SUM THEOREMS FOR COUNTABLY PARACOMPACT SPACES

HENRY POTOCZNY

In this paper, we extend the class of spaces to which the Σ and β theorems of Hodel apply, as well as the sum and subset theorems of [2]. Instead of the open cover definition of countable paracompactness, we utilize an equivalent formulation of countable paracompactness, due to Ishikawa [3]. Using the same technique, it is then possible to extend these results to spaces having property \mathscr{B} , introduced by Zenor in [7].

Finally, we exhibit a class of completely regular, T_2 spaces which have property \mathscr{B} .

Definition. A space X is said to be countably paracompact provided every countable open cover has an open locally-finite refinement.

Definition. A space X is said to have property \mathscr{B} if for any well-ordered monotone decreasing family $\{F(\alpha)|\alpha \in A\}$ of closed sets with empty intersection, there is a monotone decreasing family of domains $\{G(\alpha)|\alpha \in A\}$ such that:

(1) For all $\alpha \in A$, $F(\alpha) \subset G(\alpha)$,

(2) $\bigcap_{\alpha \in A} G(\alpha)^{-} = \emptyset.$

LEMMA 1. A space X is countably paracompact provided that for any countable descending family $\{F(i)|i \in \mathbb{Z}^+\}$, of closed sets with empty intersection, there is a countable descending family $\{G(i)|i \in \mathbb{Z}^+\}$, of open sets such that

(1) For all $i \in \mathbb{Z}^+$, $G(i) \supset F(i)$,

$$(2) \cap \{G(i)^{-} | i \in \mathbb{Z}^+\} = \emptyset.$$

Proof. See [3].

THEOREM 1. Let $X = \bigcup K(\alpha)$, where $\mathscr{H} = \{K(\alpha) | \alpha \in A\}$ is a locally finite family of closed, countably paracompact subsets of X. Then X is countably paracompact.

Proof. Let $\{F(i)|i \in \mathbb{Z}^+\}$ be a descending family of closed subsets of X such that $\bigcap F(i) = \emptyset$. For all $\alpha \in A$, $\{F(i) \bigcap K(\alpha)|i \in \mathbb{Z}^+\}$ is a descending family of closed subsets of $K(\alpha)$, with void intersection, whence there is a family $\{T(\alpha, i)|i \in \mathbb{Z}^+\}$, of open subsets of $K(\alpha)$ such that $T(\alpha, i + 1) \subset T(\alpha, i)$, and $\bigcap \{\operatorname{Cl}_{K(\alpha)}T(\alpha, i)|i \in \mathbb{Z}^+\} = \emptyset$. Since each $K(\alpha)$ is a closed subset of X, we can say that $\operatorname{Cl}_{K(\alpha)}T(\alpha, i) = T(\alpha, i)^-$, so that for $\alpha \in A$, $\bigcap \{T(\alpha, i)^-|i \in \mathbb{Z}^+\} = \emptyset$. (The closure bar means closure in X.) Now for

Received February 28, 1972 and in revised form, May 26, 1972.

SUM THEOREMS

 $x \in X$, let $A(x) = \{\alpha \in A | x \in K(\alpha)\}$. Then A(x) is finite, and since \mathscr{H} is locally finite, we can say that for $x \in X$, there is a set V(x), open in X such that $x \in V(x) \subset \bigcup \{K(\alpha) | \alpha \in A(x)\}$. Now for all $i \in \mathbb{Z}^+$, and $x \in F(i)$, let

$$S(x, i) = V(x) \cap (\cap \{X - (K(\alpha) - T(\alpha, i)) | \alpha \in A(x)\}).$$

Then it is easy to see that S(x, i) is an open subset of X, and contain the point x. Further, $S(x, i) \subset \bigcup \{T(\alpha, i) | \alpha \in A(x)\}$, for if $p \in S(x, i)$, then $p \in V(x)$, whence there exists $\tilde{\alpha} \in A(x)$ such that $p \in K(\tilde{\alpha})$. Also, $p \in \bigcap \{X - (K(\alpha) - T(\alpha, i)) | \alpha \in A(x)\}$, so that in particular, $p \in X - (K(\tilde{\alpha}) - T(\tilde{\alpha}, i))$, and $p \notin K(\tilde{\alpha}) - T(\tilde{\alpha}, i)$. Since p is a member of $K(\tilde{\alpha})$, then p must be a member of $T(\tilde{\alpha}, i)$, which is a subset of $\bigcup \{T(\alpha, i) | \alpha \in A(x)\}$.

