One approach, suggested by Witten’s paper [W] on Chern—Simons theory, is given
in terms of three-dimensional topological field theory (TFT). Such a theory assigns
to every ‘extended surface’ — an oriented 2-manifold X with marked points carrying
labels, and certain additional data related to framing — a finite dimensional complex
vector space H(X), the space of conformal blocks, or of the states of the TFT, and to
every 3-manifold M bounded by X, containing a ‘ribbon graph’, a vector Z(M) in
H(X). The ribbon graph is an embedded graph ending at the marked points, with
some additional structure. The spaces H(X) and the vectors Z(M) are supposed
to obey a number of natural axioms relating to homeomorphisms and cutting
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and pasting. Turaev showed in [T] how every modular category produces a TFT
and, in particular, a space of conformal blocks associated to every extended
surface.

The purpose of this paper is to give a precise meaning in the same terms to the
second part of the problem, the construction of correlation functions out of
conformal blocks, and to present a solution. Let us first describe the data of the
problem. First, one requires the chiral data of a rational conformal field theory,
which for us are the data of a modular category. In particular, there is a set /
of distinguished simple objects. These data are needed to define conformal blocks.
The conformal field theory itself is given by a system of correlation functions obeying
certain axioms. Each construction of such correlation functions satisfying the
axioms gives a different conformal field theory with the same underlying modular
category.

We proceed to describe what the axioms are in the simplest situation (the ‘Cardy
case’ [C1]) to which we restrict our attention in this paper. To formulate the axioms
we introduce the notion of a labeled surface. A conformal field theory is then an
assignment of a correlation function C(X) to each labeled surface X. A labeled
surface X consists of a (not necessarily orientable) compact two-dimensional
manifold with (possibly empty) oriented boundary, a set of marked points on it,
and ‘boundary conditions’. The marked points all carry a label from I and certain
local data. The boundary conditions are a coloring by 7 of the boundary arcs between
marked boundary points. For example, if X is a disk with m marked points on its
boundary, the boundary conditions are a labeling of the m arcs between neighboring
points by elements of /.

The correlation function associated to these data is then a linear map
Way — H(X’ ) from a ‘multiplicity space’, Wy, associated to the boundary
(Wyxy = C if 93X = @) to the space of conformal blocks, H(i’), of the double X
of X. The double of a compact surface is an oriented closed surface with an
orientation reversing involution ¢ so that X is obtained from X by identifying pairs
of points related by o. For example, the double of a disk is a sphere, and the double
of the projective plane is also a sphere, but with a different involution. The torus
is the double of the annulus, the Mobius band and the Klein bottle. The double
of a closed orientable surface is the disjoint union of two copies of the surface, with
opposite orientations. The definition of the double also applies naturally to surfaces
with marked points, so that the double of a labeled surface is an extended surface
in the sense of Turaev ([T]).

The description of correlation functions in terms of conformal blocks on
the double goes back to the early days of conformal field theory ([A1]) and was
formulated in the general context of conformal field theory in [FS].

The correlation functions are supposed to behave naturally under homeo-
morphisms (the modular invariance of correlation functions) and gluing (the
factorization properties of correlation functions). There are two types of gluing
properties: a (possibly disconnected) surface may be glued by identifying two arcs
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on its boundary or by cutting out two disks in the interior and identifying the bound-
aries of the resulting holes. In both cases these operations induce gluing operations
on the double of the surface, which in turn, by the rules of TFT, induce
homomorphisms between the corresponding spaces of conformal blocks. The
requirement of factorization means that the correlation functions behave naturally
under these homomorphisms.

Our main result is the construction of an assignment Xi—C(X) €
Homc(Wiy, H(i’ )) of a correlation function to every labeled surface and a proof
that it obeys the required modular and factorization properties. The basic idea
is that the correlation function C(X) is the vector Z(My) € H()A() associated to a
3-manifold My with a ribbon graph, the connecting 3-manifold of X, whose
boundary is the double X of X. The vector Z(My) depends linearly on the
colorings of the vertices of the ribbon graphs by morphisms of the modular
category. This space of colorings is identified with Wjy. The connecting manifold
was first considered by Horava ([H]) in his study of Chern-Simons theory on
Z,-orbifolds.

Let us first describe our construction in a simple example, suppressing for the
moment the framing. Let X be a disk with » marked points in its interior with labels
i1, ..., I, € I and m points on the boundary, with labels ji, ..., j,, € I. Let the bound-
ary condition on the arcs between the kth and k + Ist boundary points be labeled
by ar €. Then My is a 3-ball and the correlation function C(X) is the conformal
block on the sphere associated to the ribbon graph depicted in Figure 1. The points

Figure 1.
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Zy, Zx project to the kth interior point on the disk, and x; projects to the /th boundary
point.

In the general case, the main property of the connecting manifold is that it comes
with a projection p: My — X whose fibers over interior points are closed intervals,
and an inclusion i: X — My, which is a homotopy equivalence such that
poi=idy. The ribbon graph then consists of fibers of p over the marked points
in the interior, and a loop running close to i(dX) and connected by short lines
to the marked boundary points.

After formulating and proving the modular invariance and factorization proper-
ties of our correlation functions, we compute ‘structure constants’, namely the
correlation functions for elementary building blocks: the disk with three boundary
points, the disk with one interior and one boundary point, and the projective plane
with one point. General correlation functions are then in principle obtainable from
these using the factorization theorems. The structure constants are given in terms
of the data (fusing matrices, modular S-matrix) of the modular category.

We also give formulae for the annulus, the Klein bottle and the Md&bius strip
without marked points. In these cases, the double is a torus; we show that the
coefficients of correlation functions with respect to a natural basis of the space
of conformal blocks are integers.

The correlation functions are thus given in our approach as states of a TFT. To get
actual functions of the position of the marked points and moduli, say for WZW
models, one uses the modular category of integrable modules of an affine Lie algebra
([KL, F]). The dependence on the moduli should then be obtained by integrating the
Knizhnik—Zamolodchikov connection. In the case of the sphere and general WZW
models such a construction might be possible along the lines of [K].

The paper is organized as follows. We begin by giving a review of
three-dimensional topological field theory, following [T], in Section 2. In this section,
modular categories, TFT and modular functors are introduced, and subtleties such
as the framing anomaly are explained. In Section 3 we present our proposal for
correlation functions. We also formulate and prove the factorization and modular
properties they obey. These properties imply, in particular, that correlation
functions on general surfaces may be expressed in terms of basic correlation
functions. We compute these basic correlation functions in Section 4. In
Section 5 we compute correlation functions in the cases where the double has genus
one, and prove integrality results.

In Appendix A we give the definition of modular categories and in Appendix B we
describe how to obtain the real projective space by surgery on the unknot, a result
needed to compute correlation functions on the projective plane.

Finally, in Appendix C, we give a short overview of the physical background of our
results. In particular, we briefly describe some of the main applications of boundary
conformal field theory to physical problems.

Some of these results were announced in [FFFS2].
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2. Modular Categories and Three-Dimensional TFT

2.1. MODULAR CATEGORIES

A modular category is a strict monoidal Ab-category M (see Appendix A) with unit
object 1 and an additional set of data obeying a system of axioms. The data are

(I) A finite set I of simple objects containing 1.

(2) For each pair of objects V', W, abraiding morphism ¢y jy € Hom(VQW, WQV).

(3) For each object V, a twist 0 € Hom(V, V).

(4) A duality: for each object V there is a unique dual object J* and morphisms
by e Hom(1, V®V*) and dy e Hom(V*®V, 1).

These data obey a number of axioms, which we describe in Appendix A (see [T] for
more details). In general modular categories, Hom(1, 1) is a general ring. Here we
assume that Hom(1, 1) = C. The general case may be dealt with similarly, as we
only use the axioms and results in the general theory of [T]. However, in order
to simplify certain normalizations, we do use the fact that C is an algebraically closed
field.

The axioms can be best understood in the language of ribbon graphs, i.e., finite
collections of disjoint ribbons, annuli and coupons. Ribbons are oriented rectangles
[—1/10,1/10] x [0, 1] embedded in R?x[0,1], so that [—1/10,1/10]x (0, 1) is
entirely contained in R? x (0, 1). Annuli are oriented annuli [—1/10,1/10] x S',
embedded in R? x (0, 1). Ribbons and annuli are labeled by objects of the category.
The core {0} x [0, 1] or {0} x S! of each ribbon or annulus is also given an orientation.
The coupons are oriented rectangles embedded in R? x (0, 1) with two preferred
opposite sides, the top and the bottom, and are labeled by morphisms of the
category. The ends [—1/10, 1/10] x {0}, [—1/10, 1/10] x {1} of the ribbons are glued
to the top or the bottom of coupons, so that the orientations match to give an
oriented (topological) 2-manifold with boundary, or are contained in R? x {0, 1}.
The coupons are labeled by morphisms from the tensor product of the objects
labeling the ribbons glued to the bottom boundary, or their dual objects, to the
tensor product of the objects labeling the ribbons glued to the top boundary, or
their dual objects. The ordering of the tensor product reflects the ordering (from
left to right) of the ribbons meeting at the coupon. The dual object is taken when
the orientation of the core points in the upwards (bottom to top) direction. For
example, if the upper side of the coupon

I B I
e
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is the top boundary, and the orientation is the standard orientation of the plane, then
S eHom(U*®@V, W@X® Y*).
Using this correspondence the basic morphisms are represented as follows:

;
Cv,w = , Oy = %V,
14
bv=U, dvzm.
\2

Choosing an orientation of a ribbon in an oriented 3-manifold is the same as
choosing a preferred side, which in our drawings will usually face the reader.
The other side is drawn as shaded.

The tensor product of morphisms is represented by the juxtaposition of the
factors, and the composition fg is obtained by drawing f/ on top of g and gluing
the ends of the ribbons. Then the axioms are such that the morphism corre-
sponding to a ribbon graph depends only on its isotopy class. In particular,
for every ribbon graph I in S®=R’Uoco, we get an isotopy invariant
II'l € Hom(1,1) = C.

In drawing the graphs representing morphisms we will often make use of the
‘blackboard framing’ notation. Instead of drawing ribbons, we will only draw their
cores, with the understanding that the ribbons are contained in the plane of the page
(or of the screen) and inherit the orientation from the standard orientation of the
plane.

As a consequence of the axioms, one then proves that the objects in I are pairwise
non-isomorphic and are a system of representatives of all isomorphism classes of
simple objects. Also one shows that there is a canonical isomorphism
V — (V*)* for all objects V' given in terms of braiding, twist and duality. We will
tacitly identify (¥*)* with V7 via this isomorphism below.

Of particular importance is the (quantum) trace of an endomorphism
feHom(V, V). It is defined by the formula tr(f) = dpcy p+(Opf ®idy+)by € C.
It obeys tr(fg) = tr(gf) (whenever both sides are defined) and tr(idy) = 1.

Out of the trace one then defines the quantum dimensions of simple objects:*
dim(i) = tr(id;), and the modular matrix with matrix elements s;; = tr(c; ; ¢; ;). These
numbers depend only on the isomorphism classes of the simple objects 7, j. One shows

* We usually denote simple objects by lower case letters 4, /, . . ., and general objects by capital
letters U, V, .. ..
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that, as a consequence of the axioms, dim(i) = dim(#*) # 0, dim(1) = 1, and that the
modular matrix obeys s;; = 5;; = 8i j, si1 = dim(i).

On the simple modules i, the isomorphism 6; acts as a scalar v; 2 0 times the
identity.

A rank of a modular category is a number D € C such that D* = D el dim(i)*. In
the following, we shall assume that a rank has been fixed. Related to the rank is
the charge x of the modular category. It is defined by the formula
k="D"! Zjel vj_ldim(j)2. The charge appears in the description of the framing
anomaly.

Out of s;;, v;, D one constructs a projective representation of the mapping class
group of the torus, see 2.5.2 below.

EXAMPLES. (1) For any positive integer N, let My be the category with object set
Z and morphism spaces Hom(j,k) = C if j=k mod 2N and Hom(j, k) ={0}
otherwise. The composition of morphisms is the multiplication of complex numbers.
The tensor structure is defined on objects as j ® k =j + k and on morphisms as
f ®g=(=1)'fg, if f € Hom(j,j+ 2Nk),g € Hom(r, r + 2Ns). The unit object is
1 = 0. This category can be made into a modular category with I ={0,...,2N — 1}
as follows. Let (=exp(in/2N). We set j*=—j, di=5b=1,0;= ¢ and
Cik = ¢7*. Then

v=C(7,  su=0%, D=V2N, k="

In particular, dim(j) = 1 for all objects j. An equivalent category appears in con-
formal field theory and is related to the free boson field with values in a circle
of radius 1/+/2N.

