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Abstract

While the separable quotient problem is famously open for Banach spaces, in the broader context of
barrelled spaces we give negative solutions. Obversely, the study of pseudocompact X and Warner
bounded X allows us to expand Rosenthal’s positive solution for Banach spaces of the form Cc(X) to
barrelled spaces of the same form, and see that strong duals of arbitrary Cc(X) spaces admit separable
quotients.
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1. Introduction

In this paper locally convex spaces (lcs’s) and their quotients are assumed to be infinite-
dimensional and Hausdorff. The classic separable quotient problem asks if all Banach
spaces have separable quotients. Do all barrelled spaces? We find some that do not
(Section 2), and add to the long list of those that do (Section 3).

Schaefer [27, para. 7.8(i), page 161] and others observe that:

(∗) If F is a subspace of a normed space E, then E′β/F
⊥ ≈ F′β, where E′β and F′β

denote the respective strong duals of E and F.

Consequently, reflexive Banach spaces have separable quotients [30, Example 15-3-2].
When X is compact, the Banach space Cc(X) contains c0, and `1 is a separable
quotient of Cc(X)′β by (∗). An over-arching recent result [1] of Argyros, Dodos and
Kanellopoulos (ADK) is that strong duals of arbitrary Banach spaces admit separable
quotients.

Rosenthal [17] proved that for any compact space X, either `2 or c is a [separable]
quotient of Cc(X). Venturing beyond Banach spaces, Eidelheit [5, Satz 2] showed that
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every Fréchet space (complete metrisable lcs) F which is not Banach must admit a
quotient isomorphic to ω, the separable Fréchet space of all scalar sequences. Pérez
Carreras and Bonet [2] obtained the result for finite-codimensional subspaces of F, and
asked about countable-codimensional subspaces [3, Problem 13.2.2]. Saxon answered
positively [19, 20], and with Narayanaswami [22, page 77] proved every proper (LF)-
space (inductive limit of a properly increasing sequence of Fréchet spaces) has a
separable quotient (cf. [16]).

All the quotients above are of barrelled spaces [21]; that is, lcs’s in which every
barrel (= absorbing balanced convex closed set) is a neighbourhood of zero. An lcs E
is barrelled if and only if it is the strong dual of its weak dual E′σ [12, Section 21.2(2)].
In Section 3 we extend Rosenthal: if Cc(X) is barrelled, then `2, c or ω is a (separable)
quotient. But echoes of ADK reach well beyond Banach, Fréchet, and even barrelled
spaces: strong duals of arbitrary Cc(X) spaces admit separable quotients. In fact, we
prove that Cc(X)′β always contains a complemented copy either of `1, or of ϕ, the strong
dual of ω.

These positive results and Popov’s nonlocally convex counterexamples [15] beg the
separable quotient question for (i) lcs’s, (ii) strong duals of lcs’s and (iii) barrelled
spaces. Section 2 shows that those GM-spaces which disallow separable quotients
constitute the nonempty class of quasi-Baire GM-spaces, settling all three basic
questions (i)–(iii) in the negative.

Section 3 also enhances the general structure theory of Cc(X) spaces and adds a
large collection of Banach spaces perhaps not previously known to admit separable
quotients. We recall for the reader’s convenience that

X is compact ⇒ Cc(X) is a DF-space ⇒ Cc(X) is a d f -space
⇒ X is Warner bounded ⇒ X is pseudocompact.

Precisely when X is Warner bounded, Cc(X)′β is a normed space which (we show)
contains `1 complemented; Cc(X)′β is a Banach space precisely when Cc(X) is a d f -
space [8]. Therefore precisely when X is Warner bounded and not compact, Cc(X)
is not normable (so (∗) and ADK do not apply) and yet Cc(X)′β is a normed space
which, by Section 3, has a separable quotient `1, as does the completion. Consider,
for example, Morris and Wulbert’s nonnormable DF-space Cc[0,Ω) [14]: the strong
dual is necessarily normable (and complete, in this case) with a complemented copy
of `1. In fact, examples in [7–10] show that none of the four displayed arrows can be
reversed. Therefore in these examples the spaces X are nonhomeomorphic, and most
are Warner bounded and not compact.

