Canad. Math. Bull. Vol. 20 (1), 1977

TRIANGULARIZING SOLVABLE GROUPS OF UNIPOTENT MATRICES OVER A SKEW FIELD

by WALTER S. SIZER

ABSTRACT. In this note we show that a solvable group of unipotent matrices over a skew field can be simultaneously triangularized.

It is well known (c.f. [1], p. 100) that a semigroup of unipotent matrices over a commutative field can be simultaneously triangularized. The corresponding question for a semigroup of unipotent matrices over a skew field is still unanswered. In this note we prove that the result holds for solvable groups of unipotent matrices over a skew field, and it follows that a group of unipotent matrices over a skew field can be triangularized if and only if it is solvable.

Before proving the main theorem we need a lemma about commuting unipotent matrices. A more general result is given in Theorem 2.1 of [2], but the proof is easier in the particular case given here:

LEMMA. A set of commuting unipotent matrices over a skew field D can be simultaneously triangularized.

Proof. Let Σ be a set of commuting unipotent $n \times n$ matrices. Denote by V the right D-space of n-dimensional column vectors. Then Σ acts on V by left multiplication in the natural way. We use induction on n to show that the lemma holds in case Σ leaves a non-trivial subspace of V invariant. If n = 1, the lemma is clearly true, so assume n > 1 and the result is true for sets of matrices of degree j whenever n > j. Suppose further that W is a non-trivial invariant subspace of dimension i. Let P be an invertible $n \times n$ matrix whose first i columns form a basis of W. Then for $M \in \Sigma$, $P^{-1}MP$ has the form

$$\begin{bmatrix} A_M & B_M \\ 0 & C_M \end{bmatrix},$$

where A_M is an $i \times i$ matrix. Then $\Sigma' = \{A_M \mid M \in \Sigma\}$ and $\Sigma'' = \{C_M \mid M \in \Sigma\}$ are sets of commuting unipotent matrices of degree less than *n*, so by our induction hypothesis there are invertible matrices *R*, *Q* of the appropriate degrees such that $R^{-1}A_MR$ and $Q^{-1}C_MQ$ are upper triangular for all $M \in \Sigma$. Then

$$\begin{bmatrix} \boldsymbol{R}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Q}^{-1} \end{bmatrix} \boldsymbol{P}^{-1} \boldsymbol{M} \boldsymbol{P} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Q} \end{bmatrix}$$

Received by the editors September 14, 1976.

is triangular for all M in Σ , and the lemma is proved. Thus we assume that Σ leaves no non-trivial subspaces of V invariant.

We now show that the absence of non-trivial invariant subspaces implies that $\Sigma = \{I\}$ and n = 1. The result will follow. Let $M \in \Sigma$; M is unipotent, so M = I + N, where N is nilpotent. Since N is nilpotent, there is a non-zero vector $v \in V$ such that Nv = 0. Thus Mv = v. Let $W = \{v \in V \mid Mv = v\}$. W is easily seen to be a non-zero subspace of V. If $A \in \Sigma$ and $w \in W$, then since Σ is commutative we have MAw = AMw = Aw. Thus $Aw \in W$, so W is a Σ -invariant subspace. Our assumption on non-trivial invariant subspaces implies W = V, and so by the way W was defined, M = I. But M was chosen to be any element of Σ , and we see that $\Sigma = \{I\}$; the assumption on non-trivial subspaces then shows us that n = 1.

We can now prove the main

THEOREM. Let D be a skew field, and let Γ be a solvable group of unipotent $n \times n$ matrices with entries in D. Then there exists an invertible matrix P with entries in D such that $P^{-1}MP$ is triangular for all M in Γ .

Proof. Again, let V denote the right D-space consisting of column vectors. As in the lemma, an induction argument allows us to assume that Γ leaves no non-trivial subspaces of V invariant.

We shall now show that if Γ is a solvable group of unipotent matrices leaving no non-trivial subspace of V invariant then Γ is trivial and n = 1. Γ is trivial if Γ is solvable of length 0; if on the other hand Γ is solvable of length m > 0 then Γ^{m-1} is a non-trivial abelian normal subgroup of Γ . So to show Γ is trivial we need only show that it has no non-trivial abelian normal subgroups.

Let Δ be any abelian normal subgroup of Γ . By the lemma Δ can be upper triangularized; this fact and the fact that the matrices in Δ are unipotent imply that there is a non-zero vector $u \in V$ such that Mu = u for all M in Δ . Let $W = \{v \in V \mid Mv = v \text{ for all } M \in \Delta\}$. Then W is a non-zero subspace of V. We want to show that Γ maps W into itself, so let $B \in \Gamma$, $w \in W$. By the definition of W, we must show that for any M in Δ , MBw = Bw. But for $M \in \Delta$, we have, since Δ is a normal subgroup of Γ , MB = BM' for some M' in Δ . Then MBw = BM'w = Bw, by the definition of W and the fact that $M' \in \Delta$. Thus W is a non-trivial Γ -invariant subspace of V, so by assumption W = V. Then by definition of W, we see that $\Delta = \{I\}$, so Δ is trivial. But Δ was any abelian normal subgroup of the solvable group Γ , so $\Gamma = \{I\}$; then by our assumption on invariant subspaces n = 1 and we are done.

ACKNOWLEDGEMENT. This result appears in the author's University of London Ph.D. thesis ([2]). The author would like to thank his advisor, Professor P. M. Cohn, for his encouragement.

1977]

UNIPOTENT MATRICES

References

1. Irving Kaplansky, Fields and Rings, University of Chicago Press, Chicago, 1972.

2. Walter S. Sizer, Similarity of Sets of Matrices over a Skew Field, Ph.D. Thesis, University of London, London, 1975.

Dept of Math.

UNIVERSITY OF MASS. Amherst, Mass. 01003, U.S.A.

•