(2) The ‘purified’ category of representations of the quantum group U,(sl,) with
q = exp(wi/(£ + 2)), which is related to the SU(2) WZW model at level ¢, has

¢ + 1 simple objects 0, ..., £ up to isomorphism. In this case we have
sin(n(j+ D+ 1)) (42
vj:e_ni%’ Sjk = t+2 D = 2 K:e%.

sin T 7 sin r ’
{42 £42

2.2. SPACES OF MORPHISMS

Let U, V, W be objects of a modular category. Then we have linear isomorphisms

Hom(U® V, W) — Hom(U, W® V"),
Hom(U® V, W) — Hom(V, U*® W),
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given by

¢ 1— (¢ ®idyp-) o (idy ® by), ¢ 1— (idy- ® ) o (by- ®@idyp), )
respectively. In particular, we have an isomorphism

Hom(ii ® -+ ® in, 1 ® -+ ®jm) > Hom(l, i, @ --- Q@ i} ® j1 ® - - ® jim),

for any simple objects iy, ..., jn.
For n 4+ m = 3, it is then sufficient to consider the space

H"* = Hom(1, i ®j k).
We have a nondegenerate pairing ( , ): H*V/"" @ H'/k — C, given by
(o) =dro([d®d; ®id) 0 ([d®id ® d; ® id ® id) o (¢ @ ).

It is useful to fix bases (e,[ijk], « = 1, ..., N*"*) of the spaces H"/* for i, j, k simple
objects, so that

(a1, eglifk]) = 6, . )

Graphically, a basis element e,[ijk] is represented by a coupon

a

€, lijk]

or in the simplified blackboard framing notation by a trivalent vertex with a label o
drawn where the bottom of the coupon should be. The relation (2) may then be
written as

i «
k J
f— = f— 5()5,,3’
a B

Using the isomorphisms above, the bilinear pairing may also be formulated as a
pairing between H{fj = Hom(i®}, k) and H;’ = Hom(k, i ®j) given by the trace:
(¢, ¥r) = tr(¢yy). The dimensions (Verlinde numbers) of Hom(i ® j, k) will be denoted
by Ni’fj. Similar notations are used for the other spaces. Thus N*"* = dim(H"*) =

T
N%" and so on.
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The first computations with these bases are the following two identities. The first

identity is

— 5 1 i
= %8 Fm() ’ 3)

or e,[ik*j*lepliki*] = d,,p djm(i)_lidi, if e,[ik*j*], egljki*] are identified via (1) with
basis elements of H}k, H{’k, respectively. The second identity is

Njx

=Y > dim(k)

kel a=1

; (4)

whose meaning is

id; ®id; = Y dim(k)e,ljk* ile,[i*kj"],
kel,o
where e,[jk*i] is identified with a basis element of H,i’j and e,[i*kj*] with a basis
element of Hfj.

The first identity can be obtained by noticing that both sides of the equations are
elements of the one-dimensional vector space Hom(i, i) = Cid;, so they are
proportional. The constant of proportionality is computed by taking the trace
on both sides.

The second identity follows from the domination axiom (Appendix A(xi)) which
implies that the left-hand side can be expressed as a linear combination of the
morphisms on the right-hand side, possibly with different basis elements e,, eg in
the factors. To compute the coefficients ¢, g(k) in

idi ®@idj = Y cupk)e ik ilegli*ki*],
kel o, p

we compose both sides of the equation with e,[i*/j*] € H{J. Since Hom(k, /) = 0 for
| # k, the only term contributing to the sum over k is the one with k = /. Using
the first identity, we get e, =3, ;cup(/)dy; dim(/)'es, from which the result
C%/;(l) = dlm(l)éa/; follows.

2.3. FROBENIUS-SCHUR INDICATORS

A self-dual object in a modular category is an object isomorphic to its dual object. To
each simple self-dual object one associates a scalar squaring to one, called the
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Frobenius—Schur indicator. Its role in conformal field theory was first emphasized in
[B]. It is a generalization of a classical notion in group representation theory: if ¥ is
an irreducible representation of a group G then there is an action of Z, on the space
of invariants (V' ® V)¢ by permutation of factors. This space is at most
one-dimensional. If it is nontrivial, the generator of 7Z, acts by multiplication by
the Frobenius—Schur indicator.

In the case of a general modular category, the Frobenius-Schur indicator is
defined as follows. Suppose V is a simple self-dual object and ¢: V*i— V is an
isomorphism. Then the Frobenius—Schur indicator is the factor of proportionality
v(V) in the identity

Oy @idy) ey by =v(V) (¢~ ® ¢) by,

between two nonzero elements of the one-dimensional space Hom(1, V* ® V). Since
V is simple, ¢ is unique up to a nonzero scalar, so v(}) is independent of the choice
of isomorphism ¢.

LEMMA 2.1. Let V be a simple self-dual object. Then
i v(1)=1.
(i) v(V)* =1.
(iii) If V is isomorphic to W then W is simple and self-dual and v(V) = v(W). In
particular v(V*) = v(V).

Proof: (i) follows from 60; = idy, ¢;; = idy ® id;. To prove (ii), let us act on the
equation defining v with the morphism (0y ® idy+)cy« . By the naturality of the
braiding, the left-hand side becomes cp« ycy p«(0y ® Oy«)by, which, by the twist
axiom (Appendix A, (iv)), is equal to Oygy«by = by0y = by. The right-hand side is

Oy ®idy) ey V() (™' ® ) by
=v() (¢ ® ™) (Oy ®idy+) ey y- by
= (V) by.
Thus v(V)> = 1.
To prove (iii), let us introduce the dual morphism f*: W* 1— V'* of a morphism
ffVi>W: ff={dyid)(idef ®id)(id ® by).

It is easy to see (by drawing the corresponding graphs) that id}, = idy« and that
(fe)* = g*f*, whenever the composition of the morphisms f, g is defined. In par-
ticular, f* is an isomorphism if and only if f is an isomorphism. Moreover,
by =fQ(f*) " by if f: V1= W is an isomorphism. Using the naturality of twist
and braiding, we act by (f*)"! ®f on the equation defining v(¥) and get

Ow @idw)ew wbw =v(V)(f* ¢ ' ® fdp) by
=v((foS " &f DS )bw.
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Since f¢ f*: W* i— W is an isomorphism, it follows that W is self-dual (it is clear
that W is simple) and that v(W) = v(V). O

2.4. FUSING MATRICES (6J-SYMBOLS)

A modular category is in principle determined by a set of numerical data.
Additionally to the modular matrix and the scalars v;, one has to specify the
6j-symbols. Let i,j, k, [, m,n be simple objects (in the applications they are either
elements of I or duals of elements of 7). Then one shows that the linear
homomorphisms

(O @H;‘j ® H,l;zk — Hom(m, i®j k),
lel

given by ¢ @ ¥ i— (¢ ®idy) o, and

@ - @Hﬁk R H,i;” — Hom(m, i®j®k),

nel

given by ¢y i— (id;® ¢) oy, are isomorphisms. Therefore we have an
isomorphism (®')~! o ®. Its components are the 6j-symbols:

i j k . H[J ® HYx s ik ®Hi,n
I m nl- ! m n m

The matrix elements of the 6j-symbols with respect to the above bases are defined by

i j k ..
e, [I"ij] ® ep[m”*Ik]
I m n

ik .
= Z e,[n"jk] ® es[m*in].
s I m nj,;

70

Graphically, these matrix elements are defined by

i j k i J k
i 1)
& _Z ny Y {kmn}g'
[B 7,7,0 5 Y
m m

https://doi.org/10.1023/A:1014903315415 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014903315415

200 GIOVANNI FELDER ET AL.

We also introduce inverse 6j-symbols as the components of the inverse map ® ! o @'

i J k i j k o
. i g 1
ny Y __Z N {k m n}é'
5 {,a,3 ] 8 ¥
m m

2.5. THE THREE-DIMENSIONAL TOPOLOGICAL FIELD THEORY

To every modular category one can associate a three-dimensional topological field
theory. It is a formalization and generalization of the Chern—Simons path integral
of [W]. The TFT associates a finite-dimensional vector space H(X) (the space of
conformal blocks) to each surface X with marked points and some additional
structure, and an element of H(X) to each three-dimensional manifold with a graph
of Wilson lines bounding X.

To deal properly with the ‘framing anomaly’, we need to endow surfaces with
additional structures and use ribbons instead of Wilson lines. We start by intro-
ducing the definitions, following [T].

An extended surface is an oriented closed 2-manifold X with a finite set of disjoint
oriented embedded arcs labeled by simple objects, and a Lagrangian subspace A(X)
of the first homology group H;(X, R). A homeomorphism of extended surfaces
f: X 1— Y is an orientation preserving homeomorphism mapping arcs to arcs with
the same label and the same orientation. A homeomorphism f: X — Y of extended
surfaces will be called strong if it also maps A(X) to A(Y)*. The opposite —X of
an extended surface is the surface X with opposite orientation and the same arcs,
so that if an arc of X is labeled by a simple object i then it has opposite orientation
and it is labeled by i* in —X.

A cobordism of extended surfaces is a triple (M, d_M, 3. M) such that

(I) M is a three-dimensional manifold with boundary containing a ribbon graph **.
A ribbon graph consists of ribbons, annuli and coupons as in 2.1, but the ribbons
and annuli are labeled by simple objects only. Ribbon ends are glued to coupons
or are contained in the boundary M.

(2) 9+M are disjoint disconnected subsets of the boundary oM so that
oM = 9, M U(—d_M), endowed with Lagrangian subspaces of their first hom-
ology groups. The marked arcs at which the ribbons in M end are given the label

* As we rarely use strong homeomorphisms we depart here slightly from the notation of [T]:
there a homeomorphism is called weak homeomorphism and a strong homeomorphism is called
homeomorphism.

** Instead of ribbon graphs, one often considers framed graphs, whose edges (assumed to be
smoothly embedded in a smooth manifold) come with a normal vector field. A ribbon graph can
be made into a framed graph by taking a vector field normal to the ribbons. The present approach
[T] works also in the topological category.
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of the ribbons whose core is oriented inwards, and the dual label otherwise. The
Lagrangian subspaces and the oriented labeled arcs give d.M the structure
of extended surfaces.

We say that (M,9_M,d,M) is a cobordism from 9_M to a, M.
The TFT* (Z,H) associated to a modular category M over C consists of the
following data.

(i) For each extended surface X there is a finite-dimensional complex vector space
H(X), the space of states (or of conformal blocks), such that H(#) = C and
HX UY)=HX)QH(Y).

(i) To each homeomorphism of extended surfaces f: X i— Y there is an
isomorphism f;: H(X) — H(Y).

(iii) If (M, 9_M, o, M)is a cobordism of extended surfaces, then the TFTassociates to
it a homomorphism

Z(M,0_M, 3, M): HO_M)— H(O,M)

depending linearly on the labels of the coupons.
These data obey the following axioms.

() (Naturality) Let (M,9_-M,d,M), (N,9_N,d,N) be cobordisms of extended
surfaces. Let f: M — N be a degree one homeomorphism mapping the ribbon
graph in M onto the ribbon graph in N, restricting to homeomorphisms
fi: 02 M — 0L N preserving the Lagrangian subspaces. Then

(fi); 0 Z(M,d_M,d,. M) = Z(N,d_N, 3, N) o (f_),

(2) (Multiplicativity) If M, M, are two cobordisms of extended surfaces, then under
the identification

H(OL My U 0L M) = H(3: M) @ H(0LM>)

we have Z(M U My)=Z(M))® Z(M>).

(3) (Functoriality) Suppose a cobordism M is obtained from the disjoint union of M
and M, by gluing 9, M, to d_M, along a degree one homeomorphism
f: 0, M| — 0_M, preserving marked arcs with their orientation. Then

Z(M,d_M,, 3, M>)
= K" Z(M2, 3-M2, 9, M2) o f; 0 Z(M1, 9-M1, 8, M),

for some integer m.

