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Abstract

Stampfli and Embry characterized points in the numerical range which are extreme in terms of the
linearity of corresponding sets of vectors. Das and Craven generalized this to include the case of
unattained boundary points. We give an alternative proof of this result using a technique of Berberian.
This approach appears to be more conceptual in that it enables us to deduce the result from that of
Stampfli and Embry. We also illustrate how the same technique may be used to generalize other
results of Embry.

1980 Mathematics subject classification (Anter. Math. Soc): 47 A 12.

1. Introduction

Let H be a complex Hilbert space with inner product ( , ) and induced norm
|| • ||. The numerical range W(T) of an operator (i.e. a bounded linear transforma-
tion) on H is the set

W{T)= {(Tx,x):\\x\\ = \,x&H).

The Toeplitz-Hausdorff theorem asserts that W(T) is a convex set in the plane.
For a given z e C, let MZ(T) = {x: (Tx, X) - z(x, x) = 0, x e H}. J. G.
Stampfli [1966] and M. R. Embry [1970, 1975] have shown that a point z of the
numerical range W(T) is extreme if and only if MZ(T) is a subspace. This has
been generalized by K. C. Das and B. D. Craven [1983] to show that a point z of
W(T)~, the closure of W(T), is extreme if and only if

= {{xn):{Txn,xn)-z(xn,xn) - 0, (xn) G /
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22 S. Majumdar and Brailey Sims [2 ]

is a subspace where /«,(#) is the set of all bounded sequences of vectors from H.
In this note we give an alternative approach to establish the same result

employing a technique of S. K. Berberian [1962], and S. K. Berberian and G. H.
Orland [1967]. This approach appears to be more conceptual in that it enables us
to deduce the result of Das and Craven from that of Stampfli and Embry.

Using the same technique other results may also be generalized to unattained
boundary points. This is illustrated in Section 5 where we extend results of Embry
[1975].

2. A technical lemma

Let lx, /+, c and c0 be the sets of real bounded, bounded nonnegative,
convergent and null sequences respectively. Let x = (xn) = (xv x2,.. .,xn) e lx

and /£, be the dual of lx.
We prove a simple lemma which will be used in the following sections to prove

our main results.

LEMMA 1. For any element y e /^ \ c0, there exists f e /^ such that
(i)f(y) > 0,

( i i ) / is positive, that is,f(x) > 0 for all x e /+,
(ii i)/(e) = 1 where e = (1,1,...) and so \\f\\ = 1,
( iv)/ |C o = 0 , W
(v) For all x e lx, lim infxn < / ( x ) < lim supxn, in particular, for x e c,

f(x) = limxn.

In other words, y may be strictly separated from c0 by a 'normalized positive
linear functional'.

PROOF. Let A = {x e lx: lim supxn < 0}. It can be verified that A = c0 — /^
and that A is closed and convex. Obviouslyy <£ A since j e / ^ \ c0. Hence there
exists g e / * with g(y) > 0 = sup g(A). If x e c0 then x, -x e c0 c A, so we
have both g(x) and g(-x) < 0 and g(x) = 0. Also, x e /+ implies -x e A. So
g(-x) < 0, or g(x) > 0; that is g is positive on /+. Further \\y\\e - y e /^, so
gCll^lk ~ J ) > 0 and g(e) > 0. Write / = g/g(e), then / satisfies (i) to (iv) and
therefore (v) which is an immediate consequence of (ii), (iii) and (iv).
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3. A modification of Berberian's technique

S. K. Berberian [1962] used the existence of a Banach-Mazur generalized limit,
glim, for bounded sequences of real numbers to introduce a pseudo-inner product
on lx(H) and thereby obtained a Hilbert space extention K of H. In fact glim
was only required to be an element of /£, satisfying the properties (ii) to (v) of
Section 2. Thus, for every / of the type described by Lemma 1 we have the
following construction (for details see, Berberian [1962]).

Suppose s = (xn) and / = (yn) belong to lx(H). Define <t>(s, t) =
/((Re(xn, }>„))) + if((lm(xn, }>„))), then <j>(s, t) is a pseudo-inner product on
lx(H). JT= [S G lx(H): *(s, s) = 0} = {se lx(H): +(s, t) = 0 for all t e
lx{H)} is a subspace of lx{H), so we can define the quotient inner-product
space P = ^(/O/OTwith inner product (s', t') = <j>(s, t) where s' = s + JT.
Let K be the Hilbert space completion of P.