Now for $i \in \mathbb{Z}^+$, let $W(i) = \bigcup \{S(x, i) | x \in F(i)\}$. Then the family $\{W(i)\}$ "works", that is, $\{W(i)\}$ is a family of open subsets, $W(i) \supset F(i)$, $\cap W(i)^- = \emptyset$, and $\{W(i)\}$ is a descending family. That each W(i) is open and contains F(i) is clear from the definition of W(i).

To see that $\bigcap W(i)^- = \emptyset$, note that

$$W(i)^{\perp} \subset \operatorname{Cl}_X(\cup \{T(lpha, i) | x \in F(i), \, lpha \in A(x)\}).$$

Since $\{K(\alpha)|\alpha \in A\}$ is locally finite, then for all $i \in \mathbb{Z}^+$, $\{T(\alpha, i)|\alpha \in A(x)\}$ is also locally finite, hence closure-preserving. In particular, then, the family $\{T(\alpha, i)|x \in F(i), \alpha \in A(x)\}$ is closure-preserving. Thus

$$W(i)^{-} \subset \bigcup \{T(\alpha, i)^{-} | x \in F(i), \alpha \in A(x)\};$$

hence to show that $\bigcap W(i)^- = \emptyset$, it suffices to show that

$$\bigcap_{i=1}^{\sim} \left\{ \bigcup \{T(\alpha, i)^{-} | x \in F(i), \alpha \in A(x)\} \right\} = \phi.$$

Now let $p \in X$. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be those members of A for which $p \in K(\alpha_1)$, $K(\alpha_2), \ldots, K(\alpha_k)$. Since $\bigcap_{i=1}^{\infty} T(\alpha_j, i)^- = \emptyset$, for $\alpha_j = \alpha_1, \alpha_2, \ldots, \alpha_k$, there are integers i_1, i_2, \ldots, i_k such that $p \notin T(\alpha_j, i_j)^-$, for $\alpha_j = \alpha_1, \alpha_2, \ldots, \alpha_k$. Let $i^* = \max(i_1, i_2, \ldots, i_k)$. Then since each family $\{T(\alpha, i)^-\}$ is descending, we have that $p \notin T(\alpha_j, i^*)^-$, for $\alpha_j = \alpha_1, \alpha_2, \ldots, \alpha_k$. This shows that $p \notin \bigcup \{T(\alpha, i^*)^- | x \in F(i^*), \alpha \in A(x)\}$, for if $\alpha \in A$, with $p \notin K(\alpha)$, then $p \notin T(\alpha, i^*)$, since $T(\alpha, i^*) \subset K(\alpha)$, and p meets only those sets $K(\alpha)$, for which α is one of the indices $\alpha_1, \alpha_2, \ldots, \alpha_k$. If α is one of the indices $\alpha_1, \alpha_2, \ldots, \alpha_k$, then by the choice of $i^*, p \notin T(\alpha, i^*)^-$. Thus

$$p \notin \bigcup \{T(\alpha, i^*)^- | x \in F(i^*), \alpha \in A(x)\},\$$

and we have that $\bigcap W(i)^- = \emptyset$.

We show one further fact. If j > i, then $W(j) \subset W(i)$. To do this, we show that if $x \in F(j)$, then $S(x, i) \supset S(x, j)$.

For all $\alpha \in A(x)$, $T(\alpha, j) \subset T(\alpha, i)$, so $K(\alpha) - T(\alpha, j)$ contains $K(\alpha) - T(\alpha, i)$, whence $X - (K(\alpha) - T(\alpha, j))$ is a subset of $X - (K(\alpha) - T(\alpha, i))$, and

$$V(x) \cap \left(\bigcap_{\alpha \in A(x)} (X - (K(\alpha) - T(\alpha, j))) \right)$$

is a subset of

$$V(x) \cap \left(\bigcap_{\alpha \in A(x)} (X - (K(\alpha) - T(\alpha, i))) \right),$$

that is, $S(x, j) \subset S(x, i)$.

Finally, then, $W(j) = \bigcup \{S(x, j) | x \in F(j)\} \subset \bigcup \{S(x, i) | x \in F(i)\} = W(i)$, and the theorem is proved.

THEOREM 2. Let X be a space which is the union of a locally finite family of closed sets, each hvaing property \mathcal{B} . Then X has property \mathcal{B} .

