# ON A 2-KNOT GROUP WITH NONTRIVIAL CENTER KATSUYUKI YOSHIKAWA

Jonathan A. Hillman asked "Must a 2-knot whose group has nontrivial center be fibered?" We will answer this question negatively.

## 1. Introduction

An *n-knot* k is a locally flat submanifold of  $S^{n+2}$  which is homeomorphic to  $S^n$ . The fundamental group of  $S^{n+2} - \hat{\mathbb{N}}(k)$  is called the group of k, where  $\mathbb{N}(k)$  is a tubular neighborhood of k in  $S^{n+2}$ .

In [6], Neuwirth showed that the center of a 1-knot group is trivial or infinite cyclic. On the other hand, Hausmann and Kervaire [1] proved that any finitely generated abelian group is the center of an *n*-knot group  $(n \ge 3)$ . For n = 2, the author [8] showed that there are fibered 2-knots whose groups have the centers 1, Z,  $Z \oplus Z_2$  and  $Z \oplus Z$ respectively. Moreover, in [2], Hillman investigated centers of 2-knot groups and obtained some results. In particular, he shows that if a 2-knot is fibered, then the center of its group is 1, Z,  $Z \oplus Z_2$  or  $Z \oplus Z$ , and he asks if a 2-knot whose group has nontrivial center must be fibered. In this paper we will answer his question negatively. That is:

THEOREM. There exists a 2-knot which is not fibered and whose group has nontrivial center.

Received 26 October 1981.

### 2. Preliminaries

For an element g of a group H,  $\langle H : g \rangle$  denotes the factor group of H by the normal closure of g in H. The subgroup of H generated by a subset S of H will be denoted by gp(S).

Let  $K_1$  be a 2-knot and  $V_1$  a tubular neighborhood of  $K_1$ . Let V be a tubular neighborhood of a trivial 2-knot and  $h : V \rightarrow V_1$  a homeomorphism of V onto  $V_1$ . Let  $K_2$  be a 2-knot contained in the interior of V. Then we obtain a 2-knot  $K = h(K_2)$  (cf. [7]).

We will calculate the group G of K by the van Kampen theorem. Let  $V_2$  be a tubular neighborhood of  $K_2$  in  $S^4$  which is contained in the interior of V and let  $G_i$  be the group of  $K_i$  (i = 1, 2); that is,  $G_i = \pi_1 \left\{ S^4 - \mathring{V}_i \right\}$ . From the definition of K, we have the following commutative diagram of homomorphisms induced by inclusions:



Furthermore, it is easy to see that the inclusion j of  $V - \overset{\circ}{V}_2$  into  $S^{4} - \overset{\circ}{V}_2$  induces the isomorphism  $j_*$  of  $\pi_1(V - \overset{\circ}{V}_2)$  onto  $G_2$ . Therefore, we get the diagram, (2), of isomorphisms:

(2) 
$$\pi_1(v_1 - h(\mathring{v}_2)) \xleftarrow{(h | v - \check{v}_2)_*}{\cong} \pi_1(v - \mathring{v}_2) \xrightarrow{j_*}{\cong} G_2$$

Put  $y = i_{1*}(\tilde{y})$  and  $c = j_*(h | V - \tilde{V}_2)^{-1} i_{2*}(\tilde{y})$ , where  $\tilde{y}$  is a generator of the infinite cyclic group  $\pi_1(\partial V_1)$ . Then, from diagrams (1)

and (2), we obtain  $G = \langle G_1 \star G_2 : yc^{-1} \rangle$ .

Let  $\mu$  be the order of c in  $G_2$  (if it is infinite, then put  $\mu = 0$ ) and let  $\tilde{G}_1 = \langle G_1 : y^{\mu} \rangle$ . Then y has the order  $\mu$  in  $\tilde{G}_1$ . Thus it follows that G is a free product of  $\tilde{G}_1$  and  $G_2$  with subgroups gp(y) and gp(c) amalgamated under the mapping  $y \neq c$ .

LEMMA. Suppose that  $G_2$  is not infinite cyclic. If  $c \ (\neq 1) \in [G_2, G_2]$  and  $\tilde{G}_1 \neq Z_{\mu}$ , then the commutator subgroup [G, G] is not finitely generated.

Proof. To complete the proof, we use the subgroup theorem for a free product with an amalgamated subgroup [3, Theorem 5]. Let generating systems of  $\tilde{G}_1$  and  $G_2$  be  $\alpha$ - and  $\beta$ -generating systems in [3], respectively. Let x be an element of  $G_{2}$  mapped on a generator of  $G_{2}/[G_{2}, G_{2}]$  by abelianization. We choose  $\{x^{s}: s = 0, \pm 1, \ldots\}$  as  $\alpha_{-}$ and  $\beta$ -representative systems for a compatible regular extended Schreier system for G mod [G, G] (see [3]). Then the associated  $\alpha$ - and  $\beta$ -double coset representative systems  $\{D_{\alpha}\}, \{D_{\beta}\}$  for  $G \mod ([G, G], \tilde{G})$ and  $G \mod ([G, G], G_2)$  are  $\{x^S : s = 0, \pm 1, ...\}$  and  $\{1\}$ respectively, and the v-double coset representatives  $\{D_{\beta}E_{\nu}\}$  for  $G \mod ([G, G], gp(c))$  are  $\{x^{S} : S = 0, \pm 1, \ldots\}$ . Therefore, in Theorem 5 of [3], there is no t-symbol. Moreover, since  $y = c \in [G_2, G_2] \subset [G, G]$ , it follows that  $x^{s} \tilde{G}_1 x^{-s} \subset [G, G]$  for each s. Hence, from Theorem 5, [G, G] is a tree product of an infinite number of factors  $\left\{ \begin{bmatrix} G_2, & G_2 \end{bmatrix}, & x^s \tilde{G}_1 x^{-s}, & s = 0, \pm 1, \dots \right\}$  with the subgroups  $x^{s}gp(c)x^{-s}$  and  $x^{s}gp(y)x^{-s}$  amalgamated under the mapping  $x^{s}cx^{-s} \rightarrow x^{s}yx^{-s}$ (s = 0, 1, ...). Since  $\tilde{G}_1 \notin Z_\mu \cong gp(y)$ , we have  $x^s \tilde{G}_1 x^{-s} \neq x^s gp(y) x^{-s}$ for each s. Hence, by [4, p. 53], [G, G] is not finitely generated.