Every operator T in H determines an operator in K as follows. Define 7"0:
/«,(#) -> lx(H) by Tos = (Txn) and T°: P -» P by T°s' = (Tos)'. The continu-
ous linear mapping T° extends to a unique operator in K which we also denote by
T°. Berberian and Orland [1967] have shown in the proposition of Section 3 that
W(T°) = W{Ty. This fact is basic to our proofs.

4. Linearity of Nz (T)

We are now ready to prove

THEOREM 2. NZ(T) is a subspace of lx(H) if and only if z is an extreme point of

PROOF. By carrying out the standard reduction T -» exp(/0)(T — zl) where 0 is
a suitably chosen real number, we can assume without loss of generality that
z = 0 and Re W(T) > 0. We first prove sufficiency.

Homogeneity being obvious, we need prove only additivity of NZ(T).
By the construction of Section 3, for each / of the type described in Lemma 1

we have W(T°) = W(T)~. Indeed if (Txn, xn) -> 0 then 0 = ( r V , s') where
s' = s + J/~, s = (xn).

Now let (xn), (yn) be such that both (Txn, xn) and (Tyn, yn) -> 0 (an extreme
point of W{T)~). Then (T°s',sr) = (T°t',t') = 0 is an extreme point of
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W(T°), so by Theorem 1 of Embry [1970], (T°(sr + t'),s' + t') = 0, or,
(T((xn + yn))', (xn + )>„)') = 0. Thus, by the form of the inner-product in K we
have for each/that

(1) f{(Re(T(xn+yn),xn+yn))) = 0,

(2) f{(lm(T(xn+yn),xn + yn))) = 0.

Let <* = («„) and £ = (&)•

Now, a = (Re(T(xn + yn), xn + yn)) G /+ and so by (1) and Lemma 1, a G c0

or an -» 0. To show /?„ = Im(r(jcn + yn), xn + yn) -* 0 requires a little more
work. First note that

lim inf /?„ < /(/?) < lim supft,.

Also, by (2), /(/?) = 0. Assume a = lim sup/?M > 0, then there exists a subse-
quence (nk) such that

lm(T(xnk+ynk),xnk+ynk)-*a.

Passing on to a further subsequence we may assume

\\xnk + ynk\\ - L * 0.

(If L = 0, then #,4 -» 0 contradicting a > 0.) Thus

\J T(x"'+y»J x "> + ^ \ A
\ IK + ̂ JI ' I K + J M J I / L2

while

R c / ' T ( x -* + yJ xnk+ynk \

\ \\xHt+y,k\\ ' IK.+^JI /
So /a /L2 G M^(T)~. If also fe = lim inf ft, < 0, we would similarly have ib/l2 e
W(T)~, where b/l2 < 0 < a/L2 contradicting that 0 is an extreme point of
W(T)~. Thus at least one of a and b is zero. Now /? can be decomposed as
j8 = 0° + ( / ? - 0 ° ) where

0 otherwise.

So 0° G c0 and ae - (0 - /8°) e /+. If a = 0, )8 - ^° G / - . Similarly, if b = 0,
y8 — 8̂° G /^. But then for all / satisfying the condition of Lemma 1 we have
0 = / ( £ ) = f(0- j8°) and so $ - 0° e c0. Thus )8 G c0 and consequently iV0(r)
is linear.

To prove the converse we may assume that 0 is not an interior point of W(T)
(for which case the proof follows easily from the result of Embry [1970]), and that
0 lies on the join of ia and -ib where ia and -ib belong to W(T)~, a, b > 0. We
will show that N0(T) is not linear.
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Let s = (xn) and t = (yn) be two sequences of unit vectors such that

(Txn, xn) -» ia and (Tyn, yn) -> -ift. Then, since ( ( T + r * ) x n , *„) -» 0 and 0

is an extreme point of W(T + T*), it is also an approximate eigenvalue of the

Hermitian operator T + T*. It follows that, for any X, a subsequence of

(((T(xn + Xyn), xn + Xyn))) is convergent. For the sake of simplicity we shall

denote the subsequence by the same symbols.