(4) (Normalization) Let X be an extended surface. Let the cylinder over X be the
3-manifold X x [—1,1], with the ribbon graph consisting of the ribbons
z x [—1, 1], where z runs over the marked arcs of X. Their orientation is such

* The notation in [T] for thisTFT is (z¢, 7°).
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that they induce the orientation of the arcs on X x {1}. Their core is oriented from
1 to —1. Then

Z(X x [~1 1], X x {=1}, X x {1}) = idsx). (5)

The homomorphism Z(M, d_M, 3, M) is called the invariant of the cobordism of
extended surfaces (M, d_M, 0, M). By the naturality axiom it is invariant under
degree one homeomorphisms that restrict to the identity on the boundary.

Moreover, the invariant does not change if we remove an edge with label 1 or we
replace the label of an edge by its dual and reverse the orientation of its core.

The TFT gives the system of vector spaces H(X) the structure of a modular
functor.

Next we list some of the properties of the modular functor H which we shall use.

2.5.1. Duality

The space H(—X) associated to the opposite of the extended surface X is canonically
isomorphic to the dual space to H(X). The isomorphism is induced by the pairing

Z(X x[=1, 1, X u(=X), %) : HX)®H(-X)— C. (6)

Here X is identified with X x {1} and —X with X x {—1}.

2.5.2. Mapping Class Group

The action f +— f; of homeomorphisms may be expressed in terms of the TFT.
Namely, let f: X — Y be a homeomorphism of extended surfaces. Then the
3-manifold obtained by gluing the cylinder over X to the cylinder over Y defines
a cobordism (My, X, Y). The normalization and functoriality axioms then imply
that fy = Z(M;, X, Y). Moreover, it can be shown, using the naturality axiom, that
if f, g are homotopic in the class of homeomorphism of extended surfaces, then
f: = g:. In particular, if X =Y, f — f; defines a projective representation of the
mapping class group of X.

EXAMPLE. Let X be a torus with no marked arcs. View X as the boundary of a solid
torus H = D?> x S' and take A = A(X) to be the kernel of the map induced by the
inclusion X< H. Then a basis of H(X) is given by

j €I where (H,j) is H with a ribbon graph consisting of an untwisted annulus
[—e, ¢] x S with label j. Let S(z, w) = (w™!, 2), T(z, w) = (zw, z) be the standard gen-
erators of the mapping class group SL(2,Z) of X = S' x S'. Then S., T} are rep-
resented in this basis by the matrices S = (D’ls,;j) and T = (vi'19;,) respectively.
The map f — f; is a projective representation of the mapping class group: the
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matrices S and T obey the relations $% = 1, (T'S)* = «S2. Moreover S? is the matrix
(6i+). Note that if we choose a third root of x, a genuine representation may be
obtained by replacing T by T = (k= 1/3v;15; ).

2.5.3. Gluing Homomorphisms

If X is an extended surface with arcs v, y’ labeled by i, i*, let X’ be an extended surface
obtained as follows: Let ¢,¢: D> - X be orientation preserving disjoint
embeddings of the unit disk D?>C C such that their restriction to [—1,1] are
parametrizations of the oriented arcs y, 7. Then X’ is obtained from X by removing
the interiors of the disks ¢(D?), ¢'(D?) and gluing their boundaries by identifying
¢(z) with ¢'(=2), for z € S'. The arcs of X’ are the remaining arcs of X and the
Lagrangian subspace A(X’) consists of images in X’ of homology classes of cycles
in X — (¢(D?) U ¢'(D?)) which are mapped by the inclusion to cycles in A(X).

Then one has a gluing homomorphism gx x: H(X) — H(X').

The gluing homomorphism is obtained from the TFT: Let M be the 3-manifold
obtained from X x[—1,1], the cylinder over X, by gluing ¢(D?) x {1} to
¢'(D?) x {1} via the identification (¢(2), 1) = (¢'(—Z), 1), z € D*. Let the ribbon graph
in M be obtained from the ribbon graph in X x [—1, 1] by replacing the part of the
ribbon through the glued disks by a narrower one, so as to fit inside M. Then
M has boundary —X u X’ and defines a cobordism of extended surfaces from X
to X’. Then gy y» = Z(M, X, X’). It is then known that the gluing homomorphism
has the following completeness property.

If X; is the extended surface X as above, but with y labeled by j and 7’ labeled by j*,
then the sum of gluing homomorphisms @je ; H(X;) = H(X’) is an isomorphism.

2.54. Description of H(X) as a Vector Space

Let X be a 2-sphere with » marked arcs labeled by simple objects i, ..., j,. Let M be a
3-ball with boundary X and a ribbon graph consisting of one vertex connected to the
marked arcs by n ribbons. Then Z(M, ¥, X) depends linearly on the label of the
vertex and is thus a linear map

Z(M,%,X): Hom(l,/i® - ®ju) - H(X)

By construction of the TFT out of the modular category, this map is an isomorphism.
Combining this result with the completeness of the gluing map, one deduces, by
attaching handles to the sphere, that H(X) >~ @, reHom(1,ji ® -+ ®ju®
®°_,(ks @ k?)) for a surface of genus g with n marked points. Under this
identification, the invariant of a cobordism changes in a covariant way if we replace
the labels of the edges by equivalent simple objects.

2.6. TRACE FORMULA

One important variant of the functoriality axiom is a formula [T] for the invariant of
a closed 3-manifold of the form M = X x S!, for a closed oriented surface X, with
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some ribbon graph I'. We may obtain M by gluing the two components of the bound-
ary of N = X x [0, 1]. Then the ribbon graph intersects the boundary along arcs and
0, N = X x {1} becomes an extended surface. _N = X x {0} is then canonically
strongly homeomorphic to the same extended surface, and the trace formula holds:

Z(M, 8, %) = Tty n(Z(N, 9_N, 3, N)). (7)

27. FRAMING ANOMALY

We give here the formula for the integer m appearing in the functoriality axiom,
following Section I'V.7 of [T]. It is given in terms of Maslov indices, which we proceed
to define.

Let H be a symplectic real vector space with symplectic form w, and Ay, 42, 13 C H
be Lagrangian subspaces. Then on the subspace (4; + 4,) N A3 we have a quadratic
form Q(x) = w(xy, x), where x = x; + x, with x; € 41, x5 € 1, (Q(x) does not depend
on the choice of the decomposition of x). The Maslov index u(4y, A2, 23) is by defi-
nition the signature of Q. It is a function which is antisymmetric under permutations
of its three arguments, and in particular vanishes if any two arguments coincide.

If X is an oriented closed 2-manifold, the intersection form on H;(X, R) is
symplectic. Moreover, if M is a 3-manifold with boundary and
oM = 9, M L 9d_M is a decomposition of the boundary into closed disjoint subsets,
then we have a map N, from the set of the Lagrangian subspaces of
H(0_M, R) to the set of Lagrangian subspaces of H;(d; M, R): x € N,(4) if and
only if there exists an x’ € 4 so that x — x’ is homologous to zero as a cycle in
M. Similarly we have a map N* sending Lagrangian subspaces of H (9, M, R)
to the Lagrangian subspaces of H;(d_-M, R). Then the integer m appearing in
the functoriality property is

m = p(fulNA(0- M), f2(04 M1), N*A(3+ M2))
+ u(fxl04 M), A(9-M>), N* /(04 M>)).

The following property is useful for surfaces with orientation reversing involutions,
such as doubles.

LEMMA 2.2. Let H be a real symplectic vector space with symplectic form o.
Suppose o € Endr(H) is an involution such that o¢*®w = —w. If 11,4, A3 are
Lagrangian subspaces invariant under o, then

,u(il, }vz, )3) =0.

Proof. Let x be an element of the invariant space (11 + 4;) N 43. If x = x; + x, with
X; € i, then a(x) = a(x1) + o(x2) is a decomposition of ¢(x) into a sum of elements of
}q , lz. Thus

Q(a(x)) = w(a(x2), 0(x)) = —0(x2, X) = —Q(X).
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On the other hand, the signature is an invariant, so the signature of Q is equal to the
signature of Q o 0 = —Q. Thus the signature vanishes. O

3. Boundary Conditions and Correlation Functions
3.1. THE DOUBLE OF A SURFACE

Suppose that X is a two-dimensional compact manifold with boundary, possibly
nonorientable. Then X may be identified with X /7 for a closed oriented manifold
X, the double of X, with an orientation reversing action of the generator of
7, = 7,/27.. The double is constructed by taking the total space of the orientation
bundle p: Or(X) — X (the Z,-bundle over X whose fiber at x consists of the
two orientations of the tangent plane at x) and identifying the two points of each
fiber over the boundary: X= Or(X )/~ with x ~ X" iff p(x) = p(x’) € 9X. The double
comes with a projection p: X i— X and an orientation reversing involution
o X1—> X exchanging the two sheets and defining the action of Zz

Here are some examples. If X is closed and orientable, then X consists of two
copies of X with opposite orientations. If X is orientable with nonempty boundary,
X is obtained by taking two copies of X with opposite orientations and gluing
the two copies along the boundary. So if X is a disk, then X can be viewed as
the unit sphere S? in R® with Z, action generated by the reflection at the x—y plane.
If X is the real projective plane RP? then X is S2 with Z, action given by the anti-
podal map xi— —x of $? c R®. The annulus X = S' x [—1,1] is X/Z, with
X=5"xS" and involution (0;,0,)— (0;,—0,), 0;e R/2nZ =S"'. Taking
X = S' x S! with involution (6, 6,) i— (—0y, 0, + 1) gives the Klein bottle. The
involution (01, 63) i— (0,, 01) gives the Mobius strip.

3.2. THE CASE OF CLOSED ORIENTABLE SURFACES

Let us first consider the case of closed orientable surfaces. Suppose X is closed and
orientable, and choose an orientation of X. Then the double of X is
X=Xu (—=X), the disjoint union of two copies of X with opposite orientations.
The involution exchanges the two copies. Let X be endowed with »n distinct points

z1,...,2z, on it, labeled by simple objects iy, ..., i,. To these data one associates
a correlation function C(X) € H(X).
To be more precise, we should take care of the framing: so zj, ..., z, should be

taken as disjoint arcs rather than points. Also H()A( ) is only unambiguously defined
it X is given a Lagrangian subspace A in its first homology group with real
coefficients. As will be clear below, a convenient choice is to take A to consist of
ad®(—a)e Hl(i’, R) = Hi(X, R)® H;(X, R), where a runs over H;(X, R). We call
this Lagrangian subspace canonical Lagrangian subspace and denote it by L(i’ ).

The natural candidate for C(X) is then the element of H(i’ ) associated to the
3-manifold X x [—1, 1], with ribbon graph consisting of z; x [—1, 1], where z; runs
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over the marked arcs on X:

C(X)=Z(X x[-1,1], 9, X).

(see 2.5 for the orientations of the ribbons in X x [—1, 1]). Note that the canonical
Lagrangian subspace is the kernel of the map induced by inclusion of the boundary.
Let us check that this ansatz obeys the modular and factorization properties one
expects for correlation functions.
Let f: X — X be a degree one homeomorphism and let J}: X —> X be equal to f
on each of the two copies of X. The lift f of f is the unique degree one
homeomorphism of X commuting with the involution and projecting to f.

THEOREM 3.1 (Modular invariance). Let X be a closed oriented surface with
labeled arcs zy, ..., z, Let f: X +— X be a degree one homeomorphism preserving
the marked arcs. Let f be its lift to X. Then f. C(X) = C(X).

Proof. Let F: X x[—1,1]1— X x[—1, 1] be defined by F(x, ) = (f(x), 7). F is a
homeomorphism that restricts to f on the boundary. Moreover, f* clearly preserves
the Lagrangian subspace. Thus the naturality axiom applies and we get

FZ(X x [=1,11,0, X) = Z(X x [-1,1],8, X),
proving the claim. O

It is useful to express the correlation function for more general Lagrangian
subspaces. Let us say that a Lagrangian subspace 4 of H; (i’ , R) is symmetric if
44 = 1. The Lagrangian subspace J_(X) has this property. Let us define, for
any symmetric Lagrangian subspace 4,

Ci(X) = (id;,;.); C(X).

Here id;, ;, denotes the identity map between extended surfaces which differ only in
their distinguished Lagrangian subspaces. Then we get the more general modularity
property: f: C)(X) = Cy(X). This formula follows from the functoriality formula,
except that we have to check that the framing anomaly term is trivial. The reason
for this is that all Lagrangian subspaces appearing in the calculation of the Maslov
indices are invariant under o,. Therefore the Maslov indices vanish by Lemma 2.2.

