J. Austral. Math. Soc. (Series A) 26 (1978), 175-178

INNER FUNCTIONS AND THE MAXIMAL IDEAL SPACE OF $L^{\infty}(T^n)$

S. H. KON

(Received 13 April; revised 6 September 1977) Communicated by E. Strzelecki

Abstract

Let U^n be the unit polydisc in \mathbb{C}^n and let T^n be its distinguished boundary. It is shown that a function $f \in H^{\infty}(U^n)$ is inner if and only if $|f(\Phi)| = 1$ for all Φ in the maximal ideal space of $L^{\infty}(T^n)$. This generalizes a result of Csordas.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 32 A 30, 46 J 15; secondary 46 J 20, 30 A 72, 32 A 07.

Key words and phrases: inner functions, $H^{\infty}(U^n)$, maximal ideal space, Shilov boundary, polydisc, $L^{\infty}(T^n)$, radial cluster set.

1. Introduction

By identifying each $f \in H^{\infty}(U^n)$ with its radial boundary function, $H^{\infty}(U^n)$ may be regarded as a closed subalgebra of $L^{\infty}(T^n)$. Let X, M be the maximal ideal space of $L^{\infty}(T^n)$ and $H^{\infty}(U^n)$ respectively and let $\tau: X \to M$ be defined by mapping each complex homomorphism in X to its restriction to $H^{\infty}(U^n)$.

For n = 1 it is well known that $\tau(X)$ is the Shilov boundary of $H^{\infty}(U)$, see Hoffman (1962, p. 174), while Range (1972) has shown that $\tau(X)$ is strictly larger than the Shilov boundary for $n \ge 2$. Csordas (1973) has shown that $f \in H^{\infty}(U)$ is inner if and only if $|\hat{f}(\Phi)| = 1$ for all Φ in the Shilov boundary. Using the same approach, we show in Section 2 that $f \in H^{\infty}(U^n)$ is inner if and only if $|\hat{f}(\Phi)| = 1$ for all Φ in $\tau(X)$.

This work formed part of the author's doctoral research done under the supervision of Dr. P. S. Chee at the University of Malaya.

2. A characterization of inner functions

Let the fibre of X over $\alpha \in T^n$ be denoted by X_{α} , that is,

$$X_{\alpha} = \{ \Phi \in X \colon Z_i(\Phi) = \alpha_i, i = 1, \dots, n \}.$$
175

In the same manner as in Hoffman (1962, p. 171), we have

LEMMA 1. Let $f \in L^{\infty}(T^n)$, then $\omega \notin \hat{f}(X_{\alpha})$ if and only if there is a $\varepsilon > 0$ and a neighbourhood $N(\alpha)$ such that the set

$$\{z \in T^n: |f(z) - \omega| < \varepsilon\} \cap N(\alpha)$$

has Lebesgue measure zero.

PROOF. The number $\omega \notin f(X_{\alpha})$ if and only if there are functions

 $h, g_1, \ldots, g_n \in L^{\infty}(T^n)$

such that

$$(z_1-\alpha_1)g_1+\ldots+(z_n-\alpha_n)g_n+(f-\omega)h=1$$

or that

$$\left\{1-\sum_{k=1}^n(z_k-\alpha_k)g_k\right\}\Big/f-\omega\in L^\infty(T^n).$$

Now suppose that $f - \omega$ is essentially bounded away from zero in a neighbourhood $N(\alpha)$, say $N(\alpha) = \{z \in T^n : |z_i - \alpha_i| < \delta\}$. Define $N_k(\alpha) = \{z \in T^n : |z_i - \alpha_i| < \delta$ for i = 1, ..., k-1 and $|z_k - \alpha_k| \ge \delta\}$ and

$$g_k(z) = \begin{cases} \frac{1 - (f - \omega)}{z_k - \alpha_k}, & z \in N_k(\alpha), \\ 0, & \text{elsewhere.} \end{cases}$$

Then $g_k \in L^{\infty}(T^n)$ and since T^n is the disjoint union of $N(\alpha)$ and the $N_k(\alpha)$'s, it is easy to see that

$$\left\{1-\sum_{k=1}^{n}(z_{k}-\alpha_{k})g_{k}\right\}\Big/f-\omega=\begin{cases}1/f-\omega, & z\in N(\alpha),\\1, & \text{elsewhere}\end{cases}$$

and hence is a member of $L^{\infty}(T^n)$. On the other hand, if $f - \omega$ is not essentially bounded away from zero in every neighbourhood of α , then clearly for every choice of $g_k \in L^{\infty}(T^n)$, the function $\{1 - \sum_{k=1}^n (z_k - \alpha_k) g_k\}/f - \omega \notin L^{\infty}(T^n)$ since in a small enough neighbourhood of α , $|1 - \sum_{k=1}^n (z_k - \alpha_k) g_k| \ge \frac{1}{2}$.

The following measure theoretic result will also be needed.

