Can. J. Math., Vol. XXV, No. 5, 1973, pp. 1090-1102

A TECHNIQUE FOR STUDYING THE BOUNDEDNESS AND
EXTENDABILITY OF CERTAIN TYPES OF OPERATORS

P. G. ROONEY

1. Introduction. For 1 < p < o0, u real, let L, , denote the collection of
functions f, Lebesgue measurable on (0, 0 ), and such that || f||., < o0, where

(1.1) 1o = 4 s

Also, if X and Y are Banach spaces, denote by [X, V] the collection of bounded
linear operators from X to Y; [X, X] denote by [X]. Let ./, denote the
collection of operators S € [L, ], which are defined in terms of a kernel £,
associated with .S, by an equation of the form

="y J‘m di

e . k(xt)f(t) o

and let.7 , denote the collection of operators 1I° € [L, o], which are defined in
terms of a kernel [, associated with 7", by an equation of the form

(1.2) (SF)(x) = =@ V7

(1.3) (1) () = w070 & oo :O 16 /O)f Q).

In a recent paper [6], we considered particular operators of the form Ry~'R;,
where either both R; and R, belonged to %, for some u, or both R, and R,
belonged to 7, for some u. By associating with a certain function, analytic in
a strip, an operator in [L, ,] for a range of values of u and p, we were able to
extend R,7'R; to other L, , spaces as an element of [L, ,]. The technique used
there seems of some general interest, and our first objective in this paper is to
prove a general result as to when an operator in [L, ,] can be defined by the
method used in [6]. This is accomplished in Theorem 1.

Our second objective is to show when R,~1R; can be extended, and we achieve
this in Theorem 2.

In [6] we applied our results to relate the ranges of R; and R,, and our final
objective is to place the technique used there in a general setting. This is done
in Theorem 3.

In section 2 below we prove a number of preliminary lemmas. In section 3
we show how to associate an operator of [L,,] with a function analytic in a
strip, the results being summed up in Theorem 1. Section 4 is devoted to deter-
mining necessary and sufficient conditions that transformations be in ., or
7 ., while in section 5 we give conditions that R,~!R; exist and be extendable.
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In section 6 we show how the extendability of R, can be used to extend R,
and relate their ranges, while in section 7 we give two examples of the use of
this process.

2. Preliminaries. In this section we shall prove two lemmas giving some
properties of the spaces L, ,, define the Mellin transformation, and state a
lemma giving its principal properties. First we need a definition.

Definition 2.1. If 1 £ p < 00, f € L, ,, we define C, , by

(Cupf ) (1) = ex'7f(e").
Lemma 2.1. C,, ts an tsometric isomorphism of L, , onto L,(—o0, o0).
Proof. See [6, Lemma 2.1].

Definition 2.2. Denote by C, the collection of functions, continuous on (0, o)
and vanishing outside some interval (a, b), where 0 < a < b < .

LeEmmA 2.2. Cy is dense in L, ,. Indeed if f € Ly, ,, (N Ly, », and € > 0, then
g exists tn Co so that ||f — glluini < 1 =12

Proof. See [6, Lemmas 2.2 and 2.3].
Definition 2.3. For f € L,,, 1 = p £ 2, let
(M) ((u/p) +1t) = (Cunf )" (1),
where F is the Fourier transform of F, defined by

F(@t) = f e"™F(u)du

when F € Ly(—c0, 00) M L,(—0, ©), and by continuity on L,(—o0, o)
when 1 < p < 2. M will be called the Mellin transformation.

Lemma 23. If 1 £ p £2, M€ [L,y, Ly(—0, ©)]. If p =2, # s
unitary if Ly(—00, ) has measure dt/2mw.

Proof. See [6, Lemma 4.1].

3. A class of operators. We first define a class of analytic functions, and
then show that with each member of this class we can associate an operator in
[L, ] for a range of values of u and p.

