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ON THE UPPER MAJORANT PROPERTY FOR 
LOCALLY COMPACT ABELIAN GROUPS 

M. RAINS 

1. I n t r o d u c t i o n and pre l iminar ie s . Let G be a compact abelian group 
and form the spaces LP(G) with respect to the normalized Haar measure on G. 

If/, g G L\iG) and | / | ^ g we say tha t g majorizesf (or g is a majorant of f). 
Let 1 ^ p ^ oo . We say tha t LP(G) has the upper majorant property if there is 
a positive constant D such tha t wheneve r / , g £ LP(G) and g ma jo r i ze s / we 
have [I/Up ^ Z)||g||p. We say tha t LP(G) has the lower majorant property if there 
is a positive constant C such tha t e v e r y / Ç LP(G) has a majorant g £ LP(G) 
for which | |g | | , g q i / H , . 

These properties will be abbreviated to U M P and LA IP respectively. 
The majorant problem, initiated by Hardy and Littlewood [5], is to deter

mine for which p the space LP(G) has the UAIP or the LAI P. The known results 
can be summarized as follows: 

(a) LP(G) has the UAIP if and only if p is an even integer or oo ; and when 
LP(G) has the UAIP the constant is 1. 

(b) For 1 < p < oo and (1/p) + (1/q) = 1, the space LP(G) has the UAIP 
if and only if Lq(G) has the LAIP, with the same constant . 

(c) Li(G) has the LAIP with constant 1. 
(d) Lœ(G) does not have the LAIP. 

For the proofs of (a), (b), and (c) we refer to Hardy and Littlewood [5], 
Boas [2], Bachelis [1], and Fournier [3]. The papers of Hardy and Littlewood 
and of Boas are concerned with the circle group, while the lat ter two contain 
the results for the general (infinite) compact abelian group. The paper of 
Bachelis also completes the results for the circle group. 

T o prove (d) we need only note tha t a continuous function on G which does 
not belong to A (G) (see [14, p. 9]) has no majorant in Lœ(G). We now condense 
s ta tements (b), (c), (d) to: 

(e) If 1 ^ p S oo and (1/p) + (1/q) = 1, then LP(G) has the UAIP if and 
only if Lq(G) has the LAIP, with the same constant . 

The s ta tements of (e) are called "dual i ty theorems". T h a t LP(G) has the 
UAIP implies Lq(G) has the LAIP was proved, for the circle group, by H a r d y 
and Littlewood [5]. The outher s ta tement in (e) is due to Boas [2]. We shall be 
concerned with the generalization of these results to noncompact locally corn-
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pact abelian groups. We obtain an analogue of (a) and conclude with a remark 
on (e). The main theorem is stated in Section 2 and is proved in the succeeding 
sections. The crux of this proof is the case of the integers (see Section 5) in 
which we use Rudin's description [13] of the functions which operate on real-
valued positive definite sequences. Once the theorem for the integer group is 
known we can easily derive the analogous result for the real line (see Section 6). 

This work is taken from the author's Ph.D. thesis written under the super
vision of J. Fournier at the University of British Columbia. It is a pleasure to 
thank him for his advice and encouragement during the preparation of this 
work. 

Notation. Throughout this paper G will denote a locally compact abelian 
group (abbreviated LCAG) with dual group G. The Lebesgue spaces LP(G) 
(1 è P ^ °o ) are constructed with respect to Haar measure on G. This measure 
is generally normalized. When G is discrete, Haar measure is usually counting 
measure and for G compact Haar measure is normalized to have total mass 1. 
One exception to the latter convention occurs when H is an open subgroup of 
G. The total mass of H is then [G : H]~l, where [G : H] is the index of H in G. 

F o r / Ç Li(G) define its Fourier transform by 

f(y) = I f(x)y(x)dx, y G G, 
J G 

The range of the Fourier transform, Li(G)", is denoted by A (G). 
We denote the group of real numbers by R, the circle group by T, and the 

integer group by Z. The positive integers are denoted by N and Z(r), r ^ 1, 
denotes the cyclic group of order r. 