Proof. The proof is analogous to that of Theorem 1. Instead of a countable descending family, $\{F(i)|i \in \mathbb{Z}^+\}$, of closed sets with void intersection, we have to deal with a well-ordered monotone decreasing family, $\{F(i)|i \in I\}$, of closed sets, with empty intersection. It is easy to see that all remarks in Theorem 1 concerning the index set \mathbb{Z}^+ depended only on the fact that the positive integers are well-ordered. Hence the proof applies to the more general case. The proof in Theorem 1 was given for countable paracompactness, instead of the more general \mathscr{B} property, only to simplify the notation as much as possible.

THEOREM 3. Let X be a topological space such that every open subset of X ix countably paracompact (has property \mathcal{B}). Then every subset is countably paracompact (has property \mathcal{B}).

Proof. The proof is clear for countable paracompactness. Let F be a subset of X, where X has property \mathscr{B} . Let $\{F(\alpha) | \alpha \in A\}$ be a well-ordered monotone collection of closed subsets of F, with empty intersection. Then $\{\operatorname{Cl}_X F(\alpha) | \alpha \in A\}$ is a well-ordered, monotone collection of closed subsets of X.

Let $Y = \bigcap \{ \operatorname{Cl}_X F(\alpha) | \alpha \in A \}$. Then $\{ \operatorname{Cl}_X F(\alpha) \cap (X - Y) | \alpha \in A \}$ is a well-ordered monotone collection of closed subsets of X - Y, with empty intersection. Since Y is closed, X - Y is open, hence has property \mathscr{B} . Thus there is a monotone collection, $\{ G(\alpha) | \alpha \in A \}$, of open subsets of X - Y, such that $G(\alpha) \supset \operatorname{Cl}_X F(\alpha) \cap (X - Y)$ and $\bigcap \{ \operatorname{Cl}_{X-Y} G(\alpha) | \alpha \in A \} = \emptyset$.

For $\alpha \in A$, let $G'(\alpha) = G(\alpha) \cap F$. Then $\{G'(\alpha) | \alpha \in A\}$ is a monotone collection of open subsets of F. We show that this collection has two further properties:

(1) For all
$$\alpha \in A$$
, $G'(\alpha) \supset F(\alpha)$, and
(2) $\cap \{ \operatorname{Cl}_F G'(\alpha) | \alpha \in A \} = \emptyset.$

Note first that $F \subset X - Y$. Suppose $x \in F$. Then there exists $\alpha \in A$ such that $x \notin F(\alpha)$. Since $F(\alpha)$ is closed in F, x is not a limit point of $F(\alpha)$. In particular, $x \notin \operatorname{Cl}_x F(\alpha)$. But then $x \notin Y$, and $F \subset X - Y$.

1. Let $x \in F(\alpha)$. Then $x \in F \subset X - Y$. Further, $x \in \operatorname{Cl}_X F(\alpha)$, so that $x \in \operatorname{Cl}_X F(\alpha) \cap (X - Y) \subset G(\alpha)$. Then $x \in G(\alpha) \cap F = G'(\alpha)$, so that $F(\alpha) \subset G'(\alpha)$.

708

SUM THEOREMS

2. It is clear that $\operatorname{Cl}_{F}G'(\alpha) \subset \operatorname{Cl}_{X-Y}G'(\alpha)$, which is in turn a subset of $\operatorname{Cl}_{X-Y}G(\alpha)$. Since $\bigcap \{\operatorname{Cl}_{X-Y}G(\alpha)|\alpha \in A\} = \emptyset$, then the intersection of the smaller sets, $\{\operatorname{Cl}_{F}G'(\alpha)|\alpha \in A\} = \emptyset$. This shows that F has property \mathscr{B} .

THEOREM 4. Let X be countably paracompact (have property \mathscr{B}). Let F be a closed subset of X. Then F is countably paracompact (has property \mathscr{B}).

Proof. The proof is clear. Theorems 1, 2, 3, and 4 suffice to show that countable paracompactness and the \mathscr{B} property satisfy the sum and subset theorems of [2], this is: (1) if X is a space which admits a σ -locally finite open cover, the closure of each member being countably paracompact or \mathscr{B} , then X is countably paracompact or \mathscr{B} ; (2) if X admits a σ -locally finite elementary cover, with each member of the cover countably paracompact or \mathscr{B} , then X is countably paracompact or \mathscr{B} ; (3) if X is regular, and admits a σ -locally finite open cover, each member with compact boundary and each member countably paracompact or \mathscr{B} , then X is countably paracompact or \mathscr{B} .

We now exhibit a class of completely regular, T_2 spaces with the \mathscr{B} property. This class is described in terms of the Stone-Čech compactification, in a fashion similar to that introduced by Tamano in [5] and [6], in order to characterize various classes of spaces.

