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Abstract

We present conditions that imply the conditional full support (CFS) property, introduced
in Guasoni, Rásonyi and Schachermayer (2008), for processes Z := H + ∫

K dW ,
where W is a Brownian motion, H is a continuous process, and processes H and K are
either progressive or independent ofW . Moreover, in the latter case, under an additional
assumption that K is of finite variation, we present conditions under which Z has CFS
also when W is replaced with a general continuous process with CFS. As applications
of these results, we show that several stochastic volatility models and the solutions of
certain stochastic differential equations have CFS.
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1. Introduction

1.1. Preliminaries

The purpose of this paper is to show that certain stochastic integrals have the conditional full
support (CFS) property, introduced in [10]. So, before stating the main results of this paper,
let us recall the definition of this property.

To this end, recall first that when E is a separable metric space and µ : B(E) → [0, 1] is
a Borel probability measure, the support of µ, denoted by supp(µ), is the (unique) minimal
closed set A ⊂ E such that µ(A) = 1. Let (Xt )t∈[0,T ] be a continuous stochastic process
taking values in an open interval I ⊂ R, defined on a complete probability space (�,F ,P),
and let F = (Ft )t∈[0,T ] be a filtration on this space. Moreover, let Cx([u, v], I ) be the space of
functions f ∈ C([u, v], I ) such that f (u) = x ∈ I . As usual, we equip the spaces C([u, v], I )
and Cx([u, v], I ), x ∈ I , with the uniform topologies.

We say that the process X has CFS with respect to the filtration F, or briefly F-CFS, if

(a) X is adapted to F,

(b) for all t ∈ [0, T ) and P-almost all ω ∈ �,

supp(law[(Xu)u∈[t,T ] | Ft ](ω)) = CXt (ω)([t, T ], I ). (1.1)

In (1.1), we regard law[(Xu)u∈[t,T ] | Ft ] as a regular conditional law (a random Borel probabil-
ity measure—see, e.g. [14, pp. 106–107]) on the space C([t, T ], I ). Arguably, the formulation
of the CFS property might appear slightly complicated at first sight, but informally it simply
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means that when we observeX from any time t ∈ [0, T ) onwards,X still stays arbitrarily close
to any continuous path in I starting from Xt with positive Ft -conditional probability.

Throughout this paper, when we say that some process has CFS without specifying the
filtration, we tacitly take it to be the natural filtration of the process. In fact, this is the ‘weakest
form’ of CFS that a process can have (see Corollary 2.1 and Lemma 2.3).

1.2. Main results of the paper

We shall establish CFS for processes of the form

Zt := Ht +
∫ t

0
ks dWs, t ∈ [0, T ], (1.2)

where H is a continuous process, the integrator W is a Brownian motion, and the integrand k
satisfies some varying assumptions (to be clarified below).

We focus on three cases, each of which requires a separate treatment. First, we study the
case in which

(Z1) H and k are (jointly) independent of W .

We find that in this case, Z has CFS if t �→ kt is almost everywhere nonvanishing almost surely
(Theorem 3.1). As an application of this result, we show that several popular stochastic volatility
models—which feature leverage effects, long memory in volatility, and volatility jumps—have
the CFS property. Next, we relax the assumption about independence, and consider the case in
which

(Z2) H and k depend progressively on W and some additional continuous process that does
not anticipate W , and H = ∫ ·

0 hs ds is absolutely continuous.

It turns out that in this case the simple sufficient condition of the preceding case does not
guarantee CFS—we present a very simple example, in which k is strictly positive but Z fails
to have CFS. However, we show that, under a set of more stringent assumptions—which are
satisfied, e.g. when k is bounded from above and away from 0, and h is bounded—the processZ
does have CFS (Theorem 3.2). Using this result, we are able to establish CFS for the solutions
of certain stochastic differential equations. Finally, we consider briefly the following (partial)
extension of case (Z1).

(Z3) A (general) continuous process X with CFS replacesW , processes H and k are (jointly)
independent of X, and k is of finite variation.

We show that in this case,Z has CFS if each path of k is bounded away from zero (Theorem 3.3).

1.3. Motivation

As mentioned before, the CFS property was first introduced by Guasoni et al. [10], in
connection to mathematical finance, viz. pricing models with transaction costs. Their main
result asserted that if a continuous price process has CFS then, for any ε > 0, there exists a so-
called ε-consistent price system, which is a martingale (after an equivalent change of measure)
that shadows the price process within the bid–ask spread implied by ε-sized proportional
transaction costs (see also [13] for a related study). The existence of ε-consistent price systems
for all ε > 0 implies that the price process does not admit arbitrage opportunities under
arbitrary small transaction costs—since any arbitrage strategy would generate arbitrage also
in the consistent price system, which is a contradiction because of the martingale property.
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Consistent price systems can be seen as generalizations of equivalent martingale measures
(EMMs), since if a price process admits an EMM then the price process itself qualifies as a
trivial ε-consistent price system for any ε > 0.

CFS is however worth studying even when it comes to price processes that admit EMMs,
since it enables the construction of specific consistent price systems that are useful in solving
superreplication problems under proportional transaction costs. This is manifested by the
‘face-lifting’ result in [10], which says that if (Pt )t∈[0,T ] is a price process with CFS then
the superreplication price of any European-style vanilla contingent claim g(PT ) under ε-sized
proportional transaction costs tends to ĝ(P0) when ε ↓ 0, where ĝ is the concave envelope of
g (the smallest concave function that majorizes g). This means that superreplicating, e.g. a
European call option under small proportional transaction costs, entails buying the underlying,
the trivial superreplicating portfolio.

In addition to models with transaction costs, CFS has also been found to have relevance with
frictionless pricing models, as indicated in the recent paper of Bender et al. [2]. Their result
asserted that if a continuous price process has CFS (they used the name conditional small ball
property) and pathwise quadratic variation, then it does not admit arbitrage opportunities in a
class of trading strategies that is somewhat narrower than what the classical models allow, but
nevertheless covers a large share (if not almost all) of the strategies that have practical relevance.