2. Statement of the main theorem. The definition of the UMP given 
in the introduction was used by Boas [2] and Bachelis [1], while in [3] Fournier 
uses an analogous definition involving only trigonometric polynomials. Stan
dard approximate identity arguments show that the definitions of Bachelis and 
Fournier are equivalent. When G is a noncompact LCAG and p > 2 the Fourier 
transform of an LP(G)-function must be defined in the sense of quasimeasures 
(see [4, Chapter 6]). Then we must somehow interpret the inequality |/ | ^ g. 
This problem vanishes if we use a definition of the UMP for a noncompact 
LCAG which involves only functions in a suitable dense subspace of LP{G). 
The space we shall use is S(G) = Li(G) Pi A (G), which is contained in every 
LP(G)} 1 S p ^ °o • We will remark briefly on the use of other suitable spaces 
at the end. 

2.1. Definition. If / , g £ S(G) and |/| ^ | w e say g majorizes f or g is a ma
jorant of f. We say LP(G) has the upper majorant property if there is a positive 
constant D such that whenever/, g G S{G) and g majorizes/ then | | / | |p ^ 
D\\g\\p. 
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Note tha t we must have D ^ 1 since S(G) contains nontrivial functions with 

nonnegative transforms. As before we abbreviate upper majorant proper ty 

to U M P . 
If we proceed as in Hardy and Littlewood [5, p. 305], it is an easy mat te r 

to prove the following result. 

2.2. PROPOSITION. / / p is an even integer or GO then LP(G) has the UMP with 
constant 1. 

Our main result is t ha t the converse is also true. 

2.3. M A I N T H E O R E M . Suppose that G is a noncompact LCAG and that 1 ^ 
p < co . If p is not an even integer, then LP{G) does not have the UMP. 

T o prove this theorem we must show tha t for every positive constant D, 
there exis t / , g 6 S (G) such tha t g major izes/ and | | / | | p > Z}||g||p. 

3. S o m e r e d u c t i o n s . Our proof of 2.3 is based on the s t ructure theorem 
for LCAG's and in this section we show tha t it suffices to prove the theorem 
for certain classes of groups. 

3.1. PROPOSITION. Suppose that G\ and G2 are LCAG's and suppose that either 
Lp (Gi) or Lp (G2) fails to have the UMP. Then Lp (Gi X G2) does not have the UMP. 

Proof. Recall t ha t if/^ is a function on Gt (i = 1, 2) we define/1 ® / 2 on 
Gi X G2 b y / i ® f2(x, y) = fi(x)f2(y) for (x, y) Ç Gx X G2. If 1 g p < 00 and 
ft e Lp(Gt) (i = 1, 2) then/x 0 / 2 6 LP(G1 X G2) and \\fx 0 / 2 | | , = | | / i | U | / 2 | U 
F o r £ = 1 and (71, 72) G Gi X G2 we have (/1 ® f 2)^(71, 72) = /1 ® /2(7i» T2) ; 
consequently, if/, G S(Gt) (i = 1, 2) , t h e n / i ® / 2 Ç 5(Gi X G2). 

Suppose, for definiteness, t ha t LP{G\) does not have the U M P and let D > 0. 
L e t / i , ^1 G S(Gi) be such tha t gi majorizes/1 and | | / i | | p > ^Hgi l^ . For any 
nontrivial h belonging to S(G2) with I ^ Owe set F = /1 ® h, G = g\ ® h. 
Then F, G Ç 5(Gi X G2), G majorizes 7̂  and | | ^ | | p > Z}||G||P, which completes 
the proof. 