2. Barrelled spaces without separable quotients

We note that an lcs H is (isomorphic to) a dense subspace of ω if and only if
dim H′ = ℵ0, for in this case the weak topology σ(H,H′), being metrisable, coincides
with the Mackey topology τ(H,H′). An lcs E is an S σ space if it is the union of an
increasing sequence of proper closed subspaces.
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Theorem 2.1. Let E be an lcs. The following three statements are equivalent:

(1) E is an S σ space;
(2) E contains a closed ℵ0-codimensional subspace M;
(3) E′σ contains a subspace H isomorphic to a dense subspace of ω.

Proof. (1) ⇔ (2): Suppose that (En)n is a properly increasing sequence of closed
subspaces which covers E. Let ( fn)n be a sequence in E′ where each fn vanishes
on En but not on all of En+1, and take M = ∩n f⊥n . Conversely, given M, let (xn)n be a
cobasis for M in E, so that E is covered by the properly increasing sequence (En)n of
closed subspaces, where En = M + sp{x1, . . . , xn}.

(2)⇔ (3): Given M, set H = M⊥ and note that dim H′ = dim E/M = ℵ0; given H,
set M = H⊥. �

It is easy to generalise [26, P1 ⇔ P3] from Banach spaces to lcs’s:

Theorem 2.2. An lcs E admits a separable quotient if and only if it contains a dense
S σ subspace.

See [11] for a topological vector space analog. The main result of [26] says that
a Banach space has a separable quotient if and only if it has a dense nonbarrelled
subspace, and via the next theorem, ‘nonprimitive’ can replace ‘nonbarrelled’, but
neither version is valid for general lcs’s; for example consider ϕ.

An lcs E is primitive (in [25], has property f |Ln ) if a linear form on E is
continuous when its restriction to each member of some increasing, covering sequence
of subspaces is continuous. All barrelled spaces and all non-S σ spaces are primitive;
in fact, primitivity is the weakest of the usual weak barrelledness conditions.

Eberhardt and Roelcke’s GM-spaces satisfy the hypothesis of our next theorem.
Indeed, every dense subspace of a GM-space is barrelled [4].

Theorem 2.3. Let E be an lcs in which every dense subspace is primitive (a GM-space,
for example). E admits a separable quotient if and only if E is an S σ space.

Proof. Every S σ space E has a closed subspace M with dim E/M = ℵ0. Necessarily,
E/M is separable.

Conversely, if E/M is separable, then M is a (closed) ℵ0-codimensional subspace
of a dense subspace F. The proof is complete if we show that F = E. Suppose that
there is some x ∈ E\F. Then the dense G := F + sp{x} is primitive with closed ℵ0-
codimensional subspace M, and is the union of a sequence M = M1 ⊂ M2 ⊂ · · · of
subspaces with each dim Mn+1/Mn = 1. Thus every linear form on G which vanishes
on M has continuous restrictions to Mn and is continuous. In particular, the linear form
which vanishes on F and is 1 at x must be continuous, a contradiction of density. �

From the proof it is clear that any separable quotient of a GM-space E must be
ℵ0-dimensional without proper dense subspaces; in particular, E admits no proper
separable quotients in the sense of Robertson [16]. In [18] we call non-S σ barrelled
spaces quasi-Baire (QB). Every Baire lcs (for example each Fréchet space) is QB, and
a barrelled space E is QB if and only if E 5 E × ϕ [23, Theorem 1 d)].
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Corollary 2.4. An lcs in which every dense subspace is barrelled (for example a GM-
space) admits separable quotients if and only if it is not QB.

The (negative) answer to questions (i)–(iii) follows:

Corollary 2.5. Some barrelled spaces do not admit separable quotients.