Definition 3.1. We say m € S if there are extended real numbers a(m) and
B(m), with a(m) < B(m), so that

(@) m(s) is analytic in the strip a(m) < Re s < B(m),

(b) in every closed sub-strip, a1 < Res £ op, wherea(m) < o1 < 0y < B(m),
m(s) is bounded,

(c) for a(m) < o < B(m), |m' (¢ + 4t)| = O(J¢t|™1), as |¢| — .
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LEMMA 3.1. If m € | then for each o, a(m) < ¢ < B(m), and for each p,
1< p<oo, m(o+1it) is an L,(—co, ) multiplier. If the operator, in
[L,(—0, )] for 1 < p < o0, generated by m (o + it) is denoted by T, ., then
forl < p £2,F¢ Ly(—0, ),

(3.1) (Th.oF)(t) = m(oc + it) F(2).
If1<p £2 aim) <o <B(m), T, is one-to-one on L,(—c0, o0) unless

m = 0.If m=' € &, then for max (a(m), a(m=)) < ¢ < min (B(m), B(m~1)),
1< p <o, Ty, tsa oneto-one mapping of L,(—c0, 00) onto itself, and

(32) (ij,a)_l = ]‘m'l,o-

Proof. The first statement follows from [7, Chapter 4, Theorem 3] as does
(3.1) when p = 2, and thus for F € L,(—o0, 00) M Ly(—00, o). But this
last space is dense in L,(—0c0, o), and from [8, Theorem 74] both sides of
(3.1) represent bounded operators from L,(—c0, ) to L, (—o0, o) since
1 < p =2, and m(c + 4t) is bounded. Thus by continuity, (3.1) is true for
1<p =2

The next statement follows from (3.1), for since m(s) is analytic,
m(c +it) # 0 a.e., and thus if 7, ,F = 0 a.e., £ =0 ae. and F = 0 a.e.

From (3.1), if max (a(m), a(m™1)) < ¢ < min (B(m), B(m™")), then for
F € Lo(—=0, ©), (Ty-1,TpeF)t) = (Typolm-1,F)(t) = F(t) a.e., and
hence T -1 61me = Tmelm-16 = I on Ly(—00,00). But then by the denseness
of Ly(—00,0) M L,(—00, ) in L,(—0, c0) and the continuity of all three
operators appearing in this last equation, it must hold for 1 < p < o0, and
the remainder of the lemma follows.

LEMMA 3.2. Supposem € A, 1 < p < 00, a(m) < u/p < B(m), and let
Huwp = Cup T upCup-

Then Hpyup € [Lupl. If f€ Lyypy M Ly, py, where 1 < p; < 00, a(m) <
wi/ps < B(m), then Hy yy 5 f = Hyp o pof a.c.

Proof. That H,, ., € [L,,] follows from Lemmas 2.1 and 3.1. For the
remainder, suppose first that f € Cy, and let

F(s) = J %Y (x)dx.
0
Clearly F is entire. Now

Cnl,lem,ulmlf = Tul/mcm,mf;

but clearly Cyu, 5,f € La(—00,00),and hence by Lemma 3.1, 5018 Cy; p1Hom u1 o1 f>
and from (3.1),

(C;u,mHm.m,mf )A(t) = m((l‘l/Pl) + it) (Cnl,vlf )A(t)-
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But C,, ,.f is clearly also in L;(—o0, o), and hence
Cound YO = | e G Y = [ w04y

— ‘I:O x(#l/m+it-—l)f(x)dx - F((MI/PI) + ”)

Hence, from [8, Theorem 48],
(Cm,mHm-ul.mf)(u) = grﬂ é_f _th((.“l/pl) + it) F((u1/pr) + it)dt,

the limit being in the topology of Ls(—c0, 00 ). But then there is a sequence
{R;}, with R; — 00 as j — o0, so that

(Cm,mHm.ul,mf)(u) lim 5— r _“”m((:ul/Pl) + ”)F((M/Pl) + 'Lt)dt

J->0 2
a.e. on (—oo0, o), or

() @) = Tim = [ 5 (/) + ) (/) + i)

J-o 2m

(v1/pD)+iRj
= lim —f x ‘m(s)F(s)ds,
(

i 270 o Gy pp)— iR

a.e. on (0, ).
Similarly

(CusipaHus o) () = hm f m((ﬂZ/Pz) + t) F((ua/p2) + it)dt

R—)oo

= tim s [ )+ i) () + i)

FEY 2w Rj

the limits being in the topology of Ly(—0, co0 ). But then there is a subsequence
{51} Of {RJ} SO that

Corm) @) = Tim [ s/ ) + i) PG/ 2) + ity
almost everywhere on (—o0, ), or

(Has pef) () = lim 5~ f 27O (ua/p2) + i) F ((ue/p2) + it)dt

]—)co

*(p2 /p2)+iS;
= lim z— J x ‘m(s)F(s)ds,

J=s 2w (u2 /p2)—iSj

a.e. on (0, ).
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Hence, since {S,} is a subsequence of {R,}, we have for almost allx € (0, ),

(3-3) (Hm,m,mf) (x) - (Hm.m,mf) (x)
— i _1— { J-(ullzf1)+sz 3 f(u2/z)2)+sz}x_sm () F(5)ds.