In particular, we may choose the symmetric Lagrangian subspace
L@ Le H(Xu(—X), R)= Hi(X,R)® H (X, R), for any Lagrangian subspace A
of H;(X,R). Under these circumstances we may identify H(i’ ADA) =
H(X, )R H(—X, 1) and write

CioiX) = ) bi(X. 2) ® bi(—X, 4),
J

for any basis b;(X, ) of H(X, 2) and dual basis b;(—X, 1) with respect to the pairing
(6). In this form, the modular invariance is less apparent.
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EXAMPLE. Let X = S! x S! be a torus with no marked arcs. Let D*> C C be the unit
disk and view X as the boundary of a solid torus H = D?> x S'. Take A = A(X) to be
the kernel of the map induced by the inclusion X< H. Then a basis of H(X) is given
by 7,(X) = Z((H,)), 9, X),j € I, see 2.5.2. Let S(z, w) = (w™L, 2), T(z, w) = (zw, z) be
the standard generators of the mapping class group SL(2, Z) of X = S' x S'. Then
S:, Ty are represented in this basis by the matrices s = (D‘ls,-,j) and t = (vi‘lél-,j),
respectively.

The map 6(z, w) = (z, w) is a homeomorphism X — —X, preserving orientation
and Lagrangian subspace. Therefore a basis of H(—X) is y,(—X) = 0y y,-(X). This
basis is dual to the basis (y;);c;, as the pairing between y,(X) and z,(—X) is the
invariant of S x S! with two annuli running along S'. This invariant is 0jk, by
the trace formula. Thus

Cioi(X) =Y 7;(X) ® 7;,(—X).
jel

AsSoO0=0o0S"'andT o0 =00T"" Sﬁ, T are represented in the basis (g (—= X))jer
by the matrices Sy = CS™'C, Ty = CT~'C, with

I D T By
Cij = {O, otherwise. ®)

(The anomaly does not contribute as in each Maslov index there are two coinciding
arguments.) The statement of modular invariance thus reduces to
‘T Ty ='S Sy = 1. These identities may also be checked directly, using the relations
of S, T of 2.5.2, the fact that S is a symmetric matrix, and the relations v; = v,
S?=C.

We turn to the factorization properties of correlation functions. Let X be a closed
oriented surface with marked oriented labeled arcs. Suppose two of the marked arcs
carry label j, j* respectively. Let X’ be obtained by removing from X a small open
disk around each of the two arcs, and gluing their boundaries by an orientation
reversing homeomorphism. We say that we obtain X’ by gluing X at the two marked
arcs. Then X’ is obtained from X by performing this operation twice, at each of the
inverse images of the two arcs. Therefore we have a gluing homomorphism
i i H(i’ ) i— H(i’ "), which is the composition of the two gluing homomorphisms
(in either order) with (id, , (X’))Ii Here A’ is the symmetric Lagranglan subspace
of HI(X ", R) obtained form the canonical Lagrangian subspace 4_ (X ) of X by
the gluing prescrlptlon of 2.5, and id, ; & is the identity map from X' with
Lagrangian subspace A’ to X’ with canonical Lagrangian subspace.

THEOREM 3.2 (Factorization). Let X be as in Theorem 3.1. Let X' be obtained from
X by gluing X at two marked arcs with labels j, j*. Let X; be the surface X, withj € 1
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Figure 2.

arbitrary, and with all other labels fixed. Then

C(X) =) D 'dim(j) g5 3 C(X).

jel

Proof. Let M;= X; x[-1,1]. Then g3 3 C(X)) is, by 2.5.3, the invariant
Z(M, %, X’) of a cobordism. The 3-manifold M} is obtained from M; by gluing
two disks around the two chosen marked arcs on X x {1}, and also on X x {—1}.
The ribbons ending at the marked arcs are then glued together to form an
annulus.

It is not too hard to see that X’ x [—1, 1] is homeomorphic to the manifold we
obtain from M} by performing a surgery at this annulus. The surgery is, by definition,
the following construction: we first parametrize a tubular neighborhood U of the
annulus by a homeomorphism ¢: D*> x S! i— M; in such a way that the annulus
is contained in ¢([—1, 1] x S"). Then we glue S' x D* to M} — int(U) via the map
¢ restricted to S' x S'. Figure 2 is supposed to illustrate the homeomorphism of
the resulting manifold with X’ x [—1, 1]: on the left, we embed the region of interest
of Mj —int(U) in R? and on the right we draw S' x D?. The fibers {x} x [—1, 1]
in a plane section are drawn.

Let M" = Mj —int(U) and y,(S' x S') = Z((H,)), ¥, S' x S), as in the example
above. By the functoriality axiom,

ZIM 0, X') = Z(M', U, X') 0 ¢, 1,(S" x S").

The Maslov indices vanish by Lemma 2.2. Indeed, the involution of the double
extends to an involution of the boundary of M” and of S! x S' so that all Lagrangian
subspaces involved are symmetric under the involution.

On the other hand, using the surgery presentation of X’ x [—1, 1], we have

C(X')=Z(X' x[-1,1.8, X
= Z(M',9U, X") 0 ¢, 0 Sy, (S" x Sh).
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Again, the Maslov indices vanish by symmetry. The claim then follows from the
modular property

SﬁXl(SIXSI):ZSj,l X_/-(SlXSl). 0
Jjel

3.3. THE CASE OF THE (1, m)-POINT FUNCTION ON THE DISK

We consider the case of the correlation function for z interior points and m boundary
points on the disk (the (7, m)-point function). The double of the disk is a 2-sphere S2,
which we view as the unit sphere in R>. The projection p: $? — D? is the orthogonal
projection onto the x—y plane and the involution ¢ is the reflection at the x—y plane.

Let X be the disk D? with n distinct labeled marked points in its interior and m
labeled points on its boundary. Let the interior points be labeled by iy, ..., i,
and the boundary points, cyclically ordered along the orientation of the circle,
be labeled by ji, ..., j». The segment between the rth and the r 4 1st point is given
a boundary condition, a simple object a,.

Moreover, the correlation function depends also on an additional datum at each
boundary point: the correlation function C(X) is a linear map from a tensor product
of multiplicity spaces ®™, Wa_,..(ir) to H(X) (we set ay = a,,). The presence of
these multiplicity spaces reflects the multiplicities of boundary fields. From the
physical point of view, one understands these multiplicities as a consequence of
the field-state correspondence of the conformal field theory, implying that they
can be read off the annulus multiplicities, which for the boundary conditions of
our interest coincide with fusion rule coefficients.

Accordingly, we assume that the multiplicity spaces are identified with the space of
conformal blocks on the sphere with three points: W, ,(j) = Hom(b, j ® a). Using the
identification Hom(b,j®a) = Hom(1, »* ® j®a), we have a basis (e,[b*ja],
a=1,.. .,N{;’“) of each multiplicity space obeying the orthogonality properties
of 2.2.

Our ansatz for the C(X) evaluated on a producte,, ® - - - @ e,, of basis elements is
the element of H()A( ) associated to the graph in the 3-ball in Figure 1.

To give the precise definition we should again take the framing into account. So the
marked interior points on D? should be taken to be disjoint oriented arcs. The bound-
ary points are replaced by arcs on the boundary, oriented along the orientation of the
boundary. The modular invariance property proven below will imply that these
choices are irrelevant up to canonical isomorphisms.

The graph in Figure 1 is made into a ribbon graph as follows: the vertical lines are
the cores of ribbons whose sides are the inverse images by p of the marked arcs and
vertical lines connecting the endpoints of the marked arcs. The orientation of
the ribbons is chosen so that they induce the orientation of the arcs on the upper
hemisphere. The part of the graph connected to the equator is the core of an annulus
lying in the x—y plane to which ribbons also lying in the x—y plane are glued along a
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side. The opposite sides of these ribbons coincide with the marked arcs on the
boundary. The orientation of the ribbon graph is such that it induces the orientation
of the boundary arcs.

Let us call equatorial graph the component of the ribbon graph connected to the
equator. The remaining components we call vertical ribbons.

Let M be the unit ball with this ribbon graph. Then we set

C(X) = Z(M, %, X) € Homc(®™, W, ., (jr), H(X)).

r=

In this formula we regard Z(M, @, X) as a multilinear function of the labelings of
vertices.

Let us check that this ansatz is modular invariant. If f: D> i— D? is a degree one
homeomorphism of the disk preserving the marked arcs, then there exists a unique
degree one homeomorphismf of 82, the lift of f, so that p of’ =pof. It preserves
the inverse images of the arcs.

THEOREM 3.3 (Modular invariance). Let X be a disk with n marked arcs in the
interior and m marked arcs on the boundary. Let f: X — X be a degree one
homeomorphism preserving the marked arcs and their orientations. Letf be its lift
to X. Then f. C(X) = C(X).

Proof. Denote by x, , z the standard coordinates of R*. View D? as the unit disk in
the x-y plane. Let F(x,y,z) = (f(x,y), r(x,y)z), with r(x,y) = (1 —x>—y?)~"/?
(1 — | f(x,»)))"%. Then F is a degree one homeomorphism of the ball D> whose
restriction to S? is f . The image of the ribbon graph y in D? by F is isotopic to
7. Therefore, by the naturality axiom, fﬁZ(M 0, X)=Z(M, 3, X). ]

We turn to the factorization properties. In the case of surfaces with boundary there
are two kinds of factorizations. One may either cut the surface along a loop in the
interior, as in the case of closed surfaces, or along a path joining points on the
boundary. In the first case, factorization is analyzed analogously as for closed
surfaces. Thus we consider here only the latter possibility.

Let X', X” be two oriented disks with marked labeled arcs as above. Let n’, n”
denote the numbers of interior arcs and m', m” the numbers of boundary arcs.
Suppose that a marked arc x’ on the boundary of X’ has label j and that a marked
arc X" on the boundary of X” has dual label j*. Then we may glue X’ to X” along
an orientation reversing homeomorphism from x’ to x”. We assume that the labels
of the boundary segments on the sides of these two arcs match, so that the gluing
results in a disk X with »' +n” interior marked arcs and m’' +m” — 2 boundary
marked arcs. We say that X is obtained by gluing X', X” at x/, x”. Then the double
X may be obtained by gluing the extended surface X'U X" at the inverse image
of x', x”, and we have a gluing homomorphism gz, ¢ 3 H(X’/) ®H()A(”) — H(i’).

We need not care about Lagrangian subspaces since the first homology groups are
trivial in this case.
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THEOREM 3.4 (Factorization). Let X be a disk obtained by gluing disks X', X" at the
marked arcs X', X" with labels j, j*. Let the labels of the boundary segment preceding
and following x" be a, b respectively. Let X} be the surface X', with j running over
I with all other labels fixed. Similarly, let X]” be the surface X", with j running over
I with all other labels fixed. Let us order the boundary arcs in a way compatible with
the cyclic ordering, so that X' is the last arc of X' and x” is the first arc of X”. Then
for any choice of basis e,[b*ja) of H”/* and dual basis e,[a*j*b] of Hg j=p as in 2.2,

C(X)(ul Q- Q] unl’er”fZ)
=Y _dim()) i, [CON ® -+ @upw 1 @ e,[b*ja]) @

jel,a

® CX[)(eld"* D @t @ -+ @t ymr—2)]-

Proof. By the gluing construction (see 2.4.3), the summand labeled by j, o on the
right-hand side is dim(j) Z(M;,, 9, X), where M;, is a ball obtained by gluing
two balls defining C(X}) and C(X}). M;, contains a ribbon graph y;, obtained
by the gluing prescription. Thus y; , has vertical lines and a piece lying in the
x-y plane obtained by gluing two equatorial graphs. We have to show that the
sum over the labelings j and « of the invariant of the cobordism with this graph
gives the same as if we replace it by an equatorial graph.