#### 3. Proof of theorem

We will give two examples. One has center Z and the other has center  $\frac{Z}{2}$ . We note that the latter can not be realized as a center of any fibered 2-knot group.

EXAMPLE 1. Let  $K_1$  and  $K_2$  be the 2- and 6-twist-spun 2-knots of the trefoil respectively [9]. Then we have

$$G_1 = \langle y, d : y d y^{-1} = d^{-1}, d^3 \rangle$$

and

 $G_2 = \langle x, a, b : xax^{-1} = b, xbx^{-1} = a^{-1}b, [[a, b], a], [[a, b], b] \rangle$ [8].

Let  $V_i$  be a tubular neighborhood of  $K_i$  (i = 1, 2) in  $S^4$ . Let C be a simple closed curve in  $S^4 - V_2$  which represents an element c = [a, b] of  $G_2$  and N a tubular neighborhood of C in  $S^4$  such that  $N \cap V_2 = \emptyset$ . Then, since N is homeomorphic to  $S^1 \times B^3$ , the manifold  $S^4 - \hat{N} \approx S^2 \times B^2$  is considered as a tubular neighborhood of a trivial 2-knot in  $S^4$ . Therefore, in the previous section, we can take  $V = S^4 - \hat{N}$ . Let  $h : V \neq V_1$  be a homeomorphism of V onto  $V_1$  such that  $j_*(h \mid V - \hat{V}_2)_*^{-1} i_{2^*}(\tilde{y}) = c$  for a generator  $\tilde{y}$  of  $\pi_1(\partial V_1)$  with  $i_{1^*}(\tilde{y}) = y$ . Then, from Section 2, we obtain a 2-knot  $K = h(K_2)$  with the group  $G = \langle \tilde{G}_1 * G_2 : yc^{-1} \rangle$ .

The element c has infinite order in  $G_2$ . Therefore, we have  $\tilde{G}_1 = G_1$ . Thus G is a free product of  $G_1$  and  $G_2$  with amalgamated subgroups gp(y) and gp(c). Hence, by [5, p. 211], the center of G is  $gp(y) \cap C(G_1) \cap C(G_2)$ , where  $C(G_i)$  is the center of  $G_i$  (i = 1, 2). Consequently, G has the non-trivial center  $gp(y^2) \cong Z$  because

$$C(G_1) = gp(y^2)$$
 and  $C(G_2) = gp(x^6, c)$  [8].

Furthermore, by virtue of the lemma, it follows that K is not fibered.

EXAMPLE 2. Let  $K_1$  and  $K_2$  be the 2- and 5-twist-spun 2-knots of the trefoil, respectively. Then the group  $G_2$  of  $K_2$  is

$$\langle x, a, b : xax^{-1} = b, xbx^{-1} = a^{-1}b, a^{5} = (ab)^{3} = (aba)^{2} \rangle$$
,

and the center  $C(G_2)$  is  $gp(x[a, b^{-1}], (aba)^2) \cong Z \oplus Z_2$  [8], [9]. We choose the element aba of  $G_2$  as c. Then, in the same way as above, we can construct a 2-knot whose group has center  $Z_2$  and which is not fibered.

Note. Recently, T. Kanenobu communicated to the author that he has obtained another example of such a 2-knot by Fox's hyperplane cross section method.

#### References

- [1] Jean-Claude Hausmann et Michel Kervaire, "Sur le centre des groupes de nœuds multidimensionnels", C.R. Acad. Sci. Paris Sér. A 287 (1978), 699-702.
- [2] Jonathan A. Hillman, "Aspherical four-manifolds and the centres of two-knot groups", preprint.
- [3] A. Karrass and D. Solitar, "The subgroups of a free product of two groups with an amalgamated subgroup", Trans. Amer. Math. Soc. 150 (1970), 227-255.
- [4] A.G. Kurosh, The theory of groups, Volume 1, second English edition (translated by K.A. Hirsch. Chelsea, New York, 1960).
- [5] Wilhelm Magnus, Abraham Karrass, Donald Solitar, Combinatorial group theory (Pure and Applied Mathematics, 13. Interscience [John Wiley & Sons], New York, London, Sydney, 1966).

- [6] Lee Neuwirth, "The algebraic determination of the genus of knots", Amer. J. Math. 82 (1960), 791-798.
- [7] Yaichi Shinohara, "Higher dimensional knots in tubes", Trans. Amer. Math. Soc. 161 (1971), 35-49.
- [8] Katsuyuki Yoshikawa, "On 2-knot groups with the finite commutator subgroups", Math. Sem. Notes Kobe Univ. 8 (1980), 321-330.
- [9] E.C. Zeeman, "Twisting spun knots", Trans. Amer. Math. Soc. 115 (1965), 471-495.

Faculty of Science, Kwansei Gakuin University, Nishinomiya, Hyogo 662, Japan.

326