Proof. Some GM-spaces are Baire [4, 3.5 and 3.6], hence QB. �

3. Barrelled spaces with separable quotients

The infinite Tichonov (completely regular Hausdorff) space X is pseudocompact
if and only if the set B := { f ∈ C(X) : | f (x)| ≤ 1 for all x ∈ X} is a barrel in Cc(X),
where C(X) is the linear space of all real-valued continuous functions on X, and Cc(X)
denotes C(X) endowed with the compact-open topology. If X is pseudocompact and
Cc(X) is barrelled, then B is a neighbourhood of zero; equivalently, X is compact. We
proved [8, Theorem 3.1] that X is not pseudocompact if and only if Cc(X) contains a
copy of ω. In any lcs, copies of ω are complemented [3, Corollary 2.6.5(iii)]. Since X
is either pseudocompact or not, we have the following theorem.

Theorem 3.1. If Cc(X) is barrelled, then it admits a separable quotient. When X is
compact, this is Rosenthal’s result; some quotient is an isomorph of either the Hilbert
space `2 or the Banach space c. When X is not compact, the barrelled space Cc(X)
must contain a complemented copy of ω.

Observation (∗) produces, independent of ADK, a separable quotient E′β/F
⊥ for

every choice of normable E having subspace F with F′β separable. The observation
fails when E is a general lcs [12, Section 31.7]; nevertheless, we shall prove that the
quotient E′β/F

⊥ is still separable and isomorphic to F′β provided F′β is isomorphic to
either ϕ or the Banach space `1.

Lemma 3.2. If M is a closed ℵ0-codimensional subspace of an lcs E then, under the
strong topology β(E, E′), every algebraic complement N is a topological complement
isomorphic to ϕ.

Proof. Let V be an absolutely convex absorbing set in N. The proof is complete if we
show that M + V is a β(E, E′)-neighbourhood of 0. One routinely finds a biorthogonal
sequence {xn, fn}n ⊂ E × E′ with {xn}n a Hamel basis for N and each fn ∈ M⊥. Choose
εn > 0 with each εnxn ∈ V , and note that {2nε−1

n fn(x)}n is eventually 0 for each x ∈ E.
Hence {2nε−1 fn}n is σ(E′,E)-bounded, and its polar, a β(E,E′)-neighbourhood of 0, is
contained in M + V by convexity. �

The desired dual version follows.

Theorem 3.3. Let E be a locally convex space with subspace H isomorphic to a dense
subspace of ω. If E′ is endowed with any locally convex topology finer than σ(E′, E),
then H⊥ is closed in E′ and the quotient E′/H⊥ is separable, indeed is ℵ0-dimensional.
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For the strong dual in particular, every algebraic complement of H⊥ is a topological
complement in E′β isomorphic to ϕ.

Certainly, the choice of H is limited; for example, we cannot interchange the roles
of ω and ϕ. Indeed, let E be any (LF)2-space; that is, an (LF)-space which is non-S σ

and contains a copy H of ϕ [23]. We claim that E′β does not contain a copy G of ω, the
strong dual of ϕ. Otherwise, by minimality, G would be a copy of ω in E′σ, and so, by
Theorem 2.1, the space E would be S σ, a contradiction.

We generalise a choice of H known for Banach spaces.

Theorem 3.4. Let E be a locally convex space with subspace H isomorphic to a dense
subspace of the Banach space c0. If E′ is endowed with any locally convex topology
between σ(E′, E) and β(E′, E), then H⊥ is closed in E′ and the quotient E′/H⊥ is
separable. For the strong dual in particular, H⊥ is complemented in E′β by an isomorph
N of the Banach space `1 (the strong dual of c0).