Aside from having these applications in mathematical finance, CFS is an interesting funda-
mental property from a purely mathematical point of view. In particular, research on the CFS
property can be seen as a natural continuation to the classical studies of the supports of the laws
of continuous Gaussian processes by Kallianpur [15], and diffusions, initiated by Stroock and
Varadhan [20] and continued by several other authors (see, e.g. [16] and the references therein).

1.4. Previous results

So far, a variety of continuous processes, which are nondegenerate in some sense, have been
shown to have CFS.

Gaussian processes that have CFS include fractional Brownian motion, with any Hurst
index h ∈ (0, 1) (and specifically when h = 1

2 , the standard Brownian motion) [10], and more
generally all Brownian moving averages with nonvanishing kernels [4]. Moreover, Gaussian
processes with stationary increments that satisfy a certain spectral density condition have
CFS [9].

In the case of continuous Markov processes, showing CFS reduces to showing that the
support of the (unconditional) law of the process is the largest possible for any initial condition,
as pointed out in [10]. Hence, the classical results concerning the supports of diffusions (see,
e.g. [16] and [20]) can be used to establish CFS.

Moreover, it was shown in [10] that if a continuous process X has CFS then the Riemann
integral process

∫ ·
0 Xt dt has CFS, which allows (using iteration) construction of processes that

have CFS and arbitrarily smooth paths.
While many examples of common Gaussian and Markovian processes have CFS, this

observation should not be extrapolated too much, since CFS is a not a trivial property, due
to its functional nature. For example, nondegeneracy of finite-dimensional conditional laws
does not typically, even in the case of Gaussian processes, guarantee CFS. A striking example
of this difficulty is the continuous Gaussian process (Xt )t∈[0,1] constructed by Cherny [4,
Example 3.1], which satisfies var[Xt | F X

s ] > 0 almost surely (a.s.) for all t, s ∈ [0, 1] such
that t > s, but nevertheless

∫ 1
0 Xt dt = 0 a.s.—implying that X cannot have CFS.
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1.5. Outline of the paper

Section 2 contains some basic results on the CFS property, to familiarize the reader with the
property, and to facilitate subsequent proofs. Section 3 contains the main results concerning
stochastic integrals. Finally, Section 4 concludes with applications to the aforementioned
more specific processes: stochastic volatility models and solutions of stochastic differential
equations.

1.6. Notation and conventions

Let T ⊂ [0,∞) be a left-closed interval, and let (Xt )t∈T be a generic stochastic process
on (�,F ,P). We say that X is jointly measurable if (t, ω) �→ Xt(ω) is measurable with
respect to B(T) ⊗ F . Throughout this paper, we implicitly assume that all processes are
jointly measurable, whenever this is not already implied by continuity (from left or right) or
progressive measurability. For any t ∈ T, we write X̂t := (Xs −Xt)s≥t .

We denote by F̃X = (F̃ X
t )t∈T the ‘raw’natural filtration ofX and by FX = (F X

t )t∈T its usual
augmentation (the minimal right-continuous augmentation of F̃X such that F X

min T
contains all

P-null sets in F̃ X
t for all t ∈ T; see, e.g. [17, p. 45]).

As usual, ‖ · ‖∞ denotes the sup-norm, and, for any f, g ∈ C(T) := C(T,R) and r > 0,
write B(g, r) := {h ∈ C(T) : ‖h− g‖∞ < r} and I (f, g, r) := 1B(g,r)(f ).

Finally, R+ := (0,∞), Q+ := Q ∩ R+, N := {0, 1, . . .}, Z+ := N \ {0}, and λ stands for
the Lebesgue measure on R.

2. Basic results on the CFS property

Since CFS is a very recent concept, in the absence of any comprehensive account, it is
instructive to present a few basic results that can be used to establish the property. We will
consider processes and their CFS in the largest possible state space R, but this is not really a
restriction, since all of the following results, except Lemma 2.1, can also be applied to processes
in smaller state spaces using the following observation.

Remark 2.1. If I ⊂ R is an open interval and f : R → I is a homeomorphism, then g �→ f ◦g
is a homeomorphism between Cx([0, T ]) and Cf (x)([0, T ], I ). Hence, for f (X), understood
as a process in I , we have

f (X) has F-CFS ⇐⇒ X has F-CFS. (2.1)

We begin with an alternative ‘small-ball’ characterization of CFS, which is more tractable
than the original definition (1.1).

Lemma 2.1. (Small-ball probabilities.) Let (Xt )t∈[0,T ] be a continuous process, adapted to
filtration F = (Ft )t∈[0,T ]. Then, X has F-CFS if and only if

E[I (X̂t , f, ε) | Ft ] > 0 a.s. (2.2)

for all t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0.

Proof. Let t ∈ [0, T ) be fixed. For brevity, define µω := law[(Xu)u∈[t,T ] | Ft ](ω) and
µ̂ω := law[X̂t | Ft ](ω) for all ω ∈ �. It is straightforward to check that

supp(µ̂ω) = C0([t, T ]) ⇐⇒ supp(µω) = CXt (ω)([t, T ]) (2.3)

for almost all (a.a.) ω ∈ �. The space C0([t, T ]) is separable (e.g. by the Stone–Weierstrass
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theorem), so there exists a countable dense family {fn : n ∈ N} ⊂ C0([t, T ]). Hence, the
equality on the left-hand side of (2.3) holds if and only if µ̂ω(B(fn, q)) > 0 for all n ∈ N and
q ∈ Q+. By virtue of countability, we find that P[supp(µ̂·) = C0([t, T ])] = 1 if and only if

P[µ̂·(B(fn, q)) > 0] = 1 for all n ∈ N and q ∈ Q+. (2.4)

By the disintegration theorem (see Theorem 6.4 of [14]), we have

µ̂·(B(fn, q)) = E[I (X̂t , fn, q) | Ft ] a.s.,

so (2.4) is clearly equivalent to the asserted condition (2.2).