We now recall the s tructure theorem for LCAG's (see [6, (24.30)]). This 
theorem states tha t any LCAG is of the form Kn X G0 where Go is an LCAG 
containing a compact open subgroup. If Kn X G0 is infinite, one of the following 
s ta tements is t rue : 

(a) n > 0; 
(b) n = 0 and G0 has an infinite compact open subgroup; 
(c) n = 0 and G0 is an infinite discrete group. 

Applying (3.1) we see tha t it is enough to consider only the group R for case 
(a) ; in case (b) we will be able to construct examples from those known for the 
infinite compact open subgroup of G0. 
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In case (c) the discrete group G0 may have an element of infinite order, in 
which case it contains a copy of Z. Otherwise G0 is a torsion group. In such a 
group either we have elements of arbi trar i ly large order or there is a bound on 
the orders of all elements. In the la t ter case Go must contain a copy of Z(r)w*, 
the direct sum of countably many copies of Z ( r ) , r ^ 2 (see [6, p. 449]). 

We now give a further reduction in the discrete case. 

3.2. PROPOSITION. Let G be an infinite discrete abelian group which contains a 
subgroup isomorphic to a discrete group H for which lp(H) does not have the UMP. 
Then lp (G) does not have the UMP, 

Proof. For discrete G, S(G) = h(G). Let <\> : H —> G be an embedding of H 

in G. For a positive constant D there ex i s t / , g £ h (H) such t h a t g ma jo r i ze s / 

and Jl/l|, >2?||g| |p . 
Given a function h on H, we define h' on Gby h' (x) = h (<t>~1 (x) ) if x £ <\>(H) 

and let h'(x) = 0 otherwise. Then h' Ç lr(G) if h 6 / , ( # ) and | |&'| | r = ||fc||r 
for any r ^ 1. If / ' and g' are constructed thus f r o m / and g respectively it is 
clear t h a t \\f'\\v > D\\g'\\v. We show now tha t g' majorizes / ' . 

If h G l\(H) then h' £ h(G) is supported by </>Cff) and so h' is cons tant on 
the cosets of ^(H)1-, the annihilator of <t>(H) in G (see [12, p. 96 and p. 118]). 
Since h' can be identified with h via how — h', where ir is the canonical pro
jection of G on G/cfriH)-1-, we have 

| / 1 = | / 0 7r| ^ gO TV = g' 

and this completes the proof. 

T h u s in dealing with discrete groups with an element of infinite order we 
need only consider the group Z ; for infinite discrete groups with a bound on 
the orders of all elements we need only consider the groups Z(r)w*, for r ^ 2. 

We now summarize the groups or classes of groups for which we mus t prove 
the main theorem: 1) Z(r)w*, r ^ 2; 2) G a nondiscrete noncompact L C A G 
with a compact open subgroup; 3) Z ; 4) R ; 5) G a discrete abelian torsion 
group with elements of arbi trar i ly large order. 

4. E x a m p l e s derived f r o m t h e c o m p a c t case . We dispose of cases 1) and 
2) of the preceding section. 

4.1 . T H E O R E M . The main theorem holds if G is a nondiscrete, noncompact 
LCAG with a compact open subgroup. 

Proof. Let Go be an (infinite) compact open subgroup of G. Since G0 is open 
its Haa r measure is the restriction to G0 of the Maar measure of G. 

Suppose D is a positive constant . From [3] we have tr igonometric poly
nomials / i , gi on Go (hence are members of S (Go)) which satisfy | / i | ^ | i and 
| | / i | |p > Z}||gi||p. Now any member hi of A (Go) can be extended to a member h 
of A (G) by lett ing h agree with hi on G0 and vanish off G0 (see [14, p . 53] and 
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remember G0 is open). In particular, any member of S (Go) has such an exten

sion to a member of S(G). Moreover, for 1 rg p ^ oo Lp-norms are preserved. 

L e t / , g be such extensions to G of / i and gi respectively. Then | | / | | p > Z}||g||p 

and tha t g major izes / can be shown as in the proof of 3.2. 