In the vicinity of the point at which the gluing was performed the ribbon graph
looks like

Applying (4), after summing over j and o, we can replace this part of the graph by two
horizontal bands. In this way y; , is replaced by the equatorial graph appearing on the
left-hand side as desired. ]

3.4. THE GENERAL CASE

We now turn to the general case of a compact surface, possibly with boundary,
possibly nonorientable. There is a subtlety that arises when one considers
nonorientable surfaces. Namely a label of a point by a simple object is only defined
if one chooses a local orientation. This is formalized by the following definitions
of labeled surfaces and their doubles. The correlation functions will then be defined
for labeled surfaces and they will take values in the space of states of their doubles,
which are extended surfaces (see 2.5).
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34.1. Labeled Surfaces and their Doubles

A labeled surface is a compact two-dimensional manifold X with (possibly empty)
oriented boundary and with marked disjoint arcs (embedded closed intervals).
The arcs lie either in the interior or on the boundary and carry labels. Boundary
arcs are labeled by simple objects. The connected components of the complement
in 39X of the boundary arcs also carry labels, called boundary conditions, which
are also simple objects. The label of an interior arc z is an equivalence class of triples
(i, or, or') where i is a simple object, or is a local orientation of the surface at z, and or’
is an orientation of the arc. Two triples are equivalent if they are equal or if one is
obtained from the other by taking the dual object and reversing the orientations
or, or'.

We call boundary segments the connected components of the complement in X of
the boundary arcs. If a boundary arc x lies between two boundary segments labeled
by boundary conditions «, b in the order given by the orientation of the boundary,
we say that x changes the boundary conditions from a to b.

The double X of a labeled surface is an extended surface associated to a labeled
surface. It is, as an oriented 2-manifold, the double X of X , with projection
p: X — X and orientation reversing involution g: X — X. The double is made
into an extended surface, by taking as arcs the inverse images of the arcs of X.
The boundary arcs have one inverse image and are labeled by the labels in X. Their
orientation is inherited from the orientation of the boundary of X. Each interior
arc z of X has two inverse images. They are labeled and oriented by the two labels
in the equivalence class labeling z, in such a way that the local orientation or appear-
ing in the label agrees with the orientation of X. The Lagrangian subspace of
Hl(i’ ,R) is the eigenspace of o, to the eigenvalue —1. It is called canonical
Lagrangian subspace and denoted by /1_(5( ).

This definition makes sense because of the following lemma.

LEMMA 3.5. Leto: X — X be an orientation reversing homeomorphism of a surface
X such that ¢oc=id. Then the induced map o Hl(j’, R) i— Hl(j’, R) is
diagonalizable and its eigenspaces are Lagrangian.

Proof. The induced map o, is a linear involution of a real vector space. Thus
p+ = 12(1 £ 0,) are projections onto the eigenspaces A+ corresponding to the
eigenvalues +1. Since p; +p_ =id, o, is diagonalizable. Let o denote the
intersection pairing on H;(X,R). Since ¢ reverses the orientation, we have
w(o.a, o,b) = —w(a, b) for all a,b e Hl()A(, R). Therefore @ vanishes identically
on A, and A_. Since A; ® 1 :HI(X’ ,R), the subspaces Ay are of maximal
dimension with this property, i.e., Lagrangian. O

PROPOSITION 3.6. Let X be a double of the labeled surface X. Let Aut(X, o) be the
group of degree one homeomorphisms ofi’ preserving the marked arcs with their
orientation and commuting with the involution . Then f\— f; defines a represen-
tation (not just a projective representation) ofAut(AA’, g) on H(i’).
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Proof. Let f € Aut(j( o). Since f and ¢ commute, the induced maps f,, g, also
commute. It follows that the elgenspaces of g, are preserved by f+. In particular,
the Lagrangian subspace of X is preserved by elements of Aut(X o). Under these
circumstances the anomaly is trivial and we have the representation property

(ng)ﬁ =fz: 08 O

3.4.2. Connecting 3-Manifolds

To each compact surface X we associate a connecting 3-manifold My. The
connecting 3-manifold My is a three-dimensional oriented manifold with boundary
X. It is used to construct the correlation functions and reduces to the cylinder
X x[—1,1] if X is closed and orientable and to the ball if X is a disk.

We first describe My as an oriented manifold. If X has no boundary, My is
()A( x [—=1,1])/Z,, where Z, acts on the first factor by the involution ¢ and on
the second by 71— — ¢ This action preserves the product orientation, so that
My is naturally an oriented manifold. It comes with a projection [(x, ©)] — p(x)
to X. The fiber of this projection over y € X is an interval, the connecting interval
over y, connecting the two inverse images of y in X. If X has a boundary, My
is obtained from (i’ x [=1,1])/7Z, by contracting the fibers over the boundary to
single points.

Alternatively, let p: X 1— [0, 0o) be any nonnegative function such that p(x) = 0 if
and only if x € aM. Then we may define My to consist of [(x, 7)] € ()A( x R)/Z; such
that 2 < p(p(x)). The points with > = p(p(x)) form the boundary which is obviously
homeomorphic to X. Connecting manifolds corresponding to different choices of p
are canonically homeomorphic. The homeomorphism commutes with p and reduces
to the identity on X ~ dMy.

PROPOSITION 3.7. Let X be the double of X, p: X—> X the projection, },_(i’) the
canonical Lagrangian subspace of Hi(X, R).

(1) My is a compact manifold with boundary oMy = X

(ii) The restriction of m: My — X, [(x, )] — p(x) to n~Y(X — 8X) is a fiber bundle
whose fiber over y is an interval with boundary p~'(y).

(ii1) }v_(j’) is the kernel of the homomorphism H, (i’, R) - H{(My, R) induced by
inclusion.

(iv) The involution o X — X extends to the involution [(x, O] = [(x, =0)] of My. Its
fixed point set is the image of X under the embedding i: y — [(x, 0)] for any x with
plx) =

Proof. Choose a function p as above. Let {¢,: U, — R?} be an atlas of X with
connected charts U,. Let ¢, be the sign of the Jacobian of ¢, o (j)ﬁ_l. Then My
is homeomorphic to

| {00 e UxRIZ < p())/~
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with equivalence relation (x € U,, ) ~ (x € Ug, e, p5t). The projection to X is
p(y,t) = y and the involution is a(y, ) = (y, —¢). Therefore, we have a surjective
map X x [—1, 1] onto M given by ((y, 1), s) i— (y, ts). The fibers of this map consist
of two points related by the 7, action, except if y € X where the fiber is an interval.

This presentation of My implies (i) and (ii).

To prove (iii), notice that if ¢ is a loop on X, then @ — g o a is the boundary of a
surface in My consisting of connecting intervals ending at points of a. Thus if ¢
is a cycle on X such that o,c is homologous to —¢, then ¢ is homologous to zero
in My. This shows that A_(X) is contained in the kernel K of the homomorphism
induced by inclusion. On the other hand, it is a general fact that the intersection
form vanishes on K. Therefore the dimension of K cannot be larger than the
dimension of the Lagrangian subspace )._(X’ ).

(iv) is obvious. ]

3.4.3. Multiplicity Spaces

Suppose that X is a labeled surface. If x is a marked arc on the boundary labeled by a
simple object j and changing the boundary condition « to the boundary condition b,
the multiplicity space of x is W, ,(j) = Hom(b,j ® a). The multiplicity space Wyy
of a labeled surface X is the (unordered) tensor product of the multiplicity spaces
of its boundary arcs. If there are no boundary arcs, we set Wyy = C.

34.4. Construction of Correlation Functions

We are ready to define correlation functions for general labeled surfaces. Let X be a
labeled surface, My be its connecting manifold and X = My the double of X , with
its structure of extended surface. Let i: X — My be the inclusion of X as zero section
(Proposition 3.7(iv)). We construct a ribbon graph in My. It consists of vertical
ribbons and an equatorial graph for each connected component of 9.X.

The vertical ribbons are associated to interior arcs of X: if z, Z' are interior arcs
projecting to an interior arc of X, the corresponding vertical ribbon is the union
of the connecting intervals ending at z and z'. It is an embedded rectangle with
two sides equal to z, z’. The orientation of the vertical ribbon is chosen so as to
induce the orientations of z, z/. If we orient the core from z to Z/, the label of
the ribbon is equal to the label of z. The equatorial graphs consist of annuli and
joining ribbons. The annuli lie in the zero section i(X) of My and their cores
are obtained by moving i(d.X) into My by a short amount, where ‘short’ means away
from the vertical ribbons. The joining ribbons are short ribbons in i(X) connecting
boundary arcs to the annuli at trivalent vertices. They are labeled by the label
of the corresponding boundary arcs and their cores are oriented inward. The labels
of the parts of the annuli between trivalent vertices are the boundary conditions
between the corresponding arcs. The orientation of the equatorial graphs is chosen
so as to induce the orientation of the boundary arcs. This does not fix the orientation
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of the annuli that are not connected to the boundary; but this does not matter since
the correlation function will not depend on the choice of that orientation.
Then the correlation function of the labeled surface X is

C(X)=Z(Myx,0,X): Wy - H(X),

considered as a multilinear function of the labels of the trivalent vertices. Thus if
u = Qyuy € Wyy with x running over the boundary arcs, C(X)u = Z(My ,, 9, X ),
where My, is the connecting 3-manifold with its ribbon graph, such that the
trivalent vertex connected to x by a joining ribbon is labeled by u,.

3.4.5. Modular Invariance

If /- X - X is a homeomorphism of the labeled surface X, preserving the
orientation and the marked arcs of the boundary and mapping interior marked arcs
to interior marked arcs with the same label,* then there exists a unique degree
one homeomorphism/} of X, the lift of f, so that p of = f op. It preserves the
inverse images of the arcs and their orientation. f commutes with ¢ and therefore
preserves the canonical Lagrangian subspace of H;(X, R).

THEOREM 3.8 (Modular invariance). Let X be a labeled surface. Let f: X +— X be
a homeomorphism preserving the orientation of the boundary and mapping marked
arcs to marked arcs with the same label ana’ boundary segments 10 boundary segments
with the same boundary condition. Lelf be its lift to X. Thenfﬁ C(X) = C(X).
Proof. Llet F:Myi— My be the map [(x,0)]1— (f(x), 1] of
My C (i’ x [-1,1))/Z,. Tt is clear that F is a well-defined degree one
homeomorphism of My. It maps vertical ribbons to vertical ribbons with the same
label. The equatorial graphs are mapped to slight deformations of the equatorial
graphs. As the boundary arcs are fixed, we may compose F with a homeomorphism
G of My with support in the vicinity of #(dX) and restricting to the identity on
the boundary, in such a way that the equatorial graphs are also kept fixed. Then
G o F preserves the ribbon graph and restricts to f on the boundary. Therefore,
by the naturality axiom, fﬁ Z(M, 0, j’) =Z(M,9, X’). O

Remark. We may relax the condition that f preserves the boundary arcs and the
orientation of the boundary. We may just assume that f maps boundary arcs to
boundary arcs with the same label, or the dual label, depending on whether f
preserves the local orientation of the boundary. Similarly f should be compatible
with the labeling of boundary segments. Then the modular invariance reads
fAﬁ C(X)=C(X)p(f), for a suitable action on the multiplicity spaces. We leave
the details to the reader.

* Recall that a label of an interior arc is an equivalence class of triples [(i, or, or')]. The condition
for an interior arc z means that f maps z to an arc z/, and if z has label [(Z, or, or’)], z’ has label

[(Q, fror, fror)].
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3.4.6. Factorization

If X is a surface, we can obtain a new surface X’ by cutting and pasting in two basic
ways: either we can cut out disks around two interior marked arcs and glue their
boundaries together or we can glue two boundary arcs.

In both cases we want to relate the correlation functions on X’ to the correlation
functions on X. In the first case the relation between correlation functions is called
bulk factorization. In the second case it is called boundary factorization.

Let z1, z; be two interior arcs of a labeled surface. We say that the labels of zy, z,
match if they are of the form [(i, or1, or})] and [(i*, or,, or})], respectively. In this
case we construct a labeled surface X’ as follows. Choose representatives
(i, or1, or)), (i*, or2, or}) so that the arcs are oriented and we have local orientations
around the arcs. Let ¢, ¢': D*> — X be orientation preserving disjoint embeddings
of the unit disk D?> C C such that their restriction to [—1, 1] are parametrizations
of the oriented arcs zj, zo. Then X’ is obtained from X by removing the interiors
of the disks ¢(D?) and ¢'(D?), and gluing their boundaries by identifying ¢(z) with
¢'(=2), for z € S'. The arcs of X’ are the remaining arcs of X.

We say that X’ is obtained from X by gluing z to Z'.

The double of X’ is then obtained from the double of X by gluing the inverse
images of z; to the inverse images of z,: the inverse image of z; with orientation
or; is glued to the inverse image of z, with orientation or, and the inverse image
of z; with the opposite orientation —or; is glued to the inverse image of z, with
the orientation —or,.