Remark 2.2. While Lemma 2.1 is somewhat obvious, it has two very important consequences.
Firstly, we note that the characterization (2.2) is stated in terms of conditional expectations.
Hence, CFS does not hinge on any particular choice of versions of the regular conditional laws.
Secondly, whenever we want to argue contrapositively and assume that the CFS property fails
to hold, Lemma 2.1 guarantees that there exists a fixed ball B(f, ε) such that X̂t exits B(f, ε)
with positive probability. Ignoring separability, the definition of CFS alone would then only
imply existence of a random ball B(f (ω), ε(ω)) with the same property, which would cause
certain complications (primarily, the need to find a measurable selection of these balls).

Thus, establishing CFS reduces to checking that certain conditional expectations are positive.
It is sometimes easier to show positivity of a conditional expectation by arguing that the
analogous conditional expectation with respect to some larger σ -algebra is positive, and then
pass to the original σ -algebra using the following elementary fact.

Lemma 2.2. (Positivity.) Let G and H be σ -algebras such that G ⊂ H , and let Y ∈ L1 such
that Y ≥ 0. If E[Y | H ] > 0 a.s. then E[Y | G] > 0 a.s.

Combining Lemmas 2.1 and 2.2 we find that, like the semimartingale property, CFS is
preserved when the filtration shrinks, as long as the process is adapted to the smaller filtration
(this observation is not really new, it was already employed, e.g. in [2] and [4]).

Corollary 2.1. (Smaller filtration.) Let (Xt )t∈[0,T ] be a continuous process, adapted to filtra-
tions F = (Ft )t∈[0,T ] and G = (Gt )t∈[0,T ] that satisfy Gt ⊂ Ft for all t ∈ [0, T ]. Then, X has
G-CFS if it has F-CFS.

Next we shall show a result to the opposite direction, namely that CFS is preserved when
the filtration is augmented the usual way (see, e.g. [17, p. 45]).

Lemma 2.3. (Usual augmentation.) Let (Xt )t∈[0,T ] be a continuous process, adapted to
filtration F = (Ft )t∈[0,T ]. Then, X has F-CFS if and only if it has CFS with respect to
the usual augmentation of F.

Proof. The ‘if’ part follows from Corollary 2.1. Moreover, regarding the ‘only if’ part, it
follows from a simple monotone class argument that adding the P-null sets in FT to the filtration
does not alter conditional expectations, and, hence, by Lemma 2.1, CFS remains intact. Thus, it
suffices to show that passing to the right-continuous augmentation (Ft+)t∈[0,T ] preserves CFS.

To this end, we shall argue contrapositively, that if CFS with respect to (Ft+)t∈[0,T ] fails at
time t then CFS with respect to F must fail at some time t + δ, where δ > 0 is small. So, when
X does not have (Ft+)t∈[0,T ]-CFS, by Lemma 2.1, there exist t ∈ [0, T ), f ∈ C0([t, T ]), and
ε > 0 such that P[A] > 0, where A := {E[I (X̂t , f, ε) | Ft+] = 0}. Define

τ := inf{t ∈ (t, T ] : |Xt −Xt − f (t)| ≥ ε},

https://doi.org/10.1239/jap/1285335401 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335401


Stochastic integrals and conditional full support 655

t
t t +1/m T
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f + Xt f̃ +Xt +1/m
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ε

Figure 1: Choosing f̃ and ε̃ in the proof of Lemma 2.3.

where inf ∅ := ∞ by convention. Obviously, E[1{τ<∞} | Ft+] = 1 almost everywhere (a.e.)
on A. For any n ∈ Z+, let us define An := {τ > t + 1/n} ∩ A, and note that An ∈ Ft+1/n,
since τ is a stopping time with respect to (Ft )t∈[t,T ], and since A ∈ Ft+ ⊂ Ft+1/n. Moreover,
since An ↑ A, we have P[Am] > 0 for some m ∈ Z+ such that t + 1/m < T . Clearly,

E[1A E[1{τ<∞} | Ft+1/m]] = E[1A1{τ<∞}] = E[1A E[1{τ<∞} | Ft+]] = P[A],
which implies that E[1{τ<∞} | Ft+1/m] = 1 a.e. on A. Furthermore, using inclusions Am ⊂
{τ > t + 1/m} and Am ⊂ A, we see that

E[1{t+1/m<τ<∞} | Ft+1/m] = E[1{τ<∞} | Ft+1/m] = 1 a.e. on Am. (2.5)

Now, define

f̃ (t) := f (t)− f

(
t + 1

m

)
, t ∈ [t + 1/m, T ],

ε̃(ω) := ε −
∣∣∣∣Xt+1/m(ω)−Xt(ω)− f

(
t + 1

m

)∣∣∣∣
(see Figure 1), and note that, by (2.5) we have ε̃ > 0 a.e. on Am. Moreover,{

t + 1

m
< τ < ∞

}
=

{
sup

t∈(t+1/m,T ]
|Xt −Xt − f (t)| ≥ ε

}

⊂
{

sup
t∈(t+1/m,T ]

|Xt −Xt+1/m − f̃ (t)| ≥ ε̃

}

=: F (2.6)

by the triangle inequality. For all n ∈ Z+, define Bn := Am ∩ {ε̃ > 1/n} ∈ Ft+1/m. Since
Bn ↑ Am ∩ {ε̃ > 0} and P[Am ∩ {ε̃ > 0}] = P[Am] > 0, we have P[Bm′ ] > 0 for some
m′ ∈ Z+. Using (2.5) and (2.6), we find that

E

[
I

(
X̂t+1/m, f̃ ,

1

m′

) ∣∣∣∣ Ft+1/m

]
≤ 1 − E[1{ε̃>1/m′}∩F | Ft+1/m] = 0 a.e. on Bm′ .

Thus, by Lemma 2.1, X does not have F-CFS, which concludes the proof.
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We conclude this section by showing that CFS—with respect to the natural filtration of the
process—is a property of the law of the process, and thus does not depend on the underlying
probability space. This allows for flexibility in the subsequent proofs, where it is necessary to
assume that the probability space enjoys some specific properties.

Lemma 2.4. (Law invariance.) Let (Xt )t∈[0,T ] and (Yt )t∈[0,T ] be continuous processes (pos-

sibly defined on distinct probability spaces) such that X
law= Y . Then, X has FX-CFS if and

only if Y has FY -CFS.

