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1. Introduction
We shall use results of Palmer (10, 11) and of Edwards and Ionescu Tulcea

(6) to show that a commutative F*-algebra (with identity) of operators on a
weakly complete Banach space is isomorphic to such an algebra on a Hilbert
space, the isomorphism extending to the weak closures of the algebras. This
result leads to an extension of Stone's theorem on unitary groups (a similar
extension is proved by different methods in (2, p. 350) and of Nagy's theorems
on semigroups of normal operators. The same technique yields an easy proof
of Dunford's theorem on the existence of a a-complete extension of a bounded
Boolean algebra of projections on a weakly complete Banach space. We are
indebted to H. R. Dowson for suggesting this topic and for help and guidance
in pursuing it.

2. Preliminaries
R will denote the reals, R+ the non-negative reals, Q the rationals, Q + the

non-negative rationals, C the complex numbers, Z the positive integers. For
each neZ, let en = [—n, «].

Let A be a compact Hausdorff space, C(A) the space of continuous (complex)
functions on A under the supremum norm. Let %a be the characteristic function
of a for each txc A. Let S(A) (50(A)) be the family of Borel (Baire) sets of A.
Let i?(A) (2?o(A)) be the family of bounded Borel (Baire) measurable functions
on A. Let S0(R) and S0(C) be the family of Borel (= Baire) sets of R and C
respectively.

Completeness and ^-completeness of Boolean algebras of projections are
defined in (1, pp. 345-346). Spectral measures and spectral operators are
defined in (3, pp. 291-292).

Let A" be a complex Banach space with dual space X' and si be a subalgebra
of L(X), the algebra of bounded operators on X. Let s{si) and w(s/~) be the
strong and weak closure of si. It is well known that w{si) = s(sf).

For any subset SS of £(Z) let @c = {Se L(X): V!Te SB, ST = TS}. If H
is a Hilbert space and si a *-subalgebra (with identity) of L(H), then s&cc = si
if and only if si = s(s/).

Let TeL(X). T is said to be hermitian in Vidav's sense if, for real A,
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Let sJ be a subalgebra (with identity) of L(X) and $? the set of hermitian
elements in s4. s& is called a K*-algebra if s/ = tf + itf, in the sense that
VSes#3R, JeJP such that S = R + U. It follows from the theorem of
(10, p. 539) that in these circumstances R and / are determined uniquely,
and that *:R + iJ*-+R—iJis the (Vidav) involution on s&. By the same theorem,
a subalgebra with identity of L(X) is V* if and only if it is C*.

Let S be an unbounded operator on X. Following (11, p. 386) we call S
self-conjugate if it generates a strongly continuous group of isometries: i.e.
if there exists a family { £/(/, S): t e R} of operators such that

(1) U(0, S) = / ,

(2) Vs, W, l/(s, S)t/(<, S) = U(s + t, S),

(3) Vx e X, Vs e R, lim || 17(1, S ) x - C/(s, S)x \\ = 0,

(4) VteR, || l/(*. S)|| = 1,

(5) 0(S) = {x: lim [(ir)~x(C/(f, S)x —x)] exists}, and
r->0

Vx e 0(S), Sx = lim [ ( i O " ^ ^ ' . S)x-x)].
>0

We call S strongly self-conjugate if it is self-conjugate and if the group { U(t, S)}
is contained in a commutative F*-algebra with identity. We call S normal
if S = R+iJ, where R and / are both strongly self-conjugate and the groups
{U(t, R)} and {U(t, J)} are contained in the same F*-algebra. We note that a
bounded operator is normal if and only if it belongs to a commutative V*-
algebra with identity (11, p. 402).

We assume throughout that X is weakly (sequentially) complete.

3. F*-algebras
Throughout this paper we shall abbreviate " commutative F*-algebra with

identity " to " F*-algebra ".
Let si be a F*-algebra on X with structure space A. There exists an iso-

metric *-isomorphism ip: C ( A ) - > J / . By Theorem 2.5 of (11, p. 392) there
exists a unique regular strongly countably additive self-conjugate spectral
measure E{ ) in L(X), defined on S(A), such that V/e C(A)

<K/) = [
JA

Extend \p in the obvious way to give \p: 5(A)-> L(X).

