
AN ELEMENTARY PROOF OF GRAM'S THEOREM 
FOR CONVEX POLYTOPES 

G. C. SHEPHARD 

In honour of Professor H. S. M. Coxeter 
on his sixtieth birthday 

Let P be a d-polytope (that is, a ^-dimensional convex polytope in Euclidean 
space) and for 0 < j < d — 1 let F J (i = 1, . . . ,fj(P)) represent its j-faces. 
Associated with each face F\j is a non-negative number $(P, TV), to be defined 
later, which is called the interior angle of P at the face TV- In this paper we 
give an elementary proof of the following classical theorem : 

GRAM'S THEOREM. The interior angles $ (P , TV) of any d-polytope P satisfy 
the equation 

d-i fj{p) 

J. P. Gram (1) gave the first proof of this theorem in 1874 for the case 
d = 3. In 1927 D. M. Y. Sommerville (5) published a proof for general d, and 
also extended the theorem to give a formula for the volume of a spherical 
polytope in terms of its interior angles. Recently B. Griinbaum pointed out 
that part of Sommerville's proof is incorrect, and so, at the present time, there 
is no published proof for d > 3. However, two proofs will appear shortly. The 
first of these (2, §14.1) by B. Griinbaum is a correction of Sommerville's proof. 
Although completely elementary in character, it is long and complicated in 
detail. The method consists of establishing (1) for ^-dimensional convex 
pyramids, and then extending the result to general d-polytopes by ''building 
up" these poly topes as unions of pyramids. The second proof to appear is by 
M. A. Perles and the author (4). This is short and simple, but may not be 
considered "elementary" in that it depends on the methods of integral geometry. 

In this paper we present a third proof, which appears to have the merit of 
both simplicity and also of being completely elementary in character. It begins 
in the same way as the Sommerville-Grûnbaum proof: interior angles are 
defined as the volumes of sets called "lunes" on the unit (d — 1)-sphere Sd~x 

centred at the origin o. We shall show, using an idea described in (4, §2), 
that these lunes "fit together" in such a way that they form a simple covering 
of Sd~x and then (1) will follow immediately. The proof is essentially geometrical 
in character, and no previous knowledge is assumed except for a little elemen-
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tary d-dimensional Euclidean geometry and Euler's theorem on the number of 
cells in a cell-complex (see, for example, (3)). 

If the d-polytope P is simplicial (that is, all its faces are simplexes) then it is 
known that the interior angles of P satisfy a number of linear relations other 
than (1). For an account of these, and references to the papers in which they 
appear, see (2, §14.2). We remark that the method of proof of Gram's theorem 
given here can be adapted in an obvious manner to give elementary proofs of 
all these relations. 

The author wishes to record his indebtedness to Professor M. A. Perles and 
Professor V. Klee for their many stimulating discussions concerning Gram's 
theorem and related topics. 

Proof of Gram's theorem. Let zt
j be any relative interior point of the face Ft

j 

such as, for example, its centroid. The polytope P subtends a closed convex 
polyhedral cone at zt

j. Apply the translation —zj to this cone so that the apex 
Zi3 is moved to the origin o, and write L(P, FV) for the intersection of the 
translated cone with S^1. The set L(P, Ft

j), which does not depend on the 
choice of z/ , will be called the lune associated with the face Ff of P , and is a 
generalized spherical polytope. (We say "generalized" since, unless j = 0, 
it will contain antipodal points of Sd~1.) Let /x be a measure on Sd~1 proportional 
to the Lebesgue measure and such that ju(S<*-1) = 1. Then the interior angle 
<£(P, Fij) of P at the face Ft

j is defined to be n(L(P, P / ) ) . Hence equation (1) 
is equivalent to 

d-l fj(P) 

(2) E (-1) ' Z M(£(P, Ft')) = (-I)*"1. 

In order to prove this, we shall show that the lunes have the property that 
if each is counted with the given sign, they form a covering of 5 d _ 1 with multi
plicity (—l)*-1, and then (2) will follow from the fact that /zGS*-1) = 1. 
Thus if Uj(x) is the number of lunes L(P, P / ) associated with j-faces of P 
which contain a given point x G Sd~l, then we need to show that 

(3) £ (-1) '» , (*) = ( - I )*" 1 

for all x Ç Sd~1. However, since the boundaries of the lunes are (parts of) a 
finite number of (d — 2)-spheres and so have measure zero, it will be sufficient 
to establish (3) for those x which do not lie on the boundary of any lune, that 
is to say, for vectors x which are not parallel to any j-face of P (1 < j < d — 1). 

For such an x let Hx be any hyperplane perpendicular to x, TX be orthogonal 
projection onto Hx, and Px = irx{P). Let S^x be the shadow boundary of the 
projection, that is to say, the set of faces Ft

j of P for which TTX(P/) C dPx, 
the boundary of Px (see Fig. 1). W r i t e J ^ for the set of faces Ft

j of P which have 
the property that the open half-line {zf + \x\ X > 0} meets the interior of P . 
Then it is clear from the definition that F J G &"x if and only if x G L(P, P / ) , 
and therefore nj(x) is the number of 7-faces of P belonging to ^x. 
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FIGURE 1 

Now each point on the boundary dP of P projects into a uniquely determined 
point of Pxy and each point y in the interior of Pz is the image under irx of two 
points yit y2 of dP. These two points may be distinguished by the fact that for 
one of them, say yi, the open half-line {3/1 + Xx\ X > 0} meets the interior of 
P (and then yi is a relative interior point of some face of J ^ ) , and for the other 
point y2, the open half-line {y2 + \x\\ > 0} does not meet the interior of P. 
Consequently, the projection TX induces a one-to-one mapping between the set 
of relative interior points of the faces F J € &~x, and the interior Px. Thus 
if Ff Ç ^x, Trx(Fij) is a j-polytope (or j-cell) in Px. Now the set of all faces 
in JTc \J £fx has the property that the intersection of any two faces is either 
empty or is a face of P belonging to J ^ VJ <f }

x. Consequently, the cells irx(Fij) 
(Fij Ç &"x \J £fx) have the same property and so form a cell-complex ^ x 

whose point-set (that is, the union of all its cells) is Px. We deduce that ti](x) 
is the number of j-cells of %?

x whose interiors lie in the interior of Px, and so 
the total number of j-cells in ^x is nj(x) + f3(Px). Applying Euler's theorem 
(3, Theorem 2.3) to the cell-complex ^ we obtain 

(4) 
d - 1 

£ (-i)'M*) +f,(.P,)) = 1. 
i -0 

But by Euler's theorem for the (d - 1)-polytope Px (2, §8.1), 

(5) £ (-!)'/,(*.) = l + ( - l ) * 
j = 0 
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Equalities (4) and (5) yield (3) and so the proof of the theorem is completed. 
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