Proof. By Lemma 2.3, it suffices to show the equivalence with respect to ‘raw’ natural
filtrations. Moreover, it is clearly not a restriction to assume that X and Y are defined on the
same probability space. Let t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0. Denote by {tk : k ∈ N}
some enumeration of [0, t] ∩ Q. By continuity of paths and Theorem 7.23 of [14], we have

E[I (X̂t , f, ε) | Xt1 , . . . Xtn ] → E[I (X̂t , f, ε) | F̃ X
t ]

and
E[I (Ŷ t , f, ε) | Yt1 , . . . Ytn ] → E[I (Ŷ t , f, ε) | F̃ Y

t ]
a.s. when n → ∞. On the other hand, X

law= Y and Exercise 6.12 of [14] imply that

E[I (X̂t , f, ε) | Xt1 , . . . Xtn ] law= E[I (Ŷ t , f, ε) | Yt1 , . . . Ytn ]
for alln ∈ N. Since equality in law holds also in the limit, the assertion follows from Lemma 2.1.

3. CFS for stochastic integrals

3.1. Independent integrands and Brownian integrators

We shall now move to the main results of this paper. First we establish CFS for the process
Z, as defined by (1.2), in the case (Z1).

Theorem 3.1. (CFS.) Let (Ht )t∈[0,T ] be a continuous process, let (kt )t∈[0,T ] be a process such
that

∫ T
0 k2

s ds < ∞ a.s., and let (Wt )t∈[0,T ] be a Brownian motion independent of (H, k). If

λ({t ∈ [0, T ] : kt = 0}) = 0 a.s. (3.1)

then the process

Zt := Ht +
∫ t

0
ks dWs, t ∈ [0, T ],

has CFS.

Remark 3.1. It follows from Fubini’s theorem that if kt �= 0 a.s. for all t ∈ [0, T ] then
condition (3.1) holds. Hence, in particular, whenever kt has continuous distribution for all t ,
Theorem 3.1 applies.

Remark 3.2. The process Z does not have to be a semimartingale, asH is only assumed to be
continuous. To give a nontrivial example, if

Ht := B
h
t , kt := 1, t ∈ [0, T ],

whereBh is a fractional Brownian motion, independent ofW , with Hurst index h ∈ (0, 1), then
Z is a mixed fractional Brownian motion, which is not a semimartingale when h ∈ (0, 1

2 )∪( 1
2 ,

3
4 )

(as shown in [3]).
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The proof of Theorem 3.1 requires some preparation. Specifically, we shall show that the
Wiener integral of an a.e. nonvanishing function has positive small-ball probabilities, using a
time-change argument similar to the one that appears in [19].

Lemma 3.1. (Wiener integrals.) Let h ∈ C([0, T ]) and k ∈ L2([0, T ]), let (Wt )t∈[0,T ] be a
Brownian motion, and define

Jt := h(t)+
∫ t

0
k(s) dWs, t ∈ [0, T ].

If k(t) �= 0 for a.a. t ∈ [0, T ] then, for all t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0, we have

P
[

sup
t∈[t,T ]

|Jt − Jt − f (t)| < ε
]
> 0.

Proof. Clearly, we may assume that h = 0. Let t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0.
Define

g(t) :=
∫ t

t

d〈J, J 〉u =
∫ t

t

k(s)2 ds, t ∈ [t, T ],

and note that since k(t) �= 0 for a.a. t ∈ [0, T ], g is a homeomorphism between [t, T ] and
[0,K], where K := ∫ T

t
k(s)2 ds. By the Dambis, Dubins–Schwarz theorem, there exists a

Brownian motion (Bs)s∈[0,K] such that Jt − Jt = Bg(t), t ∈ [t, T ], a.s. Hence, we obtain

sup
t∈[t,T ]

|Jt − Jt − f (t)| = sup
t∈[t,T ]

|Bg(t) − (f ◦ g−1)(g(t))|

= sup
u∈[0,K]

|Bu − (f ◦ g−1)(u)| a.s.

Since f ◦ g−1 is continuous, and since the Wiener measure is supported on C0([0,K]) (see,
e.g. Corollary VIII.2.3 of [17]), we have

P
[

sup
t∈[t,T ]

|Jt − Jt − f (t)| < ε
]

= P
[

sup
s∈[0,K]

|Bs − (f ◦ g−1)(s)| < ε
]
> 0.

We shall now deduce Theorem 3.1 from Lemma 3.1 using a suitable conditioning scheme.

Proof of Theorem 3.1 (beginning). Let t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0. Furthermore,
let (�,F ,P) be the completed probability space that carries W , H , and k. By Lemma 2.1, it
suffices to show that

E[I (Ẑt , f, ε) | F̃ Z
t ] > 0 P-a.s. (3.2)

The proof of this assertion becomes more transparent when we work on an extension of the
space (�,F ,P). Namely, we show an analogous property for a variant of Z, denoted by Z�,
in which the integrator is W up to time t , but further Brownian increments of the integrator
are defined on an auxiliary space. Then, since Z and Z� have the same distribution (e.g. by
Exercise IV.5.16 of [17]), it follows that (3.2) holds, by the argument used in the proof of
Lemma 2.4.

We define the extended space by

�� := �× C0([0, T ]), F � := F ⊗ B(C0([0, T ])), P� := P ⊗ν,
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where ν is the Wiener measure on C0([0, T ]) and the bars denote completion. For any ω� =
(ω, ω′) ∈ ��, we define Bt(ω�) := Bt(ω

′) := ω′(t) and W�
t (ω

�) := Bt∨t (ω′) − Bt(ω
′) +

Wt∧t (ω) for all t ∈ [0, T ]. Moreover, we denote by E� the expectation with respect to P�,
by X the identity map on �, which can be seen as a random element in the measurable space
(�,F ), and by Z� the process analogous to Z, with W� as the integrator. Note that by joint
measurability we have Ht(ω) = φ(t, ω) and kt (ω) = ψ(t, ω) for some (B([0, T ]) ⊗ F )-
measurable functions φ and ψ from [0, T ] ×� to R.