FAYS 271 (u1/p1)—18; (u2 /p2)—18;

If u1/p1 = wa/ps, the right hand side of this equation is zero, and

(Hnl,mf) = (an,pzf) a.e.

If wi/p1 # pe/ps, let v be the rectangle with vertices (ui/p1) & 1S; and
(u2/p2) % 4.S;. Then since v is contained in the strip a(m) < Re s < B(m),
m is analytic in this strip, and F is entire, we have for x > 0,

f x *'m(s)F(s)ds = 0,
.
from which (3.3) can be written

(3.4) (Hm,mmlf) (x) — (Hmpzpof) (%)

) 1 2z /p2 s ) )
= lim G { J X Sjm(a 4+ 4S;)F(o + 1S;)do
joseo 4T K1/p1
w2 /p2 < 1
— (e — iS)F(e — iSj)dUJ,
#1/p1

almost everywhere.
But by the Riemann-Lebesgue lemma, F(oc & 4S;) — 0 as j — o ; also

*co

|F(o +1S;)| < J 7 f(x) |de,

0

which is clearly bounded on the interval of integration since f € Cy; further by
Definition 3.1 (b), |m (s & 2S;)| = K, where K is a constant, for ¢ in the
interval of integration; and |x—7%?Si| = x— is clearly bounded on the interval
of integration. Hence by the theorem of dominated convergence, the two
integrals in (3.4) tend to zero as j — o0, and hence

Hm,l‘lvplf = Hm,ug,pgf a.e.

Now if f € Ly p, M Ly, s, then by Lemma 2.1, there is a sequence {g,} of
functions of Cy so that ||f — gillsips =0 as — 0, 2 =1, 2. But then,
as n — 0,

HHm,m,mf - Hm,m,mgnHm.m -0

and hence there is a subsequence {#;} such that

Hy o = l.lm Hoyp oy 0:8ni 2-€.
1500

However, as 1 —

—0

HHm,uz 22f = Hup s poni

K2,P2 ’
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so that there is a subsequence {n,} of {#n;} so that
Hypps pof = l.im Hy o ponir - a-e.
-0

Hence, for almost all x, since g,;» € C,

Hop s pof = im Hpy yy p1 g = lim Hypuy&niv
P )

~>00 1->co
= lim H,,,,, p28ni’ = m,uzmzf»
i>c0

as was to be proved.

In view of the last part of Lemma 3.2, it appears that H,, ,, is independent
of u and p, and so we will rename it.

Definition 3.2. If m € &/, 1 < p < 0, a(m) < u/p < B8(m), we define H,, by
H, = Cipy ' TupCup.
The chief properties of H,, are summed up in the following theorem.

THEOREM 1. If m € &, then for each w and p such that 1 < p < 0 and
a(m) < wp/p <B(m), Hy € [Lyp). If 1 < p =2, and f € Ly,

(B.5) (M H,f)((w/p) +it) = m((w/p) + it) (A f)((w/p) + it).

If1<p =22, a(m) <u/p <B@m), H, is one-to-one on L, ,, unless m = 0.
If m™ € Z, then for max (a(m), a(m™1)) < u/p < min (B(m), B(m1)),
1< p <o, H, is a one-to-one mapping of L, , onto itself, and

(3.6) (H,)™' = Hy-1.

Proof. This follows immediately from Lemma 3.1.

4. Transformations of ., and .7 ,. In this section we find necessary and
sufficient conditions that transformations.S and 7" be in.%, and .7, respective-
ly, and equivalent forms of (1.2) and (1.3), that are easier to work with. The
results are summed up in the following lemma.

LemMA 4.1. (a) 4 transformation S € [L, ] is in £, if and only if there is a
function w, bounded a.e. on (—o0, ), so that for all f € Cy
(4.1) (M Sf)Gr +it) = «(t) (M f) (Gu — it) ae.