Proof. We prove the last sentence first. Let T : `1 → H′β be an isomorphism from `1

onto H′β, and let (gn)n be the Schauder basis for H′β which is the image of the natural
Schauder basis for `1, so that

T ((an)n) =
∑

n

angn

for each (an)n ∈ `
1. Let U denote the unit ball {(an)n ∈ `

1 :
∑

n |an| ≤ 1}. Now T (U) is a
bounded neighbourhood of zero in H′β, which implies that

T (U) is equicontinuous on the normed space H, and
B• ⊂ T (U), where B• is the polar in H′ of some bounded set B in H.

Thus (gn)n, a subset of T (U), is equicontinuous on H, and the Hahn–Banach theorem
provides linear extensions fn of the gn such that ( fn)n is equicontinuous on E. Let W
be a closed absolutely convex neighbourhood of zero in E such that

( fn)n ⊂ W◦.

For each ε > 0 and (an)n ∈ ε · U the series
∑

n an fn converges pointwise to a sum
S ((an)n) ∈ ε ·W◦, and the mapping S thus defined is linear from `1 onto its image
S (`1) =: N. If A is any bounded set in E, then there is some ε > 0 with ε · A ⊂ W, so
that A◦ ⊃ ε ·W◦ ⊃ S (ε ·U), which proves that S is continuous. Since each S ((an)n)|H =

T ((an)n), the mapping is one-to-one.
Now suppose that f ∈ B◦ ∩ N. Then for some (an)n ∈ `

1 we have f = S ((an)n) ∈ B◦.
Therefore T ((an)n) = f |H ∈ B• ⊂ T (U), and T one-to-one implies that (an)n ∈ U.
Hence f ∈ S (U), and we have proved that

(†) B◦ ∩ N ⊂ S (U),

so that S is open. Therefore S is an isomorphism from the Banach space `1 onto N
with the topology induced by E′β.
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One easily checks that E′ = H⊥ + N and H⊥ ∩ N = {0}. Now suppose that we are
given h ∈ H⊥, g ∈ N with h + g ∈ B◦. Note that h vanishes on B since B ⊂ H, which
implies that g ∈ B◦. From (†) we conclude that g ∈ S (U), thus h + g ∈ H⊥ + S (U), so
that B◦ ⊂ H⊥ + S (U), and the latter set is a neighbourhood of zero in E′β. Hence the
projection of E′β onto N along H⊥ is continuous, and the theorem’s last sentence is
established.

Finally, if E′ is given any topology between σ(E′, E) and β(E′, E), the quotient
E′/H⊥ is still separable, since the Banach space `1 with any coarser topology is still
separable. �

Now previous work [9] and a short argument will show that these two spaces, c0

and ω, provide separable quotients in the strong dual of every Cc(X) space. Whether
every Cc(X) itself admits separable quotients remains open.

Cc(X) is always non-S σ [10, 13]. Not so for the weak dual Cc(X)′σ; we prove that
it is non-S σ precisely when X is Warner bounded, that is when, for every disjoint
sequence (Un)n of nonempty open sets in X, there is a compact set in X that meets
infinitely many of the Un. We also prove that, while (LF)2-spaces are strong duals that
characteristically contain ϕ and not ϕ complemented [3, 23], the strong dual Cc(X)′β
must contain ϕ complemented if it contains ϕ at all.

Theorem 3.5. Let X be an infinite Tichonov space. The following eight statements are
equivalent:

(1) X is Warner bounded;
(2) Cc(X) does not contain a dense subspace of ω;
(3) Cc(X) contains c0 and no dense subspace of ω;
(4) Cc(X)′β does not contain ϕ;
(5) Cc(X)′β does not contain ϕ complemented;
(6) Cc(X)′β is normed (Warner);
(7) Cc(X)′β is normed and contains `1 complemented;
(8) Cc(X)′σ is non-Sσ.

Proof. In [9, Corollary 2.6] we proved that (1), (2) and (4) are equivalent, and that (4)
⇒ (5) is trivial. Theorem 3.3 says that (5)⇒ (2). Duality invariance and Theorem 2.1
yield (2)⇔ (8). Warner [29] (cf. [9]) proved (1)⇔ (6). Thus we have the equivalence
of (1), (2), (4), (5), (6) and (8).