For the conclusion of the proof, we need the following auxiliary result, which asserts that
‘freezing’ randomness on the original probability space� reduces Z� to a Wiener integral with
a drift.

Lemma 3.2. (Freezing.) For P-a.a. ω ∈ �, we have

(Ẑ
�,t
t (ω, ·))t∈[t,T ] =

(
φ(t, ω)− φ(t, ω)+

∫ t

t

ψ(s, ω) dBs

)
t∈[t,T ]

(3.3)

up to ν-indistinguishability, where the integral on the right-hand side is a Wiener integral.

Proof. Let us denote by Jω the process on the right-hand side of (3.3). By a standard
argument (see, e.g. Lemma 17.23 of [14]), there exist measurable functions ψn, n ∈ N, from
[t, T ] ×� to R such that

ψn(t, ω) =
kn∑
i=1

ξni (ω)1(tni ,tni+1](t) and ‖ψn(·, ω)− ψ(·, ω)‖L2[t,T ] → 0

when n → ∞ for P-a.a. ω ∈ �. Now define

Int (ω, ω
′) := φ(t, ω)+ φ(t, ω)+

∫ t

t

ψn(s, ω) dW�
s (ω, ω

′)

= φ(t, ω)+ φ(0, ω)+
kn∑
i=1

ξni (ω)(Btni+1∧t (ω
′)− Btni ∧t (ω′)).

ByL2-continuity of Itô integrals and the Borel–Cantelli lemma, there exists a sequence nm ↑ ∞
such that supt∈[t,T ] |Ẑ�,tt − I

nm
t | → 0, P�-a.s. when m → ∞. Hence, by Fubini’s theorem,

sup
t∈[t,T ]

|Ẑ�,tt (ω, ·)− I
nm
t (ω, ·)| → 0 ν-a.s.

for P-a.a. ω ∈ �. On the other hand, L2-continuity of Wiener integrals implies that, for P-a.a.
ω ∈ �, also

sup
t∈[t,T ]

|Jωt − I
nm
t (ω, ·)| → 0 in ν-probability.

Now, since we have, for P-a.a. ω ∈ �,

Eν
[

sup
t∈[t,T ]

|Jωt − Ẑ
�,t
t (ω, ·)| ∧ 1

]
≤ Eν

[
sup
t∈[t,T ]

|Ẑ�,tt (ω, ·)− I
nm
t (ω, ·)| ∧ 1

]

+ Eν
[

sup
t∈[t,T ]

|Jωt − I
nm
t (ω, ·)| ∧ 1

]
,

letting m → ∞ completes the proof.

https://doi.org/10.1239/jap/1285335401 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335401


Stochastic integrals and conditional full support 659

Proof of Theorem 3.1 (conclusion). Let us define

G := F ⊗ {∅, C0([0, T ])}.

We shall show that E�[I (Ẑ�,t , f, ε) | G] > 0, P�-a.s., which, by Lemma 2.2, implies that the
same also holds with respect to F̃ Z�

t ⊂ G, which in turn implies that (3.2) holds. We may
compose

Ẑ�,t (ω, ω′) = Ẑ�,t (X(ω), B(ω′)), (ω, ω′) ∈ ��.
Moreover, by independence, ν is a version of the regular G-conditional law of B on C0([0, T ]).
By the disintegration theorem (see Theorem 6.4 of [14]), we have, P�-a.s.,

E�[I (Ẑ�,t , f, ε) | G] = E�[1B(f,ε)(Ẑ�,t (X,B)) | G]
=

∫
C0([0,T ])

1B(f,ε)(Ẑ�,t (X, ω′))ν(dω′)

=: Y (X).

By Lemma 3.2, for P-a.a. ω ∈ �,

1B(f,ε)(Ẑ�,t (ω, ·)) = 1B(f,ε)(J ω) ν-a.s.,

where Jω is the right-hand side of (3.3). But, for P-a.a. ω ∈ �, the map ψ(·, ω) is a.e.
nonvanishing, so it follows from Lemma 3.1 that, for P-a.a. ω ∈ �,

Y (X(ω)) =
∫
C0([0,T ])

1B(f,ε)(J ω(ω′))ν(dω′) > 0.

Hence, Y > 0 also P�-a.s., which concludes the proof.

3.2. Progressively measurable integrands and Brownian integrators

In case (Z1), (H, k) andW were assumed to be independent. We shall now move to case (Z2)
and dispense with this assumption. Before stating the result, let us consider two examples that
motivate why the conditions we now impose on H and k need to be—apart from allowing
dependence—more stringent than earlier.

Example 3.1. When the integrand k is allowed to depend on the Brownian motionW , condition
(3.1) is no longer sufficient. Namely, if we set e.g.

Ht := 1, kt := eWt−t/2, t ∈ [0, T ],

then Z = k = E(W), the Doléans exponential of W , which is strictly positive and thus does
not have CFS, when understood as a process in R.

Example 3.2. Even when k is positive and constant, but H depends on W , Z might not have
CFS. To demonstrate this, let (Bt )t∈[0,T ] be a Brownian motion and let G = (Gt )t∈[0,T ] be a
filtration defined by

Gt :=
⋂
s>t

(F B
s ∨ σ {BT }), t ∈ [0, T ].
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It is well known (see, e.g. [12]) that there exists a G-Brownian motionW such that if we define
Z with respect to this specific W and set

Ht :=
∫ t

0

BT − Bs

T − s
ds, kt := 1, t ∈ [0, T ],

then Z = B, which clearly does not have G-CFS.

Intuitively, when H and k depend on W , even though k is always positive, they may use
‘data’ from W to ‘steer’ the process Z away from some regions of the path space, so that CFS
does not hold.

Theorem 3.2. (CFS.) Let (Xt )t∈[0,T ] be a continuous process, let (Wt )t∈[0,T ] be a Brownian
motion, let φ and ψ be progressive functions from [0, T ] × C([0, T ])2 to R, and let ξ be a
random variable. Define

ht := φ(t,W,X), kt := ψ(t,W,X), Ft := σ {ξ,Ws,Xs : s ∈ [0, t]}, t ∈ [0, T ].