When S € £y, (4.1) holds for all f € L, s. Conversely, given w, bounded a.e. on
(—o0, 00), (4.1) defines a transformation S € F,, with kernel k € L_, o given
by (M R)(—3p +it) = w(t)/(5 —it) a.e.

(b) A transformation T € [L, ] is in I, if and only if there is a function o,
bounded a.e. on (—c0, ), so that for all f € Cy

(4.2) (AT G +it) = 0@) (A f)Gr + 1t) a.e.
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When T € T, (4.2) holds for all f € L, . Conversely, given w, bounded a.e. on
(=0, @), (4.2) defines a transformation T € T ,, with kernel | € L,_» , given

by (M1)(Gu — 1 +1t) = w(t)/G —it) ae.

Proof. (a) is known when p = 1 (see Kober [4]), and by minor changes of
variables, the %, case can be changed to the .#; case. (b) follows from (a)
once it is noticed that 77 € .7, if and only if TU € ¥,, where (Uf)(x) =

X (x ).

5. Existence and extendability of R, 'R;. The theorem below gives condi-
tions under which R,7'R; exists and can be extended. Throughout the re-
mainder of the paper we will suppose w; and ws are bounded a.e. on (—o0, ),
and \ is a real number, and we let S; and S; be the transformations of .\
associated with w; and w» respectively by (4.1), and let T, and Ty be the
transformations of 9, associated with w; and w, respectively by (4.2).

THEOREM 2. Suppose w; and ws are bounded a.e. on (—o0, 00) and that there s
an m €., with a(m) < IN < B(m), so that m(A\ + it) = w1(t) /wa(t) a.e.
Then So=S1 and Ty~'T extst and belong to [Ly o], and Sy~'S; can be extended to
L, ,, uniquely as an element of [L,,], for all u and p satisfying 1 < p < 0,
N =B(m)) < u/p < N — a(m)), while Ty~'T, can be extended to L, ,, unique-
ly as an element of [L, ), for all u and p satisfying 1 < p < 0, a(m) < u/p <
B(m). If, in addition, 1 < p = 2, the extended operators are one-to-one.

If also m™' € o, then S5~'S: is a one-to-one mapping of L,, onto itself if
1<p <o,

max((\ — B(m)), A — B(m™"))) < p/p < min (N —a@m)), A\ — a(m™))),
while 17T is a one-to-one mapping of L, , onto itself if 1 < p < o0,
max (a(m), a(m™)) < p/p < min (8(m), B(m™1)).

Proof. Since w;(t) /w2 (t) is defined a.e., ws(t) # 0 a.e., and hence if So f = 0
a.e., then from (4.1) (A f)G\N — 1) =0 ae., and f =0 a.e.,, and thus
Sy~1 exists. Similarly 757! exists.

To show S;71S) exists, we must show that the range of S; is a subset of the
range of S; this is equivalent to showing that if f € Ly ., then there is a
g € Ly so that Seg = Sif. But since

mGN 4+ it) = w1(t)/w2(t) a.e.
and, from Definition 3.1 m (3N 4 4¢) is bounded, it follows that
0)1/(.02 E Lm(-—OO, o0 )

Hence, since the Mellin transformation is a unitary mapping of Ly . onto
Ly(—o0,00), there is a g € Ly 2 so that

(M g) (3N +it) = (w1(—1)/ws(—1)) (M f)EN +it)  ae.
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But then, from (4.1), for almost all ¢

(M Sog) GN +it) = wa(t) (M g) G — it) = wu () (@1 (t) /w2 (1)) (A [) (GN — it)
wi(t) (M f)GN —it) = (M S f) G\ + it),

and Seg = S; f a.e., so that S;~1S; exists. Also
[1S:723S1f e = llglhe = [|A# gll: = K|[A S]] = K| f]]x.2

where K is an essential upper bound for w;/ws, and S;=1S; € [Ly o).
Similarly, if we define % by

(A B)GN +it) = (1) /w2()) (A )G +1t)  ae,
then from (4.2), for almost all ¢
(A Tsh) G\ + it) = wo(t) (A k) (GN + it)
@y () (w1 () /s (8)) (A f) (BN + it)
= w1 () (A [)GN +it) = (M T1f) G\ + i),
and Tsh = T f a.e., so that 7,717} exists. Also
HT2™' T f llne = [Ble = [[A Bll: = K|[Af ]2 = K[[ f [,
and T2—1:r1 E [L)\,z].
Let 7i(s) = m(\ — s); clearly # € .97, a(ii) = A — B(m), and B(m) =
N — a(m). Hence from Theorem 1, H; € [L,,]if 1 < p < o0, (N —B(m)) <

w/p < (N — a(m)). Note that (\ — B(m)) < 3x < (A — a(m)), and hence if
f € Ly s, then from (4.1) and (3.5), for almost all ¢