Lemma 1.

Proof. -B0(A) is the smallest family of bounded functions which contains
C(A) and is closed under pointwise sequential limits (8, p. 164). Hence it is
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enough to prove that if (fn) is a bounded sequence in B0(A) with pointwise
l imit /and with ^(/n) e s(sf), then i/</) e s(s/). But, by (5, IV. 10.10), V* e X

Let 01{E) = {£(ff): <T e S0(A)} and let .*/(£) be the weakly closed algebra
generated by 01{E).

Lemma 2. w{sf) = sf{E).

Proof. Every fe C(A) can be approximated uniformly by simple Baire
measurable functions; hence s/<=si(E), and so w(s/)cs/(E). For each
a e iS0(A) the function xa e B0(A). Hence, by Lemma 1, E(a) = iK/,,) £ •?(.«/).
Therefore jrf(E)cw(st).

By Corollary 2 of (6, p. 549) there exist:

(1) a Hilbert space H,
(2) a strongly countably additive self-adjoint spectral measure Eh( ) in

L(H), defined on S0(A), and
(3) a map <j>: $0(E)-*srf(Eh) which is a *-isomorphism (on extending the

involution to s#(E)), onto, norm bicontinuous, and both strongly and
weakly bicontinuous on bounded sets. Let sih = 4>jtf.

Lemma 3. w[si) is a V*-aIgebra.

Proof. Let Sf be the set of *-hermitian operators in w(sf), and let
S e Sf. S is the weak limit of a net of *-hermitian operators in stf, and these
are Vidav-hermitian. Hence S is Vidav-hermitian. Clearly, w{s4) = if-\-iSf
and w(sf) is therefore a F*-algebra. Also, 4> is a C*-algebra isomorphism, and
hence an isometry.

Theorem 1. Let Tbe a bounded normal operator on X, and si the V*-algebra
generated by T. Let A be the structure space of si, E{ ) the spectral measure
as above. Then A and o(T) are homeomorphic and X e a(T) is an eigenvalue
of T if and only if E({k}) ± 0.

Proof. Take H, 4>, sih as above. ' Since o(T) is determined by the set of
maximal ideals of si, it follows that a(J) = <J(4>T). By (5, IX. 3.15) there
exists an isometric *-isomorphism 6: C(4>T))^>si''. Thus C(A) and C(p(T))
are *-isomorphic as algebras and so A and o(T) are homeomorphic. We
identify A and o(T), and write \j/ above as

J a\
i t f )£(</A),

and extend \ji to give \ji: B0(p(T))-*w(si).

That A is an eigenvalue of T if and only if E({X}) ^ 0 is shown by direct
imitation of the proofs of (5, X. 3.3(ii)) and (5, X. 2.8 (iii)). (This has been
proved for spectral operators of finite type in Theorem 1 of § 4 of (7, p. 56).)
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4. An extension of Stone's theorem
Theorem 2. Let S be strongly self-conjugate with generated group of

isometries {U(t, S): t e R}. Then there exists a spectral measure Es( ) defined
on S0(R) such that

U(t, S) = lim eilXEs(dX) Vf e Rt, S) = lim

= lim XES\
" Jen

Sx = lim kEs(dX)x Vx e 3>(S).
" Jen

Proof. Let {U{t, S)} be contained in a F*-algebra $f, which, without loss
of generality, can be taken to be weakly closed. Introduce H, <j>, s/h, E( ), E\ )
as in § 3.

Let V(t, S) = 4>U{t, S). {V(t, S): t e R} is a group of invertible isometries

on H, therefore a unitary group. By Stone's theorem there exists a self-

conjugate spectral measure £*( ) on 50(R) such that V(t, S) = lim eiaEh
s{dX)

and such that Eh
s{o) e {V(t, S)}" for each a e S0(R). Since {V(t, S)}<=jz?h, we

have {V(t, S)}cc<= rfhcc: and s4hcc = sfh since s£h is weakly closed. Hence
each E\{o) e sfh.