If W is a Brownian motion also with respect to F = (Ft )t∈[0,T ],

E

[
exp

(
r

∫ T

0
k−2
s ds

)]
< ∞ for all r > 0, E

[
exp

(
2

∫ T

0
k−2
s h2

s ds

)]
< ∞, (3.4)

and ∫ T

0
k2
s ds ≤ K̄ a.s. for some constant K̄ ∈ (0,∞), (3.5)

then the process

Zt := ξ +
∫ t

0
hs ds +

∫ t

0
ks dWs, t ∈ [0, T ],

has CFS.

Remark 3.3. In light of Examples 3.1 and 3.2, condition (3.4) seems nearly optimal. However,
it is not that clear how necessary condition (3.5) is, i.e. if some nonuniform bound would
suffice. That said, for the method we use in the present proof, this uniform bound appears to
be unavoidable.

Proof of Theorem 3.2. For technical reasons, we assume without loss of generality that W ,
X, and F are defined on the whole interval [0,∞). In order to be able to use regular conditional
laws, we define the underlying probability space as follows:

� := C([0,∞),R2)× R, F := B(C([0,∞),R2)× R), P := law[(W,X), ξ ],

that is, for any ω = ((ω′
1, ω

′
2), ω

′′) ∈ �, we set Wt(ω) := ω′
1(t), Xt(ω) := ω′

2(t) for all
t ∈ [0,∞), and ξ(ω) := ω′′. Furthermore, let us fix t ∈ [0, T ), f ∈ C0([t,∞)) such
that f is absolutely continuous with bounded Radon–Nikodým derivative f ′ that satisfies
supp(f ′) ⊂ [t, T ], and ε > 0. Since � is a Polish space, by well-known results (see, e.g.
Theorem II.89.1 of [18]), there exists a regular conditional law µ := P[· | Ft ] (a random
measure on (�,F )).
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Step 1: conditioning. We are about to fix a realization of the random measureµ, drawn from
a set with probability 1, under which Ŵ t is a Brownian motion with respect to (Ft )t∈[t,∞). To
this end, for any d ∈ Z+, t = (t1, . . . , td ) ∈ [0,∞)d , and q = (q1, . . . , qd) ∈ Rd , write

A1(t, q) := {Wt1 ≤ q1, . . . ,Wtd ≤ qd},
A2(t, q) := {Ŵ t

t1
≤ q1, . . . , Ŵ

t
td

≤ qd} (where t ∈ [t,∞)d ),

B(t, q) := {Xt1 ≤ q1, . . . , Xtd−1 ≤ qd−1, ξ ≤ qd},
and, for any t ∈ [t,∞),

� := {A1(t, q) : d ∈ Z+, t ∈ [0, t]d ∩ (Q ∪ {t})d , q ∈ Qd},
Jt := {A2(t, q) : d ∈ Z+, t ∈ [t, t]d ∩ (Q ∪ {t})d , q ∈ Qd},
Kt := {B(t, q) : d ∈ Z+, t ∈ [0, t]d ∩ (Q ∪ {t})d , q ∈ Qd}.

Furthermore, we note that

Ct := {A1 ∩ A2 ∩ B : A1 ∈ � , A2 ∈ Jt , B ∈ Kt }, J∞ :=
⋃

t∈[t,∞)

Jt

are countable π -systems, and that, by continuity of the associated processes, σ(Ct ) = Ft , t ∈
[t,∞), and F̃ Ŵ t

∞ = σ(J∞), respectively. Next, define sets

E :=
⋂
A∈J∞

{ω ∈ � : µ(ω,A) = P[A]},

F :=
⋂

t∈[t,∞)∩Q
s∈Q+

⋂
C∈Ct

{
ω ∈ � :

∫
C

µ(ω, dω′)(Ws+t (ω′)−Wt(ω
′)) = 0

}
,

G1 :=
{
ω ∈ � : Y1(ω) :=

∫
�

µ(ω, dω′) exp

(
2‖f ′‖2∞

∫ T

t

k−2
s (ω′) ds

)
< ∞

}
,

G2 :=
{
ω ∈ � : Y2(ω) :=

∫
�

µ(ω, dω′) exp

(
2

∫ T

t

k−2
s (ω′)h2

s (ω
′) ds

)
< ∞

}
,

H :=
{
ω ∈ � : µ

(
ω,

{∫ T

0
k2
s ds ≤ K̄

})
= 1

}
.

It follows, from the assumption thatW is a Brownian motion with respect to F, conditions (3.4)
and (3.5), and from the disintegration theorem (see Theorem 6.4 of [14]), that P[E] = P[G1] =
P[G2] = P[H ] = 1. To check that P[F ] = 1, note that the intersections in the definition of F
are countable, and that

E[1C(Ws+t −Wt) | Ft ] = E[1C E[Ws+t −Wt | Ft ] | Ft ] = 0 P-a.s.,

and use the disintegration theorem again.
For the remainder of the proof, we fix ω� ∈ E ∩ F ∩ G1 ∩ G2 ∩ H , denote by (F �,P�)

the completion of (F , µ(ω�, · )), and let F� = (F �
t )t∈[t,∞) be the usual P�-augmentation of

(Ft )t∈[t,∞). Again, denote by E� the expectation with respect to P�. Since J∞ is a π -system

that generates F̃ Ŵ t

∞ , it follows that W� := Ŵ t is a Brownian motion under P�. To complete
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the first step, we still need to show that W� is an (F�, P�)-martingale. We note that, for any
t ∈ [t,∞) ∩ Q ∪ {t} and s ∈ Q+,

Hs,t := {Y ∈ L∞(�,P�) : E�[Y (Ws+t −Wt)] = 0}
is a vector space, closed with respect to uniform convergence, that contains all constant functions
and all limits of uniformly bounded increasing sequences of elements of Hs,t . Moreover,
{1C : C ∈ Ct } is closed under multiplication (since Ct is a π -system), and since ω� ∈ F ,
we have {1C : C ∈ Ct } ⊂ Hs,t . Hence, by the functional monotone class theorem (see, e.g.
Theorem I.21 of [7]), Hs,t contains all bounded Ft -measurable random variables. Thus, we
find that

E�[W�
s+t | Ft ] = W�

t for any t ∈ [t,∞) ∩ Q and s ∈ Q+.
Now, let t ′, t ′′ ∈ [t,∞) be such that t ′′ > t ′, and let (t ′′n ) ⊂ [t, t ′′)∩Q and (t ′n) ⊂ [t, t ′)∩Q∪{t}
be such that t ′′n ↑ t ′′ and t ′n ↑ t ′, respectively, when n ↑ ∞. Since, by continuity of X and W ,

Ft ′ =
∞∨
m=1

Ft ′m,

we have, by Theorem 7.23 of [14] and the continuity of W�,

E�[W�
t ′′n | Ft ′ ] = lim

m→∞ E�[W�
t ′′n | Ft ′m ] = lim

m→∞W
�
t ′m = W�

t ′ P�-a.s.