LEMMA 2. Let E be a measurable subset of a regular measure space (X, μ) , with $\mu(E) > 0$. Then there exists $E^1 \subseteq E$, with $\mu(E^1) > 0$ and for each $\alpha \in E^1$ and $N(\alpha)$, the set $E^1 \cap N(\alpha)$ has positive measure.

PROOF. Since μ is regular, we may assume E to be compact. Suppose that for every $\alpha \in E$, there is a $N(\alpha)$ such that $E \cap N(\alpha)$ has zero measure. Since E is compact

there exists $N(\alpha_k)$ such that $E \subseteq \bigcup_k N(\alpha_k)$, but then

$$\mu(E) = \mu\left(E \cap \left(\bigcup_{k} N(\alpha_{k})\right)\right) \leq \sum_{k} \mu(E \cap N(\alpha_{k})) = 0,$$

contradicting $\mu(E) > 0$.

Let $E_0 = \{\alpha \in E: \text{ for some } N(\alpha), \mu(E \cap N(\alpha)) = 0\}$ and suppose that $\mu(E_0) > 0$, then as shown there exists a $\alpha \in E_0$ such that for all $N(\alpha)$,

 $\mu(E \cap N(\alpha)) \ge \mu(E_0 \cap N(\alpha)) > 0$

i.e. $\alpha \notin E_0$! Thus $\mu(E_0) = 0$.

Let $E^1 = E \setminus E_0$, then $\mu(E^1) = \mu(E) > 0$ and for each $\alpha \in E^1$, $N(\alpha)$, $\mu(E^1 \cap N(\alpha)) = \mu(E \cap N(\alpha)) > 0$.

For $\alpha \in T^n$ and $f \in H^{\infty}(U^n)$, the radial cluster set of f at α , denoted by $C_{\rho}(f, \alpha)$, is the set of all ω such that there exists a sequence of real $r_n \to 1$ with $0 \leq r_n < 1$ and $f(r_n \alpha) \to \omega$. An extension of a result of Csordas (1973) can now be given.

THEOREM 3. Let $f \in H^{\infty}(U^n)$, and $\alpha \in T^n$. Then the set $E = \{\alpha \in T^n \colon C_{\alpha}(f, \alpha) \cap f(\tau(X_{\alpha})) = \emptyset\}$

has Lebesgue measure zero.

PROOF. Let f^* be the radial boundary function of f. Suppose E has positive Lebesgue measure, then we can suppose that f^* is defined on E. By a well-known result of Lusin, f^* is continuous on a subset $E_0 \subseteq E$, of positive measure. Choose E_0^1 as in Lemma 2, then f^* is also continuous on $E_0^1 \subseteq E$. Let $\alpha \in E_0^1$, then $f^*(\alpha) \notin \hat{f}(\tau(X_{\alpha}))$ and by Lemma 1 there exists $\varepsilon > 0$, $N(\alpha)$ such that

$$V = \{z \in T^n \colon |f^*(z) - f^*(\alpha)| < \varepsilon\} \cap N(\alpha)$$

has Lebesgue measure zero.

Since f^* is continuous at $\alpha \in E_0^1$, there is a neighbourhood $N^1(\alpha)$ such that $|f^*(z) - f^*(\alpha)| < \varepsilon$ for all $z \in N^1(\alpha) \cap E_0^1$. By our choice of E_0^1 , $N^1(\alpha) \cap N(\alpha) \cap E_0^1(\subseteq V)$ has positive measure but V has measure zero!

COROLLARY 4. A function $f \in H^{\infty}(U^n)$ is inner if and only if $|\hat{f}(\Phi)| = 1$ for all $\Phi \in \tau(X)$.

PROOF. If $|\hat{f}(\Phi)| = 1$ for all Φ in $\tau(X)$, then f is inner by Theorem 3. Conversely, if f is inner, then f is invertible in $L^{\infty}(T^n)$ with $||f|| = ||f^{-1}|| = 1$ and hence $|\hat{f}(\Phi)| = 1$ for all $\Phi \in \tau(X)$.

REMARK. The example given in Range (1972) to show that the Shilov boundary of $H^{\infty}(U^n)$ for $n \ge 2$ is a proper subset of $\tau(X)$ also shows that $|\hat{f}(\Phi)| = 1$ for all Φ in the Shilov boundary does not imply that f is inner.

S. H. Kon

References

- G. L. Csordas (1973), "A note on the Shilov boundary and the cluster sets of a class of functions in H^{∞} ", Acta Math. Acad. Sci. Hungar. 24, 5-11.
- K. Hoffman (1962), Banach Spaces of Analytic Functions (Prentice-Hall, Englewood Cliffs, N.J.).
- M. Range (1972), "A small boundary for H^{∞} on the polydisc", Proc. Amer. Math. Soc. 32, 253-255.

Department of Mathematics University of Malaya Kuala Lumpur 22-11 Malaysia