Now, given any/sa t is fying the conditions of Lemma 1, we have (T°S', S') = ia

and ( T V , t') = -ib and so by Lemma 1 of Embry [1970] we have

for two distinct values of X. By (v) in Lemma 1 and the construction of K, T° we

therefore have for both these values of X that

= f{(Re(T{xn + Xyn)), xn + Xyn)) + if({lm(T(xn + Xyn), xn + Xyn)))

= 0,

that is, (xn + Xyn) e N0(T) for two distinct values of X. Hence N0(T) is not
linear.

5. Generalization of a Cauchy-Schwartz inequality

In Theorem 2.2 Embry [1975] gives a version of the Cauchy-Schwartz inequal-
ity for the vectors associated with points of L C\ W{T), where L is a line of
support for W(T). We translate this into a statement about sequences of vectors
associated with points of L n W{T)~. We then illustrate how other results may
be extended to unattained boundary points of W(T) by deriving generalizations
for some of the consequences given in Section 2 of Embry [1975].

Throughout let L be a line of support for W{T)~ and define

MT) = {(*„) e lx(H): inf \(Txn, xn) - z(xn, xn)\ - o}.

By a suitable translation and rotation we may assume that L is the imaginary axis
and R<zW(T)> 0, in which case we see that (xn)eNL(T) if and only if
Re(Txn,xn) -»0.

Since 0 is an extreme point of W(Re T) and therefore an approximate
eigenvalue it follows that

NL(T) = {(xn) e lx(H): (RcT)xn - 0}

and so we conclude that NL(T) is a subspace of lx(H). If we define/on complex
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sequences b y / ( ( A J ) = / ( (Re Xn)) + if((lm Xn)), we have

LEMMA 3. Let f satisfy the conditions of Lemma 1 and let z be a point of L such
that either z is an extreme point of W(T)~ or z £ W(T)~. Then for all (xn),

\f((((T -*)*„, >0))|2 < f((((T - z)xH, xm)))f(((ym, (T - z)yn))).

PROOF. AS above we may assume that L is the imaginary axis, KeW(T) > 0
and, by a further translation if necessary, that z = 0. For the given/let K and T°
be as in Section 3 and let s = (*„), / = (yn), then

Rc(T°s',s') = / ( (Re(7 \ , , *„») = (), a s ( R e r ) x n ^ 0 .

Similarly R e ( r V , t') = 0. Theorem 2.2 of Embry [1975] therefore applies to
give

or, using the definition of inner-product in K, that

\f(((Txn, yn)))\2 < f(((Txn, xn)))f(((yn, Tyn)))

as required.

COROLLARY 4. If z is an extreme point of W{T)~ and L is a line of support for
W(T)~passing through z, then

\im((T - z)xn, yn) = 0

for all (*„) G NZ(T) and (yn) G NL(T).

PROOF. Without loss of generality assume z = 0, L is the imaginary axis and
ReW(T)^ 0.

Assume (Txn, yn) does not converge to 0, then there exists subsequences (xnk),
(yn ) such that either the real or imaginary parts of (Txn , Yn ) form a sequence
i n C \ c o ( ° r / o o \ c o ) -

By Lemma 1, there is an/with the stated properties such that/((( 7xn , yn )))
# 0. To derive a contradiction we note that (xnk) G NZ(T) C NL(T), ( Txnk, xn)
-* 0 and (ynk) G NL(T), thus by Lemma 3 f(((TxHt, yn))) = 0.

COROLLARY 5. Let z and L be as in Corollary 4.

//(*„) G NZ(T) and(Txn) G NL(T), then

-z)xn = lim(T*-z)xn = 0.
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PROOF. Again assume z = 0, L is the imaginary axis and Re W{T) > 0.
Since (jcn) e NZ{T), by definition (Txn,xn) -» 0 and so by Lemma 3

f(((Txn, >>„))) = 0 for all (>>„) e iVL(r). In particular, taking >>„ = 7xn we have
f((\\Txn\\

2)) = 0. Now (||7xn||
2) is in /+, so by Lemma 1 we conclude that

Txn -» 0 and, since (Re T)xn -> 0, that T*jcn -> 0.
Similar extensions of results by Stampfli, de Barra and Lin for unattained

boundary points will be the subject of a subsequent paper by Das, Majumdar and
Sims.
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