Then we have a gluing homomorphism g5 5. H()A( ) i— H(j( "), which is the com-
position of the two gluing homomorphisms (in either order) with (id,, ; ( X,))ﬁ Here
/' is the symmetric Lagranglan subspace of H (X ', R) obtained form the canonical
Lagrangian subspace /_ (X ) of X by the gluing prescr1pt10n of 2.5, and id 0o
is the identity map from X' with Lagrangian subspace A’ to X' with canonical
Lagrangian subspace.

EXAMPLE. Let z;, z, be two marked arcs on a sphere X. Choose an orientation or of
the sphere and let (i1, or, or}), (i, or, or},) be representatives of the labels of these two
arcs chosen to agree with the global orientation. If i, =i}, the labeled surface
obtained by gluing z to Z’ is a torus. If i = ij, we may take the other representative
(&5 =i}, —or, —or,) and obtain a Klein bottle as a result of gluing. In the first case,
X' is obtained from the disjoint union of the two spheres by gluing pairs of arcs
on the same connected component. In the second case, X' is obtained by gluing arcs
on one connected component to arcs of the other.

THEOREM 3.9 (Bulk factorization). Let X be a labeled surface. Let X' be obtained
from X by gluing X at two interior marked arcs with labels [(j,or, or))],
[(j*, or2, 015)]. Let X; be the surface X, with j running over I with all other labels
fixed. Then
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C(X') =) D 'dim(j) g5 3 CX).
jel

The proof of this theorem is the same as the proof of Theorem 3.2.

We now turn to the boundary factorization. Let x, x’ be boundary arcs with the
orientation induced by the orientation of the boundary. Suppose that the label
of x is j and that the label of X" is j*. Assume that x changes the boundary conditions
from a to b and that X’ changes the boundary conditions from b to a. Under these
circumstances, we may glue x to X’ via an orientation reversing homeomorphism
and obtain a surface X’. We say that X’ is obtained from X by gluing x to x'.

The double X’ of X’ may then be identified with the surface obtained from X by
gluing the inverse image in X’ of x to the inverse image in X' of X. The Lagrangian
subspace of H, (i’ ’, R) obtained by the gluing prescription coincides in this case with
the canonAical Lagr?ngian subspace L()A( ). We thus have a gluing homomorphism
gf(’j(/: H(X) — H(X/)

To formulate the boundary factorization properties of correlation functions, we
need to compare the multiplicity spaces of X and X’.

Note that Wyy = Wiy & W, 5(j) ® W o(j*), and that W, ,(j) is dual to W ,(j*).
We thus have a natural map yy y: Wyy — Wyy obtained by taking the tensor
product with the canonical tensor. In terms of the bases of 2.2,

i x(0) =w® > e,[b*ja] ® e,a*j*b].

THEOREM 3.10 (Boundary factorization). Let X’ be obtained by gluing two marked
boundary arcs x', X" with labels j, j* of a labeled surface X. Let X; be the surface X,
with j running over I with all other labels fixed. Then

C(X') = dim(j)gs 3 o C(X) o7y x
: ;

This theorem is proved in the same way as Theorem 3.4.

4. Structure Constants

It is clear that using the factorization property of correlation functions (Theorems
3.9 and 3.10) the calculation of any correlation function can be reduced to four basic
cases: the sphere with three points, the disk with three boundary points, the disk with
one interior point and one boundary point, and the real projective plane with one
point.

We compute the correlation functions in these four cases. The special cases of two
points on the sphere and on the disk and one interior point on the disk can be in
principle deduced by setting one of the labels to 0. But since the results are particu-
larly simple we compute them separately.
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The calculation of the two-point functions also explains the appearance of the
factors of dim(j) and D! in the factorization formulae.

4.1. TWO-POINT FUNCTIONS

We calculate the two-point functions on the sphere and on the disk.

Let X = (82, /,/%) be the unit sphere in R with two points, say at the north pole
with label j and at the south pole with label j*. We give S? the standard orientation.
As usual, we rather have to specify two arcs than two points. Let the arc at the
north pole be a short arc in the x-z plane oriented in the positive x direction,
and let the arc at the south pole be a short arc in the x-z plane, pointing in the
negative direction. X may be both viewed as a labeled surface and as an extended
surface. There are no Lagrangian subspaces here since the first homology of the
sphere is trivial.

The correlation function C(X) on the sphere takes its values in
HXU(—X)) =H(X)® H(—X). A basis of the one-dimensional vector space
H(X) is given by

b(X) = Z(D*,)), 9, X),

associated to the unit ball My = D? endowed with a ribbon D? N ([—¢, €] x {0} x R).
The ribbon has label j; it runs vertically along the z-axis and its core is oriented
from top to bottom. The orientation of the ribbon is such that it induces the
orientation of the arcs.

A basis of H(—X) is given by b(—X) = 0,b(X), where 6 is the reflection with respect
to the x-z plane.

To compute the two-point function on the sphere, we have to compute the
proportionality constant cin C(S2, j, j*) = ¢ b(X) ® b(—X). This can be done by using
the functoriality of the invariant Z. If we glue two balls, each with a ribbon inside, to
S? x [—1, 1] we get S with an unknot labeled by j. These two balls may be viewed as a
cobordism from S? U S? to the empty set. Applying its invariant to C(S?, j, j*), we get
D~!dim(i), the invariant of S* with the unknot. Applying the invariant of the same
cobordism to 5(X) ® b(—X), we get the invariant D2dim(j)dim(;*) of a closed
manifold with two connected components, each of which is a 3-sphere with an
unknot labeled by j and j*, respectively. As dim(j) = dim(j*) #0, we get
¢ =Ddim(j)"", with the result

OS2, = s B2, © B(—(S%./.7))
e dim(/) e R

Let us turn to the case of the disk with two boundary points labeled by j, j*, and
boundary conditions a, b. The two-point correlation function C(D?,j,j*;a,b) is a
map from W,(j) ® Wy.(j*) to the space H(S?,j,j*) of conformal blocks on the
sphere. Evaluating the correlation function on basis vectors e, ® eg = e,[jba*] ®
eplj*ab*] we get the invariant of D? with an equatorial graph with two outgoing
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lines. This graph may be replaced by a single ribbon using (3). The result is

5
2. _ o,f 2 . o
C(D",j,J)ex @ ep = dim()) b(S%,j,J)-

Remark. Our two-point correlation functions have a somewhat nonstandard
normalization, which avoids square root ambiguities. For any choice of square roots
one may define ‘normalized correlation functions’. If X is a labeled surface with
interior arcs labeled by iy, ..., i, and m boundary arcs labeled by ji, ..., ju, let

m

n S
om0 =[[VSur [T /57, €0 ©)
v=1 v=1 >

(Recall that D~ = S1,1 and that dim(j) = S,1/51,1.) For these correlation functions
there are no factors of dim(j) or D in the two-point functions or in the factorization
theorems.

4.2. THE 3-POINT FUNCTION ON THE SPHERE

Let X = (S?,1,, k) be the sphere with three marked arcs labeled by i, j and k. To fix
the conventions let us take the sphere as the unit sphere in R®, with standard
orientation and have the three marked arcs on the equator. We orient the equator
counterclockwise and orient the arcs in the same direction. The correlation function
then takes values in H(X U (—X)) = H(X) ® H(—X). A basis of H(X) is given by
e(X)=Z(Mx,,9,X), «=1,..., Ny, where the connecting 3-manifold My , is
the 3-ball with a ribbon graph in the x-y plane with one trivalent vertex at the origin.
The vertex is labeled by the basis element e,[kji] of H*/'. A basis of H(—X) is
e.(—X) = 0ze,(X), where 0 is the reflection at the x-y plane.

As in the case of the two-point function, to compute the correlation function
Z(X x[-1,1],4,Xu(=X)) in terms of the basis e,(X)®ep(—X) of
H(X u(—X)) = H(X) ® H(—X), we use the functoriality of Z and act on C(X) with
Z(My . p, X U(=X), ). Here, My , g is the disjoint union of two 3-balls, each with
a ribbon graph with one vertex labeled by e,, eg respectively. The result is the
invariant of S with the ‘theta graph’, which has two vertices connected by three
ribbons. By the orthogonality relations of basis elements this invariant is D_léa,ﬁ.

On the other hand, if we act with Z(My , g, X U (—X), ?) on e,(X) ® es(—X), we
obtain the invariant of S 1S3 with a theta graph in each copy of S?, which is
D25,,04.5. The result is thus

Nijii
C(S% i j k) =D Y ex(S%i.j. k) ® ex(—(S%. i j. k).
a=1

As usual, Ny ;; is the dimension of Hom(1, k ® j ® i). With the normalization (9) we
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then have

VS 1Sk1
Cnorm(st i?j’ k) = % Z eOi(Szv isjv k) ® ed(_(Sz’ i9j7 k))
11 a=1

4.3. THE (1,0)-POINT FUNCTION ON THE DISK

Let X = (D?, i; a) be the unit disk with an arc labeled by i at the origin and boundary
condition a. The correlation function C(X) takes values in H(X) with X = (S, i, i*),
the sphere with two marked arcs as in 4.1. We have, by construction,

C(X)=Z(M, 9, X).

The 3-manifold M is a 3-ball with a vertical ribbon and an equatorial graph
consisting of an annulus labeled by a. We want to express C(X) in terms of the basis
b(S?, i, i*) (the ‘Ishibashi boundary state’) of the one-dimensional vector space H(i’ ).
We do this as above, by gluing a ball with a vertical ribbon inside onto M and using
the functoriality of Z. The resulting closed 3-manifold is a 3-sphere with two unknots
with linking number 1. It has invariant D’ls,-ya. This has to be compared with the
3-manifold obtained by gluing the same ball to D* with a vertical ribbon, which
is S? with an unknot and has invariant D’ls,-,l = S;1. The result is

SA
C(D?,i; a) = =2 b(S?, i, i*).
Sit

Implementing the normalization as given in Equation (9), the corresponding
normalized correlation function is

Si.a

VSi1

In conformal field theory, this formula for the one-point functions on the disk was
first obtained in [C1].

Chorm(D?, i; @) = b(S%, i, i*).

4.4. THE (1, 1)-POINT FUNCTION ON THE DISK

We calculate the correlation function in the case of n = 1 point in the interior of the
disk D> and m =1 point on its boundary. The label of the interior point is i
and the label of the boundary point is j. The double X of the disk with these points
is the 2-sphere S?> with one point on the equator labeled by j and two points,
say the north and south pole, labeled by i, i*. Then the correlation function with
boundary condition k maps Wy x(j) = Hom(k, j® k) to H()A() = Hom(1,i® i* ®)).
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Its matrix elements R,z with respect to the chosen bases are given by the formula

To calculate R,, we compose this morphism with the basis element e,[/*ii*] of
Hom(j ® i, 7)) ~ Hom(l, /* ® i ® i*) and obtain

The expression appearing on the right may be further simplified:
L
i !
1J0 k e
ST
| j
i

U 1 (Y] i

ViU, le(l) YUk
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Putting everything together, we arrive at the result

i
Rzﬂ—zv[‘)k{k X l}'

le &€

4.5. THREE BOUNDARY POINTS ON THE DISK

The correlation function for three points on the boundary of a disk can be computed
in an analogous way. In this case X is the 2-sphere with three points on the equator.
Let us orient the boundary of the unit disk counterclockwise and denote the labels
of the three points i, j, k. The boundary conditions are labeled by «, b, c. Then
C(X) is a map from W, (i) ® W,5(j) @ Wy (i) to H(X’) = Hom(1,k ®j ®i). The
structure constants Cgﬁy are in this case defined by

C(X) ela*ic] ® eg[b*ja] @ e,[c*kb] =Y~ Cly, es[kiji.
J

in terms of the bases of W, ,(i) ~ Hom(1, a* ® i ® c), etc. The connecting 3-manifold
is in this case a ball with an equatorial graph. The computation of the structure
constants then goes as follows.

with the result
9y

“# " dim(k) | ¢ b a aﬂ‘
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The normalized correlation function is then

 Ee——
Si1S; R ..

Gl e i@ estprial et =[S S KL g
» A0S off

cf. [R, BPPZ, FFFSI].

