ON A 2-KNOT GROUP WITH NONTRIVIAL CENTER

Katsuyuki Yoshikawa

Abstract

Jonathan A. Hillman asked "Must a 2 -knot whose group has nontrivial center be fibered?" We will answer this question negatively.

1. Introduction

An n-knot k is a locally flat submanifold of S^{n+2} which is homeomorphic to S^{n}. The fundamental group of $s^{n+2}-\frac{N(k)}{}$ is called the group of k, where $N(k)$ is a tabular neighborhood of k in S^{n+2}.

In [6], Neuwirth showed that the center of a l-knot group is trivial or infinite cyclic. On the other hand, Hausmann and Kervaire [1] proved that any finitely generated abelian group is the center of an n-knot group ($n \geq 3$). For $n=2$, the author [8] showed that there are fibered 2-knots whose groups have the centers $1, Z, Z \oplus Z_{2}$ and $Z \oplus 2$ respectively. Moreover, in [2], Hillman investigated centers of 2-knot groups and obtained some results. In particular, he shows that if a 2.-knot is fibered, then the center of its group is $1, Z, Z \oplus Z_{2}$ or $Z \oplus Z$, and he asks if a 2 -knot whose group has nontrivial center must be fibered. In this paper we will answer his question negatively. That is:

THEOREM. There exists a 2-knot which is not fibered and whose group has nontrivial center.

2. Preliminaries

For an element g of a group $H,(H: g)$ denotes the factor group of H by the normal closure of g in H. The subgroup of H generated by a subset S of H will be denoted by $\operatorname{gp}(S)$.

Let K_{1} be a 2 -knot and V_{1} a tubular neighborhood of K_{1}. Let V be a tubular neighborhood of a trivial $2-k n o t$ and $h: V \rightarrow V_{1}$ a homeomorphism of V onto V_{1}. Let K_{2} be a 2 -knot contained in the interior of V. Then we obtain a 2 -knot $K=h\left(K_{2}\right)$ (cf. [7]).

We will calculate the group G of K by the van Kampen theorem. Let V_{2} be a tubular neighborhood of K_{2} in S^{4} which is contained in the interior of V and let G_{i} be the group of $K_{i}(i=1,2)$; that is, $G_{i}=\pi_{1}\left(S^{4}-\frac{o}{V}\right)$. From the definition of K, we have the following commutative diagram of homomorphisms induced by inclusions:

Furthermore, it is easy to see that the inclusion j of $V-\stackrel{\circ}{V}_{2}$ into $S^{4}-\stackrel{\circ}{V}_{2}$ induces the isomorphism j_{*} of $\pi_{1}\left(V-\stackrel{\circ}{V}_{2}\right)$ onto G_{2}. Therefore, we get the diagram, (2), of isomorphisms:

$$
\begin{equation*}
\pi_{1}\left(V_{1}-h\left(\stackrel{\circ}{V}_{2}\right)\right) \frac{(h \mid V-\stackrel{\circ}{V})_{2}}{\cong} \pi_{1}\left(V-\stackrel{\circ}{V}_{2}\right) \stackrel{j_{*}}{\cong} G_{2} . \tag{2}
\end{equation*}
$$

Put $y=i_{1 *}(\tilde{y})$ and $c=j_{*}\left(h \mid V-\stackrel{\circ}{V}_{2}\right)_{*}^{-1} i_{2 *}(\tilde{y})$, where \tilde{y} is a generator of the infinite cyclic group $\pi_{1}\left(\partial V_{1}\right)$. Then, from diagrams (l)
and (2), we obtain $G=\left\langle G_{1} * G_{2}: y c^{-1}\right\rangle$.
Let μ be the order of c in G_{2} (if it is infinite, then put $\mu=0$) and let $\tilde{G}_{1}=\left\langle G_{1}: y^{\mu}\right\rangle$. Then y has the order μ in \tilde{G}_{1}. Thus it follows that G is a free product of \tilde{G}_{1} and G_{2} with subgroups $\mathrm{gp}(y)$ and $\mathrm{gp}(c)$ amalgamated under the mapping $y \rightarrow c$.