(M S:Hy, f) GN + it) = wy(t) (M Hy f) (3N — it)
= @y () (3N — it) (M f) G\ — it)
= wa()mGN + it) (A f) G\ — it)
= wa(t) (w1 (t) /w2 (1)) (A f) G\ — it)
= w1 (1) (A f) G\ — i)
= (M S:f)GN +it),

so that SoHy; f = S1fae., SeHyz = Sion Ly o, and H; = Se71S; on Ly ».

Hence we can extend Sg=1S; to L,,, if 1 < p <o, A\ — B(m)) < p/p <
(A — a(m)), by defining it to be Hy;, and then Ss=1S; € [L, ,]. This extension
will be unique as an element of [L, ,], for it coincides with Ss='S;0n L, , M Ly 2,
and this set is dense in L, ,, since it contains Co. The remaining statements
about S;~1S; in the statement of Theorem 2 are just paraphrases of statements
about Hj; in Theorem 1.

In a similar way H,, = T57'T; on Ly 5, and thus we can extend 7,7'7 to
L, if 1 <p<oo,alm)<up/p<B(@m), by defining it to be H,, and then
T2 1Ty € [L,,]; this is the unique extension as an element of [L, ,]; and the
remaining statements about I'y7'7; are paraphrases of those about H, in
Theorem 1.

II
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6. Extension and range of R;. In many cases R, can be extended from
L, 5 to other spaces L, , for a collection P of pairs (p, u), as a bounded operator
from L,, to L, , for a range of values of (g, »), depending on (p, u). In our
next theorem, we show that when this is so, and the hypotheses of Theorem 2
are satisfied, it may be possible to extend R;, and that then there is a relation
between the range of R; and that of R,.

THEOREM 3. Suppose that wi and w, are bounded a.e., and that there is an
m € with a(m) < I\ < B(m), so that m(3\ + it) = wi(t)/w:(t) a.e. Then

(a) if S2 can be extended to L, , for a collection P of pairs (p, u), as an element
of [Lupy Ly,4l, for a range of values of (q, v) depending on (p, ), then for all p and
p so that (p, u) € P, 1 < p <o, N\ —B(m)) < u/p < (\—a(m)), S can
be extended to L, ,, uniquely as an element of (L, ,, L, ], and for such u and p,
S1(Luy) S S2(Lu,p) )

(b) if T2 can be extended to L, , for a collection P of pairs (p, ), as an element
of [Lu .y, Ly, for a range of values of (g, v) depending on (p, ), then for all p and
p so that (p, u) € P, 1 < p <0, a(m) < u/p < B(m), T can be extended to
L, ,, uniquely as an element of (L, ,, L, .|, and for such u and p, T1(L,,) C
T2(Lu,p)-

Further (c) if m=t € &, then for (p, u) € P,1 < p < 00,

max ((\ — B(m)), N\ — B(m™))) < u/p < min (N —a(m)), (N — a(m™))),
Sl(Lﬂ,p) = SZ(LM,P)r andfor (pr l"') 6 Pr 1 < p < OO,
max (a(m), a(m=)) < p/p < min (B(m), B(m=1)), T1(L,,) = To(Lyy).

Proof. We shall only prove (a) and that part of (c) referring to S; and .S,,
the proof of (b) and the rest of (c) being similar.

We extend S; by defining it to be S2(S2~1S51). Since by Theorem 2, for the
indicated values of p and u, S27'S1 € [L,,] and by hypothesis Se € [L,,, L, ],
then Sy € [L,,, L, ], and it is the unique such extension, since it coincides with
Syon L, , MLy, and this set is dense in L, , since it contains C,.

To show Si(L,,) € S2(L,,), we must show that if f € L,,, there is a
g € L,,, so that Seg = S1f. But if we let g = S271S; f, then Syg = S, f.