Now define a spectral measure 2?s( ) in L(X) by £s( ) = q>~1Eh
s( ). Since 0

is an isometry,

U(t, S) = <£~V(f, S) = lim e"%(dA).

Define 5 ' on Z by S' = st lim XEs{dX), wherever this limit exists. We
" Jen

show that S = S'.

(1) ScS':

Vx e 3>{S), Vn e Z, Es(en)Sx = lim JEXOCi'O'^t/C', S)x-x]
t->0

= I XEs(
Jen

;s(dX)x by (5, IV. 10.10).
Jen

Since lim £s(en) = / , we have

f
Sx = lim Es(en)Sx = lim A£s(d/)

" » Jen
Hence x e ®(S') and Sx = 5"x. Therefore S<=S'.
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(2) S'cS:

S'x = f XEs(dX)xf

| (it)-\e"x-l)Es(dX)x,
i - o

= lim f (ity\e"x-l)Es(dX)Es(en)x

= Jim {(ity'iUit, S)-Q}Es(en)x.

by (5, IV. 10.10).

Hence Es(en)x e S>(S) and SEa(eJx = Es(en)S'x. Now 5 is closed (11, p. 397),

x = lim Es(en)x and S'x = lim SEs(en)x.
n n

Hence ^ e ®{S) and 5'x = Sx. Therefore 5' = S.

5. Semigroups of bounded normal operators
Lemma 4. Let ^~ = {T(t): t>0} be a weakly continuous semigroup of

bounded normal operators on X. Then there exists a V*-algebra containing ff~.

Proof. Let stf(t) be the weakly closed F*-algebra generated by T(t):

s/(t) = wk cl {p(T(t), T(t)*): p( , ) a polynomial}.

For te Q+\{0}, n e Z we have T(t) = T(t/n)n; hence i ( ( )c^( ( /n ) . Thus if
m/n, m'/n' e Q+\{0} we have jrf(m/ri)vsf(m'/n')c:s#(l/nn'): the system

M O : *eQ+\{0}}

is a directed system of F*-algebras. Hence s# = wkclu{j^(/): <eQ+\{0}}
is a weakly closed K*-algebra. If t e R+\Q+ then

= wk lim {T(s): seQ+}.

Thus s& is the required F*-algebra.

Theorem 3. Let 2T = {T(t): t>0} be a weakly continuous semigroup of
bounded strongly self-conjugate operators on X. Then &~ is uniformly continuous
and there exists a unique spectral measure F{ ) with compact support contained
in R+ such that

T(t)= f A*F(dX).
JR+

Furthermore, if no T(t) has 0 as an eigenvalue there exists a unique spectral
measure G{ ) on 50(R) such that

T(t) =

E.M.S.—M
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Proof. Let si be the F*-algebra of Lemma 4. Introduce H, <j>, sih as in
§3. The semigroup yh = {<f>T{t)\ t>0} satisfies the hypotheses of the theorem
of (9, p. 73). Therefore STh is uniformly continuous and there exists a unique
spectral measure F\ ) with compact support contained in R+ such that

<t>T(t) - J , ,
JR+

Since for any a e 50(R+) we have F\a) e S'hcc<^sJhcc = sih we can define the
required spectral measure F( ) by F( ) = 4>~lF\ ). If 0 is not an eigenvalue
of any T(t) then by Theorem 1 we know that 0 is not an eigenvalue of any
<f>T(t). Hence we can find the required G( ) in the same way from the G\ )
given by Nagy's theorem.

Theorem 4. Let !T = {T(t): t>0} be a weakly continuous semigroup of
bounded normal operators on X, and let 0 be eigenvalue of no T(t). Then 3~
is strongly continuous and there exists a unique spectral measure F{ ) defined
on S0(C) such that

f eaF(dX).= f
Jc

Proof. This follows by the argument of the preceding theorem, but using
instead the theorem of (9, p. 74).