THEOREM 5. Let X be completely regular and Hausdorff. Suppose that for each compact subset K, of $\beta X - X$, that $X \times K$, and the diagonal, ΔX), have disjoint neighborhoods in the space $X \times \beta X$. Then X has property \mathcal{B} .

Proof. Let $\{F(\alpha)|\alpha \in \Gamma\}$ be a well-ordered, monotone collection of closed subsets of X, with empty intersection. Let $K = \bigcap \{\operatorname{Cl}_{\beta X} F(\alpha) | \alpha \in \Gamma\}$. Let G, H be disjoint open subsets of $X \times \beta X$ such that $G \supset \Delta(X)$, and $H \supset X \times K$. For each $\alpha \in \Gamma$, let

$$G(\alpha) = \{ x | \{ x \} \times \operatorname{Cl}_{\beta X} F(\alpha) \} \cap G \neq \emptyset \}.$$

We exhibit four properties of the collection $\{G(\alpha) | \alpha \in \Gamma\}$.

(1) For each $\alpha \in \Gamma$, $F(\alpha) \subset G(\alpha)$, for if $p \in F(\alpha)$, then $(p, p) \in \{p\} \times \operatorname{Cl}_{\beta X} F(\alpha)$ and $(p, p) \in \Delta(X) \subset G$, so that $(\{p\} \times \operatorname{Cl}_{\beta X} F(\alpha)) \cap G \neq \emptyset$, whence $p \in G(\alpha)$.

(2) For each $\alpha \in \Gamma$, $G(\alpha)$ is open. Let $x \in G(\alpha)$. Then

$$(\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha)) \cap G \neq \emptyset.$$

Let (x, p) be a point in the intersection. G is open, and $(x, p) \in G$, so that there exist sets V, W, open in X, βX , respectively, such that $(x, p) \in V \times W \subset G$. But $V \subset G(\alpha)$, for if $a \in V$, then $(a, p) \in V \times W \subset G$, and $(a, p) \in \{a\} \times \operatorname{Cl}_{\beta X} F(\alpha)$ as well, so that $a \in G(\alpha)$. Thus $x \in V \subset G(\alpha)$, so that $G(\alpha)$ is open.

HENRY POTOCZNY

- (3) $\{G(\alpha) | \alpha \in \Gamma\}$ is easily seen to be monotone.
- (4) $\cap \{ \operatorname{Cl}_{x} G(\alpha) | \alpha \in \Gamma \} = \emptyset$. Let $x \in X$. Then

 $\bigcap \{\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha) | \alpha \in \Gamma\} = \{x\} \times (\bigcap \{\operatorname{Cl}_{\beta X} F(\alpha) | \alpha \in \Gamma\}) \subset X \times K \subset H.$ But $\bigcap \{\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha) | \alpha \in \Gamma\}$ is the intersection of compact sets and lies inside the open set H. Therefore the intersection of some finite number of these sets lies inside H, say

$$\bigcap_{i=1}^{n} \{\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha_{i})\}.$$

Since the collection $\{F(\alpha)|\alpha \in \Gamma\}$ is monotone, one of the finite number of sets is smaller than the others, say $\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha)$, for some $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$. Then

$$\{x\} \times \operatorname{Cl}_{\beta X} F(\alpha) \subset H.$$

But then there is an open subset of X, say N(x), such that $x \in N(x)$, and $N(x) \times \operatorname{Cl}_{\beta_X} F(\alpha) \subset H$. But then $N(x) \cap G(\alpha) = \emptyset$, for if $p \in N(x)$, then $\{p\} \times \operatorname{Cl}_{\beta_X} F(\alpha) \subset H$, and $H \cap G = \emptyset$. Thus N(x) is an open set about x, which does not meet $G(\alpha)$, whence $x \notin \operatorname{Cl}_X G(\alpha)$. Therefore

$$\cap \{\operatorname{Cl}_X G(\alpha) | \alpha \in \Gamma\} = \emptyset.$$

The existence of the four properties described above shows that X has property \mathscr{B} .

There is a partial converse to the previous theorem.

THEOREM 6. Let X be a completely regular Hausdorff space with property \mathscr{B} . Let K be a compact subset of $\beta X - X$. Let $\{W(\alpha) | \alpha < \sigma\}$ be a well-ordered monotone decreasing family of open subsets of βX such that $K = \bigcap W(\alpha) =$ $\bigcap \operatorname{Cl}_{\beta X} W(\alpha)$. Then $X \times K$ and ΔX have disjoint neighborhoods in $X \times \beta X$.