Moreover, since E�[supn∈N |W�
t ′′n

|] < ∞, the dominated convergence theorem for conditional
expectations implies that

E�[W�
t ′′ | Ft ′ ] = lim

n→∞ E�[W�
t ′′n | Ft ′ ] = W�

t ′ P�-a.s.

It follows now from standard results (see, e.g. Lemma II.72.2 of [18]) that W� is an (F�,P�)-
martingale.

Step 2: characterization of the support. To complete the proof, we shall now show that the
law of Ẑt under the measure P� is supported on C0([t, T ]). To this end, we adapt the method
employed in the proof of Lemma 3.1 of [20]. For the convenience of the reader, we do this in
detail. Let us define

Z�t :=
∫ t

t

k̂s dW�
s −

〈
L,

∫ ·

t

k̂s dW�
s

〉
t

, t ∈ [t,∞),

where

k̂t := kt1[t,T ](t)+ 1(T ,∞)(t), Lt :=
∫ t

t

k̂−1
s (f ′(s)− hs1[t,T ](s)) dW�

s .

We can easily check that

Z�t = Zt − Zt − f (t), t ∈ [t, T ]. (3.6)

Furthermore, we have, for all t ∈ [t,∞), the uniform bound

〈L,L〉t =
∫ t

t

k̂−2
s (f ′(s)− hs1[t,T ](s))2 ds ≤ 2

(
‖f ′‖2∞

∫ T

t

k−2
s ds +

∫ T

t

k−2
s h2

s ds

)
,
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using which we obtain, by the Cauchy–Schwarz inequality,

E�[e〈L,L〉∞/2] ≤ √
Y1(ω�)Y2(ω�) < ∞.

Consequently, Novikov’s criterion implies that the Doléans exponential

E(L)t := eLt−〈L,L〉t /2, t ∈ [t,∞),

is a uniformly integrable (F�,P�)-martingale, closable at ∞. Hence, we may define a new
probability measure Q� ∼ P� by d Q� := E(L)∞ dP�.

Now, since
∫ ·
t
k̂s dW�

s is an (F�,P�)-martingale, by Girsanov’s theorem, Z� is an (F�,Q�)-
martingale. Moreover, we have

〈Z�,Z�〉t =
∫ t

t

k̂2
s ds ≥ (t − T )+ → ∞ as t → ∞,

so, by the Dambis, Dubins–Schwarz theorem, there exists a Brownian motion (Bt )t∈[0,∞) under
Q� such that Z�t = B〈Z�,Z�〉t , t ∈ [t,∞), Q�-a.s. Thus, we have

Q�
[

sup
t∈[t,T ]

|Z�t | < ε
]

= Q�
[

sup
t∈[t,T ]

|B〈Z�,Z�〉t | < ε
]

≥ Q�
[

sup
u∈[0,K̄]

|Bu| < ε
]
> 0, (3.7)

since 〈Z�,Z�〉t ≤ K̄ for all t ∈ [t, T ], and since the Wiener measure is supported onC0([0, K̄])
(see, e.g. Corollary VIII.2.3 of [17]). By the equivalence of the measures we may substitute Q�

for P� in (3.7). Using the fact that P� coincides with µ(ω�, ·) on F and

B ′ :=
{

sup
t∈[t,T ]

|Zt − Zt − f (t)| < ε
}

∈ F ,

by (3.6) we haveµ(ω�, B ′) > 0. To conclude, note that functions having the properties of f are
dense in C0([t, T ]), so Z has F-CFS by Lemma 2.1. Finally, Z has FZ-CFS by Corollary 2.1
and Lemma 2.3.

3.3. Independent integrands and general integrators

Since Brownian motion has CFS, one might wonder if the preceding results generalize to
the case in which the integrator is merely a continuous process with CFS. While the proofs of
these results rely on methods specific to Brownian motion (martingales, time changes), in the
case of independent integrands of finite variation (Z3) we are able to prove this conjecture.

Theorem 3.3. (CFS.) Let (Ht )t∈[0,T ] be a continuous process, let (kt )t∈[0,T ] be a process of
finite variation, and let (Xt )t∈[0,T ] be a continuous process independent of (H, k). If X has
CFS and

inf
t∈[0,T ] |kt | > 0 a.s., (3.8)

then the process

Zt := Ht +
∫ t

0
ks dXs, t ∈ [0, T ], (3.9)

has CFS.

Remark 3.4. The stochastic integral in (3.9) exists as a pathwise Riemann–Stieltjes integral.
This well-known fact follows from the (discrete) integration-by-parts formula.
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Proof of Theorem 3.3. First, denote by G = (Gt )t∈[0,T ] the filtration given by

Gt := F̃ X
t ∨ σ {Hs, ks : s ∈ [0, T ]},

and let t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0. Furthermore, define

gt :=
∫ t

0
k−1
s d(f (s)+Ht −Hs), t ∈ [t, T ],

which is well defined since (k−1
t )t∈[t,T ] is of finite variation, by (3.8). Integration by parts and

the Love–Young inequality yield, for all t ∈ [t, T ],

|Zt − Zt − f (t)| =
∣∣∣∣
∫ t

t

ks d(Xs −Xt − gs)

∣∣∣∣
=

∣∣∣∣kt (Xt −Xt − gt )−
∫ t

t

(Xs −Xt − gs) dks

∣∣∣∣
≤

(
sup
t∈[t,T ]

|ks | + TV[t,T ](k)
)

︸ ︷︷ ︸
=:M(k)

sup
t∈[t,T ]

|Xt −Xt − gt |,

where TV[t,T ](k) denotes the total variation of the path of k on the interval [t, T ]. This estimate
implies the inclusion{

sup
t∈[t,T ]

|Xt −Xt − gt | < ε

2M(k)

}
⊂

{
sup
t∈[t,T ]

|Zt − Zt − f (t)| < ε
}
.

