TRIANGULARIZING SOLVABLE GROUPS OF UNIPOTENT MATRICES OVER A SKEW FIELD

BY
WALTER S. SIZER

Abstract

In this note we show that a solvable group of unipotent matrices over a skew field can be simultaneously triangularized.

It is well known (c.f. [1], p. 100) that a semigroup of unipotent matrices over a commutative field can be simultaneously triangularized. The corresponding question for a semigroup of unipotent matrices over a skew field is still unanswered. In this note we prove that the result holds for solvable groups of unipotent matrices over a skew field, and it follows that a group of unipotent matrices over a skew field can be triangularized if and only if it is solvable.

Before proving the main theorem we need a lemma about commuting unipotent matrices. A more general result is given in Theorem 2.1 of [2], but the proof is easier in the particular case given here:

Lemma. A set of commuting unipotent matrices over a skew field D can be simultaneously triangularized.

Proof. Let Σ be a set of commuting unipotent $n \times n$ matrices. Denote by V the right D-space of n-dimensional column vectors. Then Σ acts on V by left multiplication in the natural way. We use induction on n to show that the lemma holds in case Σ leaves a non-trivial subspace of V invariant. If $n=1$, the lemma is clearly true, so assume $n>1$ and the result is true for sets of matrices of degree j whenever $n>j$. Suppose further that W is a non-trivial invariant subspace of dimension i. Let P be an invertible $n \times n$ matrix whose first i columns form a basis of W. Then for $M \in \Sigma, P^{-1} M P$ has the form

$$
\left[\begin{array}{cc}
A_{\mathrm{M}} & B_{\mathrm{M}} \\
0 & C_{\mathrm{M}}
\end{array}\right]
$$

where A_{M} is an $i \times i$ matrix. Then $\Sigma^{\prime}=\left\{A_{M} \mid M \in \Sigma\right\}$ and $\Sigma^{\prime \prime}=\left\{C_{M} \mid M \in \Sigma\right\}$ are sets of commuting unipotent matrices of degree less than n, so by our induction hypothesis there are invertible matrices R, Q of the appropriate degrees such that $R^{-1} A_{M} R$ and $Q^{-1} C_{M} Q$ are upper triangular for all $M \in \Sigma$. Then

$$
\left[\begin{array}{cc}
R^{-1} & 0 \\
0 & Q^{-1}
\end{array}\right] P^{-1} M P\left[\begin{array}{cc}
R & 0 \\
0 & Q
\end{array}\right]
$$

Received by the editors September 14, 1976.
is triangular for all M in Σ, and the lemma is proved. Thus we assume that Σ leaves no non-trivial subspaces of V invariant.

We now show that the absence of non-trivial invariant subspaces implies that $\Sigma=\{I\}$ and $n=1$. The result will follow. Let $M \in \Sigma ; M$ is unipotent, so $M=I+N$, where N is nilpotent. Since N is nilpotent, there is a non-zero vector $v \in V$ such that $N v=0$. Thus $M v=v$. Let $W=\{v \in V \mid M v=v\}$. W is easily seen to be a non-zero subspace of V. If $A \in \Sigma$ and $w \in W$, then since Σ is commutative we have $M A w=A M w=A w$. Thus $A w \in W$, so W is a Σ invariant subspace. Our assumption on non-trivial invariant subspaces implies $W=V$, and so by the way W was defined, $M=I$. But M was chosen to be any element of Σ, and we see that $\Sigma=\{I\}$; the assumption on non-trivial subspaces then shows us that $n=1$.

We can now prove the main
Theorem. Let D be a skew field, and let Γ be a solvable group of unipotent $n \times n$ matrices with entries in D. Then there exists an invertible matrix P with entries in D such that $P^{-1} M P$ is triangular for all M in Γ.

Proof. Again, let V denote the right D-space consisting of column vectors. As in the lemma, an induction argument allows us to assume that Γ leaves no non-trivial subspaces of V invariant.

We shall now show that if Γ is a solvable group of unipotent matrices leaving no non-trivial subspace of V invariant then Γ is trivial and $n=1$. Γ is trivial if Γ is solvable of length 0 ; if on the other hand Γ is solvable of length $m>0$ then Γ^{m-1} is a non-trivial abelian normal subgroup of Γ. So to show Γ is trivial we need only show that it has no non-trivial abelian normal subgroups.

Let Δ be any abelian normal subgroup of Γ. By the lemma Δ can be upper triangularized; this fact and the fact that the matrices in Δ are unipotent imply that there is a non-zero vector $u \in V$ such that $M u=u$ for all M in Δ. Let $W=\{v \in V \mid M v=v$ for all $M \in \Delta\}$. Then W is a non-zero subspace of V. We want to show that Γ maps W into itself, so let $B \in \Gamma, w \in W$. By the definition of W, we must show that for any M in $\Delta, M B w=B w$. But for $M \in \Delta$, we have, since Δ is a normal subgroup of $\Gamma, M B=B M^{\prime}$ for some M^{\prime} in Δ. Then $M B w=B M^{\prime} w=B w$, by the definition of W and the fact that $M^{\prime} \in \Delta$. Thus W is a non-trivial Γ-invariant subspace of V, so by assumption $W=V$. Then by definition of W, we see that $\Delta=\{I\}$, so Δ is trivial. But Δ was any abelian normal subgroup of the solvable group Γ, so $\Gamma=\{I\}$; then by our assumption on invariant subspaces $n=1$ and we are done.

Acknowledgement. This result appears in the author's University of London Ph.D. thesis ([2]). The author would like to thank his advisor, Professor P. M. Cohn, for his encouragement.

References

1. Irving Kaplansky, Fields and Rings, University of Chicago Press, Chicago, 1972.
2. Walter S. Sizer, Similarity of Sets of Matrices over a Skew Field, Ph.D. Thesis, University of London, London, 1975.

Dept of Math.
University of Mass.
Amherst, Mass. 01003, U.S.A.