The following two lemmas show that Theorems 3 and 4 have the obvious
extensions to the case when &~ is a group.

Lemma 5. Let T be an invertible element of the V*-algebra si'. Then
T'iesf.

Proof. Since T~x exists, 0$a(T). Hence zi-^z"1 is continuous on a(T).
By Theorem 1, T'1 - ^(zh»z"')€rf.

Lemma 6. Let y = {T(t): t e R} be a weakly continuous group of bounded
normal operators on X. Then there exists a V*-algebra containing &~.

Proof. By Lemma 5 the algebra si constructed in Lemma 4 for the semi-
group {T(t): t>0} contains each T(-t) = T(t)~x.

6. The extension of a Boolean algebra of projections
Let 3d' be a bounded Boolean algebra of projections, A its Stone space,

M an upper bound for {|| B ||: B e 38). Let K'(A) be the set of characteristic
functions of the clopen sets of A. Let \p' be the representation isomorphism

Let K(A) be the complex commutative algebra of all finite sums ^CjXaj, where
Xaj 6 K'(A). Let SS be the corresponding algebra of sums I,CJB(<TJ). Extend
kjt' to an algebra isomorphism
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Lemma 7. \J/ is bicontinuous.

Proof. Let k e K(A) have the form EcyX,, : without loss of generality we
can take the a} pairwise disjoint. Then || k || = sup | c} \. Let x e X, y e X'.

j
Then yB( )x is a finite measure on the Boolean algebra of clopen subsets of A,
and for a clopen we have | yB(a)x | ^ M || x || || y ||. Hence, by (5, III. 1.5),
yB( )x is bounded, with bounded total variation satisfying

By (5, III. 1.6) the total variation is an additive function on the clopen subsets
of A. Hence

g sup | Cj | £ var (yB( )x, ffj)

= [| k I var (yB( )x, (J tr;) ^ AM || x \\. || y | .

Thus || iA || ^ 4M and ^ is continuous.

For k = ZCjXaj, x e B{aj)X we have 4/(k)x = csx. Therefore |
hence || ^(A:)|| ^ || A: || and xj/'1 is continuous.

Since A is totally disconnected, ^(A) separates the points of A; hence is
norm dense in C(A). Let $ be the norm closure of 88 in L(X). Extend \j/ to a
bicontinuous onto isomorphism i/r C(A)->^. The argument of the proof of
Theorem 2.5 of (11, p. 392) shows that there exists a regular strongly countably
additive spectral measure E( ) in L(X) such that

= f
JA

V/e C(A).
JA

Extend \p to a map i/f: 5(A)->L(A^. Let ^ = ^ { / o : a e S^A)}. As in Lemma

Theorem 5 (Dunford, (4), p. 578; Bade, (1), p. 351). Let 38' be a bounded
Boolean algebra of projections on a weakly complete Banach space X. Then
38' has a a-complete extension contained in the strong closure of '39''.

Proof. We show that 3$ is c-complete as a Boolean algebra of projections.

Let (Bj) be a sequence in 3fi: Bj = ^ / with a} e S0(A). Let
00

a = (J <jj, B = \j/xa.

The sequence I \ / %a/1 converges pointwise to %a, therefore is weakly Cauchy

in B(A). Therefore B = st lim ( \ / BA (5, VI. 7.4 and remarks on p. 497);
B \ 1 /

GO

i.e. B =\J Bj in the strong topology.
I
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Clearly, BjX<=BX: hence elm {BjX}cBX. For any x e BX we have

x = Bx = lim \ / Byx e elm {BjX}.

Hence 5 Z = elm {BjX}.
The proof that (ABJ)X = f) {BjX} is similar. Since A is totally discon-

nected, S0(A) is contained in the <r-algebra generated by the clopen sets.
Hence | c i ( ^ |
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