To show (c) for S; and .S, it is enough to notice that under the hypotheses
of (c), the general hypothesis of the theorem is true with w; and w, inter-
changed, if m is replaced by m~!, and the hypotheses of (a) are true with .S;
and S; interchanged, if P is replaced by Q = {(p, w)|(p, ») € P, 1 < p < 0,
(N —=B0m)) < u/p < A\ — a(m))}, and the conclusion of (c) follows.

7. Applications. We shall give two applications of our results, the first
when R; and R, are in ¥, for a particular u, and the second when they are
ing ,.
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For our first application let y > —1, and let H, be the Hankel transforma-
tion; that is if f € Cy

HE) = | @, re,

and for 0 £ ¢ <+ 1, let (H, ¢ f)(x) = «=$5(H,F)(x), where F(t) = t=¥f(t);
that is

(Hyof ) () = f " T e ()t

If we integrate both sides of this equation from zero to x, it has the form (1.2)
for p = 1, with kernel

byt (x) = fo £, ()t

H, is studied in [8, Chapter 8, §§4 and 5], and by minor changes of variables in
the results of those sections, it is easy to show that k,¢ € L_;» and

(M bag) (=5 +it) = 00 ()/ (G — it)

where
Wy e(t) = 23T G0 — ¢+ 144)/TGE0 + ¢+ 1 — ).
But from [2, 1.18(6)],
(7.1) IT(x + iy)| ~ @m)}|y|=derlvire,
uniformly in x for x in any finite interval, and thus
lege ()] ~ 2|7 as |t — 0.
Hence since 0 = ¢ < 9 + 1, w, ¢ is bounded a.e., and H,; € ..
We shall take H, ¢ as S; in Theorems 2 and 3, and for .S, we shall take the

Fourier cosine transformation & , = H_;. Since both transformations are in
&1, we must find a function m € &7, with a(m) < % < B(m), so that

m(3 + i) = wyc(t)/wy,0(t) = 275(T GG — @)
TG0 —¢+1+)/(TGGE+@)TGE0 + ¢+ 1 —it))).
An analytic function with the right value at 1 4 it is

My e(s) =

2795 GEA =sHTEO =+ 3+ )N/ TEITGEO+ ¢+ § —9))).
M, ¢(s) is analytic in the strip { — 97 — 3 < Res<1l,and if { —p — 1% <
o1 = o3 < 1, then from (5.1), uniformly in ¢ for oy < 0 < 0, |m, (0 + )| ~
|2¢|~% as |¢| — co. Hence since { = 0, m,,:(s) is bounded in the strip ¢; =
Re s £ s, Also

Mmy(s) = gma ()Y GE0 — &+ 2 +9))
—YGEA =) +¥vGh+ s+ 3 —9) —yvEs)],
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where ¢/(s) = I'"(s)/T'(s). But from [2, 1.18(7)],
Y(z) =logz + (22)7' 4+ O(|z|2) as z—ooin|argz| <7 — 6.
Hence as |y| — 0,

(7.2) Y + 1) =log (x + 1) + 2(x + iy))~' + O(|x + iy[72)
=log iy —i((x — 3)/y) + O(y™?),

and thus as |t] — o0
my (o +it) = m(o 4+ it){ (—if/t) + O(t72)},

so that m(c + it) = O(J¢|™), as |t| >0 for { —9n — % <o < 1. Thus
myy € , witha(m,) = ¢ —n — %, B(myr) = 1,50 that a(m, ;) < 3 <
B(maz).

Hence by Theorem 2, since # ;! = % ,, % ,H,; can be extended to L, , as
anelementof [L, ;] forallpand psuchthatl < p < 0,0 < u/p <n — ¢ + 3,
0 £¢<n+1, and is one-to-one if 1 < p = 2. Clearly (m,o)"! €.,
a((my o)) =0, B((my0)™Y) =n+ %, and hence if 1 < p < 0,

max (0, —n — %) < u/p < min (1,9 + 3),

% . H, is a bounded one-to-one mapping of L, , onto itself.