Hence, by monotonicity of conditional expectations, and by Lemmas 2.1, 2.2, and 2.3, it suffices
to show that

E

[
I

(
X̂t , g,

ε

2M(k)

) ∣∣∣∣ Gt

]
> 0 a.s.

To this end, note that since X is independent of H and k, it has G-CFS, and denote by ν some
regular Gt -conditional law of X̂t . The disintegration theorem (see Theorem 6.4 of [14]) now
yields

E

[
I

(
X̂t , g,

ε

2M(k)

) ∣∣∣∣ Gt

]
=

∫
C([t,T ])

1B(g,ε/(2M(k)))(x)ν(·, dx) > 0 a.s.,

since X has G-CFS.

4. Applications

In this section we establish CFS for certain price processes used in mathematical finance.
The main motivation for these applications stems from the desire to uncover more concrete
price processes to which the superreplication result in [10] applies.

4.1. Stochastic volatility models

Let us consider a price process (Pt )t∈[0,T ] in R+ defined by

dPt = Pt(f (t, Vt ) dt + ρg(t, Vt ) dBt +
√

1 − ρ2g(t, Vt ) dWt), P0 = p0 ∈ R+, (4.1)

where f, g ∈ C([0, T ] × Rd), ρ ∈ (−1, 1), (W,B) is a planar Brownian motion, and V is
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a process in Rd such that g(t, Vt ) > 0 a.s. for all t ∈ [0, T ]. Furthermore, we assume that
(B, V ) is independent ofW . We may now verify that P has CFS, since by positivity of P , Itô’s
formula yields

logPt = logp0 +
∫ t

0

(
f (s, Vs)− 1

2
g(s, Vs)

2
)

ds + ρ

∫ t

0
g(s, Vs) dBs

+
√

1 − ρ2

∫ t

0
g(s, Vs) dWs,

which clearly satisfies the assumptions of Theorem 3.1 (see Remark 3.1), and finally we may
invoke (2.1).

Let us briefly review some well-known special cases of (4.1). In standard Markovian
stochastic volatility models, the process V is a one-dimensional diffusion driven by B, that is,

dVt = α(t, Vt ) dt + β(t, Vt ) dBt , V0 = v0 ∈ R.

The popular models introduced by Heston (with leverage effects when −1 < ρ < 0); Hull and
White; E. M. Stein, J. C. Stein and Scott; and Wiggins are special cases of (4.1); see, e.g. [8] for
details. One notable special case of (4.1), in which V is not Markovian, is the model of Comte
and Renault [5], which was designed to capture long-memory effects in volatility. It can be
obtained by settingg(t, v) := ev , ρ := 0, and choosingV to be a fractional Ornstein–Uhlenbeck
process independent of W .

Special cases of (4.1) in which volatility may jump include the stochastic volatility model
of Barndorff–Nielsen and Shephard [1] and the regime switching model of Guo [11]. To see
why in the former model we have g(t, Vt ) > 0 a.s. for all t ∈ [0, T ], recall that we obtain the
model by specifying

Vt :=
∫ t

−∞
e−r(t−s) dLrs, t ∈ [0, T ],

where (Lt )t∈R is an increasing Lévy process (a subordinator) without drift, such that L0 = 0
a.s., independent of W , r > 0, ρ := 0, and g(t, v) := √

v. To exclude the uninteresting case
with zero volatility (whenP of course does not have CFS), let us assume that P[L1 = 0] < 1. We
find that Vt ≥ e−rT V0 for all t ∈ [0, T ] since L is increasing. Furthermore, using stationarity
and independence of the increments of L, we obtain, for all k ∈ Z+,

P[V0 = 0] ≤ P[L−i+1 − L−i = 0 for all i = 1, . . . , k] = P[L1 = 0]k,

and letting k → ∞ we find that V0 > 0 a.s., from which the desired property follows.

Remark 4.1. The absolute continuity of the drift of P is of course not necessary. Namely, we
can easily establish CFS similarly e.g. for any price process Pt := ef (t)+(g(V )·W)t , t ∈ [0, T ],
where f is an arbitrary continuous function. For certain choices of f , process P is known to
admit arbitrage opportunities in frictionless pricing models (see [6]).

4.2. Stochastic differential equations

Finally, let us consider a price process (Pt )t∈[0,T ] in R+ given by the stochastic differential
equation

dPt = µ(t, P ) dt + σ(t, P ) dWt, P0 = p0 ∈ R+, (4.2)
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where µ and σ are progressive functions such that, for some constants µ̄ > 0 and σ̄ > 1,

|µ(t, x)| ≤ µ̄x(t), σ̄−1x(t) ≤ |σ(t, x)| ≤ σ̄ x(t),

x ∈ Cp0([0, T ],R+), t ∈ [0, T ]. (4.3)

Furthermore, we assume that µ and σ are such that (4.2) has a weak solution, which, by
definition, means that there exist a filtration F = (Ft )t∈[0,T ] and F-adapted continuous processes
P and W that solve (4.2), such that W is an F-Brownian motion. Clearly, we may assume that
Ft = σ {Ps,Ws : s ∈ [0, t]}. Now, since P is positive, Itô’s formula yields

logPt = logp0 +
∫ t

0

(
µ(s, P )

Ps
− σ 2(s, P )

2P 2
s

)
ds +

∫ T

0

σ(s, P )

Ps
dWs.

SettingX := P and noting that (4.3) implies the conditions of Theorem 3.2, by (2.1), it follows
that P has CFS.
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