4.6. ONE POINT ON THE PROJECTIVE PLANE

We consider the one-point correlation function on the projective plane. Thus our
labeled surface X = (RP?,i) is RP?> = S?/7Z, with a marked arc labeled by i € I
and some local orientation. The connecting 3-manifold is here (S? x [—1, 1])/Z,.
View S? as the unit sphere in R®, and let us put the marked arc z at the north
(= south) pole (0,0, 1) € S?/7Z, of the projective plane. The local orientation is
obtained by identifying, locally around the arc, the projective plane with the upper
hemisphere of S?. Then the correlation function is the element of H(i’ ) associated
to the ribbon graph given by the fiber over z, i.e., the image in (S° x [—1, 1])/Z,
of the interval (0, 0, 1) x [—1, 1]. The framing is determined by taking a neighboring
point, say (¢, 0, v 1—¢2) and taking at each point of the fiber a vector pointing to
the fiber over the neighboring point.

The space of states H(i’ ) is one-dimensional in this case. A basis of this space is
given by the ‘Ishibashi cross cap state’ ;. Before giving its definition we notice that
there are two natural candidates for a basis. Namely, we can take any of the
two states t//ii associated to the ribbon graphs in the 3-ball D* of Figure 3. The
two states differ by a twist, so ;" = v;f;. To define the cross cap state we choose
square roots of v; and normalize the cross cap state salomonically as

1/2 ) — —-1/2
v =0 = v

Our task is to express the one-point function C(X) on the projective plane in terms of

. o %

l l

Figure 3. The vectors Y, y; are associated to the ribbon graphs in D* on the left and on the right,
respectively.
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this basis:
CX) = ey, = cv Y7

In other words, we have to compute the constant of proportionality c,»vil/ % between
two states in H()A( ) given by ribbon graphs in 3-manifolds with the same boundary
S2. This can be done using the functoriality axiom by attaching a 3-ball with a ribbon
graph consisting of a single ribbon connecting the north pole with the south pole to
S?, and comparing the corresponding (scalar) invariants of ribbon graphs in closed
3-manifolds.

If we attach a 3-ball to a 3-ball we get a 3-sphere. If we choose the ribbon graph in
the 3-ball properly, we get in S3 an unknotted circle with zero framing. Its invariant
is D~! dim(i), where D! is the invariant of S®. This proper choice of the ribbon
may be described as follows. Suppose for definiteness that the upper and lower sides
of the ribbon defining ; are centered at the poles (0, 0, +1) of S? and lie in the x,—x3
plane. The ribbon graph in the 3-ball we attach to S? should be chosen so that it can
be deformed to a ribbon lying on the surface S> whose midline follows a ‘tennis ball
pattern’ joining the north pole to the south pole: this pattern may be parametrized
by p € [0, n]:

x(p) = (§ sin 2p, § (1 — cos 2p), cos p).

If we attach a 3-ball to the boundary of (S? x [—1, 1])/Z, we get the real projective
space RP? = §3/7,. Indeed the map S? x [—1, 1]—S>:

(x, 1) = (xcos nt/4,sin nt/4) € §* ¢ R?,

defines an embedding of the connecting manifold into RP?. Its image is the comp-
lement of the ball in RP? determined by the equation x3 > 1/2.

It is known that RP? can be obtained from S* by surgery on the unknot with
framing —2, see Appendix B. If we follow how the ribbon graph is mapped by
the surgery and view S? as the one point compactification of R®, we may describe
the situation as in Figure 4. The region depicted is contained in a ball in R*® which
after surgery on the annulus drawn as horizontal is mapped to the connecting
3-manifold (S? x [—1, 1])/7Z,. The vertical line is mapped to the ribbon graph in
the connecting 3-manifold. If we attach the 3-ball onto S and compute with the
formulae of Appendix B the image of the tennis ball pattern, we see that the vertical
line matches the ribbon graph in the 3-ball to give an unframed unknot linked
to the horizontal unknot. According to the Reshetikhin—Turaev surgery formula
(12) the resulting invariant is

AT'DTY v dim() iy,

jel
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Figure 4.
with A =", vi! dim(i)>. By using k = AD~! we then get
¢ = v PA IZ 2 dlm(]) S Z Siyv ;2 S/l

= dlrn(z)

jel
This result can be expressed in terms of the matrix P [BS], which is defined in terms of
the representation of SL(2, Z):

P = 'T'V2ST2STV? = T\25T2STV/2,

The square root is defined using the choice of square roots of the v;. The matrix P is
symmetric. Its square is the conjugation matrix C = (9; ).

We then have ¢; = P;1/S;1.

Summarizing, our result is C(RP? i) = (P;1/S;1)¥;. The corresponding
normalized correlation function agrees with the result Cphorm(RP?, i) =
(P;1/+/Si1) ¥; obtained in conformal field theory (see, e.g., [PSS1]).

5. Annulus, Klein Bottle, Mobius Strip

We consider here the three cases of surfaces whose double is a torus: the annulus, the
Klein bottle and the Mobius strip. The correlation function with no marked points
(partition function) can then be expressed in terms of the basis ;{j(S1 x S') of
invariants of the solid torus. It is then expected on physical grounds that the
coefficients of the partition functions obey certain integrality conditions. We com-
pute the partition function in these three cases and show that these conditions
are obeyed. Different ways of computing correlation functions implies remarkable
properties of the SL(2, Z) representations arising from modular categories. The most
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well-known one is the Verlinde formula

Sy jSrkS
N = 30 st

rel
which may be understood as the result of two different computation of the annulus
partition function.

5.1. ANNULUS PARTITION FUNCTION

Let X = (4, a, b) be an annulus whose boundary has connected components labeled
by a and b. The double X is then a torus and the connecting 3-manifold is a solid
torus D? x S' with two equatorial graphs without outgoing edges. To be concrete,
let us think of 4 as the region between two circles centered at the origin of the
x—y plane. The two circles forming the boundary are oriented counterclockwise.
Then X may be thought of as the surface obtained by revolution around the z-axis
of a circle C in the x—z plane with center on the x-axis. Then the projection
p: X — X is the orthogonal projection onto the x—y plane and the involution &
is the reflection at the x—y plane. The connecting 3-manifold M is the solid obtained
by revolution of the disk in the x—z plane with boundary C. It contains two annuli
in the x—y plane oriented counterclockwise and labeled by a, b. A well-known
calculation using (4) and (3) shows that Z(M, @, S'xS') = 3", N%, 7,(S'xS"). Thus

C(4.a,b) = NE, 1 (S" x ).
kel

The alternative way of doing this calculation is to glue another solid torus with an
annulus graph to obtain the invariant of S with three unknots. The identity between
the two results is the Verlinde formula, see [W]. Our result can therefore be under-
stood as a three-dimensional version of the derivation of the Verlinde formula
in [C1], and shows that at this level the arguments of [C1] are completely equivalent
to those given in [W].

A similar reasoning will be used below for the Mobius strip.

5.2. THE PARTITION FUNCTION OF THE KLEIN BOTTLE

Let Z, act on S' x S! via the involution a: (z, w) — (z~!, —w). The quotient space
is the Klein bottle K = (S! x S!)/Z,, with double K = S! x S'. We compute the
correlation function C(K) € H(k) of the Klein bottle with no marked points. A basis
of H(k) is given by

18" x SYY=Z((H.j),8,.S' xS"),  jel

with H = D? x S' containing an annulus labeled by j, as above.
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So

C(K) =Y clK)y(S" x 8",
iel
for some complex coefficients ¢;(K). The convention we have chosen here is that the
first factor of S! in K = S! x S!, which becomes a contractible cycle in the solid
torus H, generates the kernel of p,: H; (k, R) — H{(K, R).

We compute ¢;(K) by composing both sides of the above equation with the
invariant Z((—H,j*), S! x S',%). If we compose this invariant with y,(S! x S')
we get ;;, the invariant of S? x S' with two annuli z; x S', z; x S' labeled by
i, j*. Therefore the right-hand side becomes c¢;(K).

The left-hand side is then the invariant of the 3-manifold M’ obtained by gluing
(—H,j*) to the connecting manifold Mg of the Klein bottle. We claim that this
3-manifold is homeomorphic to S? x S' with a certain annulus labeled by ;.

To see this, let us identify S? with CP' = C U {oo}. The connecting manifold Mg
consists of classes [(z, w, £)] of triples (z, w, f) € S' x S! x [~1, 1] modulo

(z,w, 1)~ (z7', —w, —1).

Then we have the embedding Mg« CP' x S! given by

) ez—1
1 [z,w, )] — <2w 1 w )
The complement of 1(K) in S> x S' is the interior of a solid torus D> x S!, embedded
via (z,w) — w(e~'z—1)/(e'z+1),w?). The image of the ribbon graph
[—e, 6] x ST € D?> x S'in M’ = §? x S' is an annulus. The intersection of this annulus
with the fiber over u € S! consists of two segments centered at £2,/u and is contained
in the straight line connecting these two points. As u runs over the unit circle, the two
points rotate around the origin by 180 degrees. By the trace formula (7), the invariant
of M’ is the trace

Z(M/) = TrH(SZJ’j)((I)])

over the space of states for the sphere with two marked arcs of the morphism @;
represented by the graph

in S2 x [0, 1], where we think of S? as the x — y plane in R® by stereographic
projection. If j 2 j*, H(S?;j,j) = {0} and Z(M’) vanishes. If j ~ j*, H(S?;j,j) is
one-dimensional with a basis given by the invariant of a ball with a ribbon graph
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consisting of ribbons connecting the two arcs to a two-valent vertex labeled by any
nonzero morphism m € Hom(1,j®j ). Any such morphism may be written as
m=(d;®¢)ob; for any isomorphism ¢:;j*—j. Then we have
(0, ®1d;) o ¢; j o m = v(j)m, see 2.3, where v(j) = %1 is the Frobenius—Schur indicator
of j. The morphism @; is then the Frobenius—Schur indicator times the identity, as
can be seen by acting on the basis element:

{
(9j® id)gm

Therefore Z(M’) = v(j). We conclude that

CK) =Y v(j) 1,(S" x S,

I

in agreement with [HSS]. The summation is over all self-dual objects j € I.

5.3. THE MOBIUS STRIP

We now consider the correlation function of the M&bius strip with no marked point
and boundary condition a € I. The double of the Mdbius strip is S' x S! with
involution a: (z, w) i— (w/z,w). Thus if M¢ is the Mobius strip, its connecting
manifold is My = (S x S' x [—1, 1])/Z, and is degree one homeomorphic via

1+1¢ 11—t
(z,w, t) 1— (%z—i—T wz_l,w>,

to D? x S'. The equatorial graph consists of an annulus lying in the zero section ¢ = 0
and running close to the boundary, see Figure 5. The correlation function has then
the form

C(M&:a) ="y mq;1,(S" x 8.
Jjel

The coefficients m, ; may be computed by composing both sides of the equation with
the invariant of a solid torus with a ribbon graph consisting of an annulus labeled by
[ €1, in such a way that the manifold obtained by gluing is the 3-sphere. The
right-hand side becomes }; m, ;D 's;;, and the left-hand side is D~ times the
invariant of the link represented in Figure 6. The invariant may be further simplified,
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Figure 5. A solid torus with a ribbon graph, whose invariant is the correlation functions of the Mobius strip
with boundary condition a.

Figure 6. A link in S° used to compute the partition function of the M&bius strip.

by first flattening the ribbon onto a plane:

a / ! a § !
\ = ) dim(k) y
Q k,o Q k «

= > dim(k)

The expression in the sum is then v,%v,‘zdim(k)ém. The sum over the N(’jJ possible
values of o may be performed, with the result

Zma, 8= Z vivy 2dim(k)N¥,.
J k
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By using the relation ), s; 81+ = Dzéi,j, and expressing our result in terms of the
matrix S = D ls, we obtain:

C(M&:a) =" mq;1,(S" x S,
Jjel

with

My, = Z Vv 2SN 1S (11)
k,lel

An alternative way to do the computation is to cut out a ball in the solid torus of
Figure 5 intersecting the ribbon graph in two segments, and use (4) with
i = j = a. Then the ribbon graph may be replaced by a ribbon labeled by the sum-
mation index k£ which starts and ends at a two-valent vertex after going once around
the solid torus. The two-valent vertex is labeled by dim(k) times the morphism
represented by the graph

The sum over ais ), e,[a*ka*] D, i e [ak*a], with e,[ak*a], & = 1N, g+ 4, regarded as a
basis of Hom(k, a ® @) and e,[a*ka*] as a basis of Hom(a ® a, k). @, is the linear
endomorphism of Hom(k,a®a) given by ®,x(x)=(0,®id,)oc,,0x. Since
eslak*a) o egla*ka*] = dim(k)*léw (Equation (3)), the quantum dimensions cancel,
and we are left with 1, = Triom,eeq) Pa k- Moreover, (Dﬁq © = vk id, as may be seen
by deforming the graph representing this morphism put on top of itself or by using
axioms (iv), (v) of Appendix A. It follows that @, ; is diagonalizable with eigenvalues
+./V. Therefore we have

1/2 _ Atk k
Mok = Myv)/*,  MueZ,  Mg=N-2, |M,| < NE,

The two different ways of calculating the Mobius strip partition function implies the
following result, essentially due to Bantay [B], on representations of SL(2, 7Z) arising
from modular categories.