Now by [5, Theorem 1], if 1 < p < o, max (p7%, p'7!) = p <1,

< 1/(1 — w), then #, € [Lyup, Lyu—w.d.- Hence from Theorem 3,

<o,max (ph, PN =u<Lp=2qg=1/A—p)p<n—¢+3
S ¢ <n+4+1,H,¢ € [Lppp, Lyaa—w,q, or writing this in terms of H,,

Hv € [Lp(uH’) Py Lq(l—u—i’),q]-

But,if 1 < p £ ¢ < 0, max (p~1, ¢~1) = v < n + 3, there are numbers
pand ¢ withmax (p~, p'7!) S p<1l,¢g =1/l —p),u<n—7¢+ 3and
0 £¢<n+1,s0thatvy = p + ¢. To see this, note first that if we define
¢(uw) = v — u, for max (p~1, ¢"!') = p < 1 then the range of ¢ is (» — 1,
vy — max (p~1, ¢'1)], and this intersects [0, n + %), sincev — 1 < ¢ 4+ 3}, and
v — max (p~1, ¢~1) = 0. Hence letting { be any point of this intersection, and
p =v — ¢, wehave max (p~', p7!) S max (p71,¢") su<l,¢g =1/(1 — w)
sincep Z ¢ Lp=r—¢<n—¢+50=¢<n+3<n+1landy =
[

Hence we have shown thatif 1 < p = ¢ < 0, max (p~,¢~") =v <1q+ 3,
Hn € [va,py Lq(l—l'),q]-

If we take 1 < p <2, u = 1/p, ¢ = p’, this result becomes H, € [L,, L,]
if p> (n+ 3)°Y, which is well-known if n = —3, see [1], since then
(n + $)~! < 1, but is less well-known if —1 < < —4.

Also, from Theorem 3, H,;(L,.,) € % (L,.,) if 1 < p < o0, max
(p~L,p')Sw<1l,and p <9 — ¢+ %, and since (my,0)~' € ., Hy(Lpu,) =
F (Lppyp) if 1 < p <o, max (p7, p'~') Spu<1landu<n+ 3

=
-

o N o

A A
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For our second application let

— —1
vx v(Ea—1)

(7.3) (Lyatf ) (x) = T T@) J: & — )Y @) de,

where Re @ > 0, » > 0, and ¢ is a complex number. It is well-known that
Tyae € [Lupl if 1 £p <0, u/p <vRe &; see [6, Corollary 3.1]. From
(6, Corollary 4.1], if 3\ < v Re &, f € Ly o,

(M L) GN +it) = 0uae(t) (A f)GN + it)

where
wyai(t) = T'(E = (GN+11)/v))/TE + o — (G +it)/v)).
But from (5.1)
|yt ()] ~ Jt[7Re= as |t — o0,

and hence since 3\ < » Re £, w is bounded a.e., and I, ,.: € 7.

We shall take 7'y = I,, a1,21, T2 = Iyy,40.t, in Theorems 2 and 3. Transforma-
tions of the form 7,~'7T'; have been considered by Erdélyi [3]. Since both trans-
formations are in 7y, if 3\ < min (»; Re &, v Re &), we must find m € &7
so that

(74) m(%)\ + it) = ""n.al.il(t)/ww.a2.52(t) a.e.

Clearly an analytic function satisfying (7.4) is

m(s) = (P& — (s/v))T (&2 + a2 — (s/22)))/
(Tt 4 o1 — (s/v1))T (82 — (s/v2))),

which is analytic for —o0 < Re s < min (v; Re &, v2 Re (§2 + a32)). Since
from (7.1) and (7.2),

|m (o + it)| ~ |¢|Re@2z=D and
[m’ (o + it)| ~ |m(o + it)|{ (Re(@z — a1)/t) + O},
if Re as = Re a3, m € o with a(m) = —, 8(m) = min (v; Re &, v, Re

(&2 + a2)). Also m—! € , if Re a; = Re ay, with a(m™!) = —o0, B(m~!) =
min (1 Re (41 + a1), »2 Re £). Thus from Theorems 2 and 3, and using
[6, Lemma 3.4] it follows that if Rea: =< Re a1, (I1s.00,6)"" L1116 €xists and
belongs to [L,,] if 1 < p < 00, u/p < min (v; Re &, »2 Re &), and can be
extended to L, , as an element of [L, ,] if u/p < min (v; Re &1, va Re (&2 + a3)).
It is one-to-one if 1 < p < 2 or u/p < min (v; Re &1, v Re &) and onto if
Re ap = Re [+ 7] and ;L/p < min (Vl Re El, 12 Re 52)

Further, if u/p < min (v; Re &, v2 Re &), Re a1 = Re aq,
Ivz.tm,fz (Lu.p) c Ivl,al.h (Lu.p)y
with equality if Re a1 = Re as.
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