Proof. For $\alpha < \sigma$, let $F(\alpha) = P_X[X \times \operatorname{Cl}_{\beta X} W(\alpha)) \cap \Delta X]$. Then the family $\{F(\alpha) | \alpha < \sigma\}$ is a well-ordered, monotone decreasing family of closed subsets of X with empty intersection.

For $\alpha < \sigma$, let $K(\alpha) = F(\alpha)$ if α is not a limit ordinal and let $K(\alpha) = \bigcap \{F(\beta) | \beta < \alpha\}$ if α is a limit ordinal. Then $\{K(\alpha) | \alpha < \sigma\}$ is a well-ordered monotone decreasing family of closed subsets of X, with empty intersection. Since X has the \mathscr{B} property, there is a monotone decreasing family $\{V(\alpha) | \alpha < \sigma\}$ of open subsets of X such that $V(\alpha) \supset K(\alpha)$, and $\bigcap V(\alpha)^- = \emptyset$.

Now let

$$A = \bigcup_{\alpha < \sigma} \left((X - V(\alpha)^{-}) \times W(\alpha + 1) \right).$$

Then A is an open set and is easily seen to contain $X \times K$. Moreover $(\operatorname{Cl}_{X \times \beta_X} A) \cap \Delta X = \emptyset$. To see this, let x be an arbitrary point of X and let α^* be the least member of $\{\alpha < \sigma | x \notin \operatorname{Cl}_{\beta_X} W(\alpha)\}$. Then (x, x) is a member of $X \times (\beta X - \operatorname{Cl}_{\beta_X} W(\alpha^*))$, which is open, and does not meet

$$\bigcup_{\alpha \ge \alpha^*} ((X - V(\alpha)^-) \times W(\alpha + 1)).$$

710

Thus, to show that (x, x) is not a limit point of A, it suffices to show that (x, x) is not a limit point of $\bigcup_{\alpha < \alpha^*} ((X - V(\alpha)^-) \times W(\alpha + 1))$.

Suppose first that α^* is a limit ordinal. Since $x \in \operatorname{Cl}_{\beta X} W(\alpha)$, for all $\alpha < \alpha^*$, then $x \in F(\alpha)$, for all $\alpha < \alpha^*$, and $x \in \bigcap \{F(\alpha) | \alpha < \alpha^*\} = K(\alpha^*) \subset V(\alpha^*)$ and $V(\alpha^*) \times \beta X$ is an open set about (x, x) which does not meet $\bigcup_{\alpha < \alpha^*} ((X - V(\alpha)^{-}) \times W(\alpha + 1))$, so in the case that α^* is a limit ordinal, (x, x) is not a limit point of A.

Suppose now that α^* has an immediate predecessor, say α_0 . Then

$$\bigcup_{\alpha < \alpha^*} \left((X - V(\alpha)^-) \times W(\alpha + 1) \right) = \bigcup_{\alpha \le \alpha_0} \left((X - V(\alpha)^-) \times W(\alpha + 1) \right).$$

Since $\alpha_0 < \alpha^*$, then $x \in \operatorname{Cl}_{\beta X} W(\alpha_0)$, whence $x \in F(\alpha_0)$, which is a subset of $V(\alpha_0)$. Then $V(\alpha_0) \times \beta X$ is an open set about (x, x) which does not meet $\bigcup_{\alpha \leq \alpha_0} ((X - V(\alpha)^{-}) \times W(\alpha + 1)).$

Thus (x, x) is not a limit point of A, so that $(\operatorname{Cl}_{X \times \beta X} A) \cap \Delta X = \emptyset$, whence the sets A and $(X \times \beta X) - \operatorname{Cl}_{X \times \beta X} A$ are disjoint open subsets of $X \times \beta X$ which contain $X \times K$ and ΔX , respectively.

References

- 1. R. E. Hodel, Total normality and the hereditary property, Proc. Amer. Math. Soc. 17 (1966), 462–465.
- 2. —— Sum theorems for topological spaces, Pacific J. Math. 30 (1969), 59-65.

3. T. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687.

4. J. E. Mack, Directed covers and paracompact spaces, Can. J. Math. 19 (1967), 649-654.

- 5. H. Tamano, On paracompactness, Pacific J. Math. 10 (1960), 1043-1047.
- 6. On compactifications, J. Math. Kyoto Univ. 1 (1962), 161-193.

7. P. Zenor, A class of countably paracompact spaces, Proc. Amer. Math. Soc. 24 (1970), 258-262.

University of Dayton, Dayton, Ohio