THEOREM 5.1. Let S = (D_lsj,k), T= (vj_léj,k) the matrices defining the projective

representation of SL(2, 7.) associated to a modular category with rank D, see 2.5.2,
and let N]’k =Npjx € Lo be the corresponding Verlinde numbers (10). Let
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0= ST2S~'. Then the numbers

_ 1o Sas
Moy =30, 5 O

rel

are integers and obey M, = Né‘,a2, (Mgx] < Nf,‘.a.

The above expression for M, was obtained from (11) by using the Verlinde
formula (10).

Remarks. (1) The above formula amounts to not completely trivial identities even
for the simple Z,y example of 2.1. There we have

1 in_in )2 . .
% _ emar/N, o by et k=" if k—r + N is even,
1r

0, otherwise,
and, with v,?”z — exp(nik?/4N),

Mo\ — 1, if kiseven and a =k/2 mod 2N,
@k =10, otherwise.

Note that being even is well defined in Z,y, and that if k is even the above choice of
square root of v; is unambiguous.
(2) More generally one expects ([PSS1]) the numbers

k —1/2_1/2 —1 S,
YE =23 0™, 5 Qo
r T

to be integer for any j. This has been recently shown to be true under some additional
assumptions (see [Gan]).

Appendix A. Modular Categories

We give here the precise definition of modular categories, following [T]. A monoidal
(= tensor) category with product ® and unit 1 for the product is called strict if for any
objects U, V, W,wehave (UQ QW =UQ(V@W),and V1 =1V =V. A
monoidal Ab-category is a monoidal category such that morphisms between any
two objects U, V' form an additive Abelian group Hom(U, V), and such that
compositions and tensor products of morphisms are bilinear. In particular, the
endomorphisms of the unit 1 of the tensor product form a ring with unit. This ring
is called the ground ring. The groups of morphisms are naturally modules over
the ground ring. An object V' of a monoidal Ab-category is called simple if
Hom(V, V)~ K as a K-module.

A ribbon category is a strict monoidal category with additional data: a braiding, a
twist and a duality.
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A braiding associates to any pair of objects V, W an isomorphism
cy.w € Hom(V@ W, W® V). A twist associates to any object ' an isomorphism
0y € Hom(V, V). A duality associates to any object V' a dual object V* and
morphisms by € Hom(1, V' ® V*), dy € Hom(V*® V, 1).

These data obey the following set of axioms:

(1) cuyew = ((dy @ cyw)(cu,y @idy).
(i) cugy,w = (cu,w Qidy)(idy ® cy,w).
(i) g®feyw=cyrwf®g.
(iv)  Oyew = cw yey.w(Oy @ 0w).
V) Opf =f0yp.
(vil)  (dy ®@1dy+)(idp+ @ by) = idy~.
(viii) (O ®idy-)by = (idy ® Oy+)by.

Here U, V, ... are arbitrary objects and f € Hom(V, V"), g € Hom(W, W’) are arbi-
trary morphisms.

Finally a modular category is a ribbon Ab-category with a finite family 7 of simple
objects such that:

(ix) 1el.
(x) For every i € I, i* is isomorphic to an object in 1.
(xi) Every morphism f: ¥ — V' may be decomposed into a finite sum »_, g/,
where &, € Hom(V/, i) and g, € Hom(i, V) for some i = i(r).
(xii) The matrix (s;;) = (tr(c;,c;;)) indexed by i,j € I is invertible.

Appendix B. Surgery on the Unknot

Here we describe explicitly the homeomorphism between RP* and the 3-manifold
obtained by surgery on the unknot in S* with framing 42.

Let us first fix some conventions about orientations. We give an orientation to the
boundary of an oriented manifold M by the ‘outward normal first’ rule. This means
that a basis (b1, . . ., b,) of the tangent space 7,0M at a boundary point x is positively
oriented if and only if (b, by, .. ., b,) is a positively oriented basis of T\, M for any b
pointing outwards. The orientations of the disks D" = {x € R" | |x| < 1} are inherited
from R”. They define orientations of the spheres S"~! = aD". We orient C" via the
isomorphism (x; +iy1, ..., Xy + 1yu) = (X1, Y1, - -+, Xn, V) With R?", and view odd
dimensional spheres S$**~! as subsets of C”.

Recall that if L is the image of a smooth embedding of S' in S, and n is an integer,
then the surgery on L with framing » is the following construction. Let U be a closed
tubular neighborhood of L. Fix an embedding j: S' x D?> < S with image U so that
S! % {0}issent to L,and S' x {1} is sent to a knot L’ whose linking number with L is n.
The linking number is calculated using the orientations of L, L' coming from the
orientation of S! via j. We may think that L with framing n as an embedded annulus
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with boundary LU L. Let S(3LJ1) be the manifold obtained by gluing the complement
S3 —int U of the interior of U to D? x S! via the restriction to S! x S' of the map j:
Sim = (8F =int U)u (D* x S")/(x ~ j(x), x € §' x S"). The orientation of S7;
is defined to be the orientation that extends the standard orientation of §° — U c S°.

If L is the unknot defined, say, by the embedding z1— (z,0) of S' c C into
S3 c Cz, and the framing is n, then we may take, for small ¢ > 0,

jlz,w) = B (z, ewz"), (z,w) e S' x D?.
V14 |ew)?
The image is U = {(u, v) € S C C? | ¢Ju| > |v|}. The 3-manifold S&m obtained by
surgery on this link is (for n#0) homeomorphic to the lens space S*/7,,, with
Zyy action generated by (u, v) i— ({u, {v), { = exp(2ni/|n|).
Indeed the map

" —1/n
i (u,v)—> (—) (u, |v)),
[v]

is a homeomorphism $* — L — (S* — L)/Z, (L is invariant under the Z, action),
with inverse map (u, v) i— (uv='|v], v™"|v/"*"). This homeomorphism extends to a
homeomorphism from S(3L’n) onto S°/7Zj,. This follows from the fact that

—1/n

Sz, w) > = (1,ez7h)

S x 8! V1+4¢

extends to the homeomorphism

inoj

—1/n

v
V14 &z)?

from D? x S! onto a tubular neighborhood of L/Z, in S*/Zy.

The sign of n is connected with the orientation. Since the Z;, action on S°
preserves the orientation, the lens space S°/7Z,, inherits an orientation from S°.
The map i, is then orientation preserving if n <0 and orientation reversing if
n> 0, as can be seen by linearizing i, at (0, 1).

Let us summarize the results.

(z, w) 1—> (1, e2)

PROPOSITION B.1. Let L be the image of the embedding z \— (z,0) of S' — S°.
Then, for each n € 7. — {0}, the map i: S* — L— (S° — L)/ Zyy

—1/n
(u, v) > (1) (. V),

V]

extends uniquely to a homeomorphism from the manifold SSL,H) obtained by surgery on
L with framing n onto the lens space S°/Z,. The degree of this homeomorphism is
—sign(n). In particular, i_, is a degree one homeomorphism from S(3L’72) onto RP3.
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Moreover we have the Reshetikhin—Turaev formula for the invariant of a ribbon
graph in a manifold obtained from S> by surgery, see [T]. It can be deduced from
the functoriality axiom applied to a solid torus. In the case of an unknot with framing
n <0, assuming that the ribbon graph does not intersect the solid torus at which we
perform the surgery, it reads

Z(Si 1) =AY dim(j) Z(S*, Ty), (12)
jel
with A =Y",_; v/ dim(i)>. The ribbon graph T is obtained from I" by adding L,
viewed as an embedded annulus in S3, with label j. This involves a choice of
orientation of L, but the result does not depend on this choice.
To visualize the results it is useful to stereographically project S* — {pt} to R*. For
our application, a useful projection is

1
(X1, X2, X4).
X

(x1 +ix2, x3 +1x4) > I
3

It preserves the orientation. Then the link L at which we do surgery is mapped to the
unit circle in the x;-x, plane.

Appendix C. Physical Motivation

Two-dimensional conformal field theory plays a fundamental role in several distinct
areas of physics. In particular, it can be used to describe universality classes of
two-dimensional critical systems of classical statistical mechanics ([FQS]) and of
quasi one-dimensional condensed matter physics ([Af]). For instance, the scaling
behavior of such a system is encoded in so-called ‘critical exponents’. They are
related to conformal weights, which, in turn, determine the twist in the tensor
categories we consider in this paper. Similarly, the finite size scaling behavior is
governed by the value of the conformal central charge, which, in turn, gives the
charge k of the tensor category. In string and superstring theory ((GSW]), all aspects
involving the world sheet that is swept out by the string moving in space-time can be
understood in terms of a conformal field theory model on the world sheet. The
correlation functions of the conformal field theory model are the building blocks
for the string scattering amplitudes.

Each physical state of a chiral conformal field theory is a ray in some irreducible
module of a ‘chiral algebra’. One mathematical formalization of chiral algebras
is the notion of a conformal vertex-operator algebra. It is believed, though not
proven so far, that the category of representations of every rational vertex-operator
algebra gives rise to a modular tensor category, as studied in the main text. As
a consequence, the study of conformal field theories has two main aspects, a
representation theoretic one, related to the theory of vertex-operator algebras,
and another one that can be formulated entirely in terms of the tensor category
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of representations. The present paper is devoted to the latter aspect of conformal
field theory.

There are many reasons to consider conformal field theory also on surfaces with
boundaries. Boundaries can describe, e.g., the presence of a point-like defect in
systems of condensed matter physics ([OA]). In such applications space is
(effectively) one-dimensional, a half-line, with the defect sitting at the end-point
of the line; the second dimension is identified with (imaginary) time. Another appli-
cation of boundary conformal field theory is the study of (critical) percolation
probabilities ([C2]), which have been argued to coincide with certain correlation
functions of a nonunitary conformal field theory on a disk.

In string theory, boundaries appear as soon as open strings are present, namely as
the world lines of the end points of the open string. Moreover, (perturbative)
superstring theory can be regarded as providing a perturbative quantization of
certain classical field theories, supergravity theories. These theories possess
nontrivial classical solutions, so-called string solitons. One important recent insight
in string theory is that there exists a string perturbation theory for one class of these
solitons, the so-called D-branes. It is formulated ([P]) in terms of open string world
sheets and thus provides another reason to study conformal field theories on surfaces
with boundaries. Finally, there is also a class of superstring theories, so-called type I
theories, which forces one to analyze conformal field theory on nonorientable
surfaces.

String theory amplitudes are defined as sums over world sheets of arbitrary genus.
Such sums can be expected to behave reasonably only if the terms in the sum are
related to each other. The factorization constraints that we prove in this paper show
that nontrivial relations between correlation functions on surfaces of different
topology indeed exist.

The following features have become clear in the study of conformal field theory on
surfaces with boundaries: To each component of the boundary one must associate a
‘boundary condition’, which encodes what happens when fields are located close
to the boundary. In string theory, in the regime of small curvature, many boundary
conditions have a geometric interpretation in terms of submanifolds of spacetime,
so-called D-branes. Associating a boundary condition to a component of the bound-
ary of a world sheet has the geometric interpretation of constraining the image of the
component, which is the world line of a string end point, to lie on some D-brane. As a
consequence, the correlation functions of conformal field theory on surfaces with
boundaries depend on these boundary conditions. Also, in addition to the bulk fields
which correspond to insertions in the interior of the world sheet, there are also
so-called boundary fields; they are inserted on the boundary of the worldsheet
and may separate regions of the boundary with different boundary conditions.
All boundary conditions considered in the present paper are compatible with the
full chiral symmetry that is present in the bulk of the worldsheet. Such boundary
conditions are labelled by irreducible representations of the chiral algebra ([C1]).
More general boundary conditions are, however, possible. They preserve only a
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subalgebra of the chiral algebra. If that subalgebra contains the Virasoro element,
then they are conformally invariant. A general theory of conformally invariant
boundary conditions remains to be developed.
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