Trivially, (3)⇒ (2) and (7)⇒ (6).
(1) ⇒ (3): Half the work is already done, since (1) ⇒ (2). Assuming that X is

Warner bounded, we must show that Cc(X) contains a copy H of c0. There always
exists a disjoint sequence (Un)n of nonempty open sets in X. By definition, there
is a compact set K in X which meets infinitely many of the Un, so there are a
subsequence (Vn)n of (Un)n and a sequence (xn)n with xn ∈ K ∩ Vn for each n ∈ N.
If Q is any compact set in X, the seminorm ρQ on C(X) defined by the equation
ρQ( f ) = sup{| f (x)| : x ∈ Q} is continuous on Cc(X), whose topology is generated by
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the totality of such seminorms. For each n, a well-known extension theorem yields
fn ∈ C(X) such that fn(xn) = 1, fn(X\Vn) = {0}, and | fn(x)| ≤ 1 for all x ∈ X. For each
(an)n ∈ c0 it is readily seen that the series

∑
n an fn converges pointwise to a continuous

function on X, so that

H :=
{∑

n

an fn : (an)n ∈ c0

}
is a well-defined subspace of Cc(X). Furthermore, for each (an)n ∈ c0 and compact set
Q in X, have

ρQ

(∑
n

an fn
)
≤ sup{|an| : n ∈ N} = ρK

(∑
n

an fn
)
.

Therefore ρK is a norm on H which generates the topology induced by Cc(X), and H
is norm-isomorphic to c0.

Finally, the equivalent statements (1)–(6) and (8) and Theorem 3.4 imply (7). �

Non-S σ, primitive and dual locally complete (dlc) [24] are duality invariant
properties, generally distinct. Our paraphrase [9, Theorem 2.4(6)] of Warner says
that (1) is equivalent to the following statement:

(9) X is pseudocompact and Cc(X)′σ is dlc.
Moreover, (1) is also equivalent to:

(10) X is pseudocompact and Cc(X)′σ is primitive.
Indeed, (9)⇒ (10) is immediate. We easily argue that ¬(8)⇒ ¬(10): if M is a closed
ℵ0-codimensional subspace of a primitive Cc(X)′σ, then M⊥ is a copy of ω in Cc(X),
so X is not pseudocompact [8]. �

Hence (1)–(10) are equivalent.
In [6] we prove that Cp(X)′σ, while never non-S σ, is dlc if and only if it is primitive,

if and only if X is a P-space.

Corollary 3.6. Let X be an arbitrary (infinite) Tichonov space. Both the strong and
weak duals of Cc(X) admit separable quotients. In fact:

(A) If X is Warner bounded, Cc(X) contains the Banach space c0; otherwise it
contains a dense subspace of ω.

(B) If Cc(X)′β is normed, it contains a complemented copy of the Banach space `1;
otherwise it contains a complemented copy of ϕ.

Every separable Banach space is a quotient of `1 (cf. [20]), thus also of each normed
Cc(X)′β, by (B). Separable quotients exist for Cp(X)′β and Cp(X)′σ [6].

Tweddle and Yeomans [28] used c-dimensional bounded sets to see that every
barrelled Cc(X) space has a barrelled countable enlargement. Since each barrelled
Cc(X) contains either ω or c0, enlargements for just those two spaces readily yield the
general result. Also potentially useful is the fact that a quasibarrelled Cc(X) is either a
Banach space or contains a dense subspace of ω.
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[6] J. C. Ferrando, J. Kąkol and S. A. Saxon, ‘The dual of the locally convex space Cp(X)’, Funct.

Approx. Comment. Math. 50(2) (2014), 1–11.
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[10] J. Kąkol, S. A. Saxon and A. R. Todd, ‘Weak barrelledness for C(X) spaces’, J. Math. Anal. Appl.

297 (2004), 495–505.
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