LEMMA. Suppose that G_{2} is not infinite cyclic. If
$c(\neq 1) \in\left[G_{2}, G_{2}\right]$ and $\tilde{G}_{1} \neq Z_{\mu}$, then the commutator subgroup $[G, G]$ is not finitely generated.

Proof. To complete the proof, we use the subgroup theorem for a free product with an amalgamated subgroup [3, Theorem 5]. Let generating systems of \tilde{G}_{1} and G_{2} be α_{-}and B-generating systems in [3], respectively. Let x be an element of G_{2} mapped on a generator of $G_{2} /\left[G_{2}, G_{2}\right]$ by abelianization. We choose $\left\{x^{s}: s=0, \pm 1, \ldots\right\}$ as α and B-representative systems for a compatible regular extended Schreier system for $G \bmod [G, G]$ (see [3]). Then the associated α - and B-double coset representative systems $\left\{D_{\alpha}\right\},\left\{D_{\beta}\right\}$ for $G \bmod \left([G, G], \tilde{G}_{1}\right)$ and $G \bmod \left([G, G], G_{2}\right)$ are $\left\{x^{s}: s=0, \pm 1, \ldots\right\}$ and $\{1\}$ respectively, and the v-double coset representatives $\left\{D_{\beta} E_{v}\right\}$ for $G \bmod ([G, G], \operatorname{gp}(c))$ are $\left\{x^{s}: s=0, \pm 1, \ldots\right\}$. Therefore, in Theorem 5 of [3], there is no t-symbol. Moreover, since
$y=c \in\left[G_{2}, G_{2}\right] \subset[G, G]$, it follows that $x^{s} \tilde{G}_{1} x^{-s} \subset[G, G]$ for each s. Hence, from Theorem 5, $[G, G]$ is a tree product of an infinite number of factors $\left\{\left[G_{2}, G_{2}\right], x^{s} \tilde{G}_{1} x^{-s}, s=0, \pm 1, \ldots\right\}$ with the subgroups $x^{s}{ }_{\operatorname{gp}}(c) x^{-s}$ and $x^{s}{ }_{\operatorname{gp}(y) x^{-s}}$ amalgamated under the mapping $x^{s} c x^{-s} \rightarrow x^{s} y x^{-s}$ $(s=0,1, \ldots)$. Since $\tilde{G}_{1} \neq Z_{\mu} \cong \operatorname{gp}(y)$, we have $x^{s} \tilde{G}_{1} x^{-s} \neq x^{s}{ }_{\mathrm{gp}}(y) x^{-s}$ for each s. Hence, by [4, p. 53], $[G, G]$ is not finitely generated.

3. Proof of theorem

We will give two examples. One has center Z and the other has center Z_{2}. We note that the latter can not be realized as a center of any fibered 2-knot group.

EXAMPLE 1. Let K_{1} and K_{2} be the 2- and 6-twist-spun 2-knots of the trefoil respectively [9]. Then we have

$$
G_{1}=\left\langle y, d: y d y^{-1}=d^{-1}, d^{3}\right\rangle
$$

and

$$
G_{2}=\left\langle x, a, b: x a x^{-1}=b, x b x^{-1}=a^{-1} b,[[a, b], a],[[a, b], b]\right\rangle
$$

