Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T02:16:36.933Z Has data issue: false hasContentIssue false

Millimetre Observations of Evolved Stars

Published online by Cambridge University Press:  25 April 2016

Jessica M. Chapman*
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia

Extract

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).

Type
Workshop on Millimetre-wave Astronomy
Copyright
Copyright © Astronomical Society of Australia 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balick, B., Preston, H. L., & Icke, V. 1987, AJ, 94, 1641 CrossRefGoogle Scholar
Barvainis, R., McIntosh, G., & Predmore, C. R. 1987, Nature, 329, 15 CrossRefGoogle Scholar
Chapman, J. M., & Cohen, R. J. 1986, MNRAS, 220, 513 CrossRefGoogle Scholar
Chapman, J. M., Habing, H. J., & Killeen, N. E. B. 1995, in Astrophysical Applications of Stellar Pulsation, Proceedings of IAU Colloquium 155, ed. Whitelock, P. & Stobie, R., ASP Conf. Ser., 83, 113 Google Scholar
Diamond, P. J., Kemball, A. J., Junor, W., Zensus, A., Benson, J., & Dhawan, V. 1994, ApJ, 430, L61 CrossRefGoogle Scholar
Greenhill, L. J., Colomer, F., Moran, J. M., Backer, D. C., Danchi, W. C., & Bester, M. 1995, ApJ, 449, 365 CrossRefGoogle Scholar
McIntosh, G. C., Predmore, C. R., Moran, J. M., Greenhill, L. J., & Barvainis, R. 1989, ApJ, 337, 934 CrossRefGoogle Scholar
McIntosh, G. C., Predmore, C. R., & Patel, N. A. 1993, ApJ, 404, L71 CrossRefGoogle Scholar
Mellema, G. 1993, PhD thesis, University of Leiden Google Scholar
Nedoluha, G. E., & Watson, W. D. 1993, in Lecture Notes in Physics, Astrophysical Masers, ed. Clegg, A. W. & Nedoluha, G. E. (Berlin: Springer), 412, 47 CrossRefGoogle Scholar
Olofsson, H. 1993, Molecular Opacities in the Stellar Evironment, IAU Colloq. 146 CopenhagenGoogle Scholar
Sevenster, M. N., Habing, H. J., Chapman, J. M., & Killeen, N. E. B. 1995, in Astrophysical Applications of Stellar Pulsation, Proceedings of IAU Colloquium 155, ed. Whitelock, P. & Stobie, R., ASP Conf. Ser., 83 Google Scholar
te Lintel Hekkert, P., Chapman, J. M., & Zijlstra, A. A. 1992, ApJ, 390, L23 CrossRefGoogle Scholar
Trams, N. R., van, der Veen W. E. C. J., Waelkens, C., Walters, L. B. F. M., & Lamers, H. J. G. L. M. 1990, A&A, 233, 153 Google Scholar