[8].
Let V_{i} be a tubular neighborhood of $K_{i}(i=1,2)$ in S^{4}. Let C be a simple closed curve in $S^{4}-V_{2}$ which represents an element $c=[a, b]$ of G_{2} and N a tubular neighborhood of C in S^{4} such that $N \cap V_{2}=\emptyset$. Then, since N is homeomorphic to $S^{l} \times B^{3}$, the manifold $S^{4}-\stackrel{\circ}{N} a S^{2} \times B^{2}$ is considered as a tubular neighborhood of a trivial 2-knot in S^{4}. Therefore, in the previous section, we can take $V=S^{4}-8$. Let $h: V \rightarrow V_{1}$ be a homeomorphism of V onto V_{1} such that $j_{*}\left(h \mid V-\stackrel{i}{2}_{2}\right)_{*}^{-1} i_{2^{*}}(\tilde{y})=c$ for a generator \tilde{y} of $\pi_{1}\left(\partial V_{1}\right)$ with $i_{1}(\tilde{y})=y$. Then, from Section 2, we obtain a 2 -knot $K=h\left(K_{2}\right)$ with the group $G=\left\langle\tilde{G}_{1} * G_{2}: y c^{-1}\right\rangle$.

The element c has infinite order in G_{2}. Therefore, we have $\tilde{G}_{1}=G_{1}$. Thus G is a free product of G_{1} and G_{2} with amalgamated subgroups $\mathrm{gp}(y)$ and $\mathrm{gp}(c)$. Hence, by [5, p. 211], the center of G is $\mathrm{gp}(y) \cap C\left(G_{1}\right) \cap C\left(G_{2}\right)$, where $C\left(G_{i}\right)$ is the center of $G_{i}(i=1,2)$. Consequently, G has the non-trivial center $\operatorname{gp}\left(y^{2}\right) \cong z$ because
$C\left(G_{1}\right)=\operatorname{gp}\left(y^{2}\right)$ and $C\left(G_{2}\right)=\operatorname{gp}\left(x^{6}, c\right) \quad[8]$.
Furthermore, by virtue of the lemma, it follows that K is not fibered.

EXAMPLE 2. Let K_{1} and K_{2} be the $2-$ and 5 -twist-spun 2 -knots of the trefoil, respectively. Then the group G_{2} of K_{2} is

$$
\left\langle x, a, b: x a x^{-1}=b, x b x^{-1}=a^{-1} b, a^{5}=(a b)^{3}=(a b a)^{2}\right\rangle
$$

and the center $C\left(G_{2}\right)$ is $\operatorname{gp}\left(x\left[a, b^{-1}\right],(a b a)^{2}\right) \cong Z \oplus z_{2}$ [8], [9]. We choose the element $a b a$ of G_{2} as c. Then, in the same way as above, we can construct a $2-\mathrm{knot}$ whose group has center Z_{2} and which is not fibered.

Note. Recently, T. Kanenobu communicated to the author that he has obtained another example of such a $2-k n o t$ by Fox's hyperplane cross section method.

References

[1] Jean-Claude Hausmann et Michel Kervaire, "Sur le centre des groupes de nœuds multidimensionnels", C.R. Acad. Sci. Paris Sër. A 287 (1978), 699-702.
[2] Jonathan A. HilIman, "Aspherical four-manifolds and the centres of two-knot groups", preprint.
[3] A. Karrass and D. Solitar, "The subgroups of a free product of two groups with an amalgamated subgroup", Trans. Amer. Math. Soc. 150 (1970), 227-255.
[4] A.G. Kurosh, The theory of groups, Volume 1, second English edition (translated by K.A. Hirsch. Chelsea, New York, 1960).
[5] Wilhelm Magnus, Abraham Karrass, Donald Solitar, Combinatorial group theory (Pure and Applied Mathematics, 13. Interscience [John Wiley \& Sons], New York, London, Sydney, 1966).
[6] Lee Neuwirth, "The algebraic determination of the genus of knots", Amer. J. Math. 82 (1960), 791-798.
[1] Yaichi Shinohara, "Higher dimensional knots in tubes", Trans. Amer. Math. Soc. 161 (1971), 35-49.
[8] Katsuyuki Yoshikawa, "On 2-knot groups with the finite commutator subgroups", Math. Sem. Notes Kobe Univ. 8 (1980), 321-330.
[9] E.C. Zeeman, "Twisting spun knots", Trans. Amer. Math. Soc. 115 (1965), 471-495.

Faculty of Science,
Kwansei Gakuin University, Nishinomiya,
Hyogo 662,
Japan.