We now consider the groups G = Z(f)w*, r ^ 2. In this case we can derive 
our examples from those known for the compact group X = Z(r)w , the direct 
product of countably many copies of Z ( r ) . Note t ha t X = G. 

4.2. T H E O R E M . The main theorem holds if G = Z(r)œ*,r ^ 2. 

Proof. For a positive constant D l e t / , g be trigonometric polynomials on X 
such tha t g major izes /and | | / | | p > Z}||g||p. There is a positive integer w for which 
supp (/) \J supp ( | ) C Gn, where Gn = {(yj) G G\yj = 0 if j è w + 1}. Note 
t ha t Gn is isomorphic to Z ( r ) n and thus is self-dual. I t follows t h a t / and g are 
constant on the cosets of G^ and can be identified with a pair of functions f, 
g' on X/Gn-L = Gn = Gn C G. T h a t g' majorizes / ' follows as in the proof of 3.2 
and since all maps involved in the identification process are positivity pre
serving. We also have \\f'\\p > D\\g'\\p since if h Ç LP(X) is constant on the 
cosets of Gn1- we have h = H o IT where H Ç Lp(X/Gn

±) (T is the canonical 
projection of X on X/G^) and \\h\\p = r~(n/p)\\H\\p (see Weil 's integration 
formula in [12, p. 70]). 

5. T h e case of t h e in tegers . As in the previous cases, our goal is to show 
tha t if p is not an even integer or oo , then for any positive constant D there 
are functions /, g belonging to / i (Z) which satisfy | / | ^ g on T and Z}||g||p < 

Our method, though different in detail, is essentially the same as tha t used 
by Bachelis [1] and Fournier [3]. For a discussion of the origins of this method 
see Shapiro [15]. For the group T, Bachelis proves this result by using a sug
gestion of Y. Katznelson to show, by an iteration method, tha t if the UAIP 
fails to hold with D = 1, then it fails to hold a t all (see [1, p. 121]). 

We now give an iteration method; it is the dualized version of a special case 
of Fejér 's Lemma (see [1, p. 121], and [16, p. 49]). 

For a function fi on Z we define, for each n Ç N , a function j$n by 

10 otherwise. 

5.1. PROPOSITION. Let 1 ^ p < co and suppose that a is a finitely supported 
function on Z. Then for large n we have \\a*an\\v — ||o:||p2, and in particular 

l i m | | a * û f i | | p = \\OL\\P. 

This result is easily proved and so we omit the details. 
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5.2. COROLLARY. Let 1 ^ p < GO awd suppose p is an exponent for which 

there is a pair of finitely supported functions / , g on Z satisfying \f\ ^ £ and 

l|g||P < II/IIP- r / * ^ lv{Z) fails to have the UMP. 

Proof. If | |g| |p < | | / | |p , there is a constant C > 1 such t ha t C||g||p < | | / | | p . 

Form fn and gn as above. Then , for every x G T , we have /w (#) = f(nx). 

Similarly for gw. Since g majorizes / it follows t h a t g * gn majorizes f *fn for 

every positive integer n. 

Applying 5.1 to each sequence (g * gn) and (f *fn) it follows t h a t there is a 

positive integer n for which C 2 | | g*g n | | p < | | / * / » | | p . I tera t ion of this pro

cedure shows if D > 1 there exist finitely supported functions d, e on Z with 

^ majorizing d and P | | ^ | | p < ||d||p. Hence lv(Z) does not have the U M P . 

T o complete the proof of the main theorem for the integer group we must , 

for a given finite p which is not an even integer, find a pair of finitely supported 

functions on Z which satisfy the hypotheses of Corollary 5.2. We require some 

preliminaries about the functions which operate on P r ( Z ) , the set of real-

valued positive definite functions on Z. 

Recall t ha t if A is a subset of the complex plane C and F: A —> C, then we 
say F operates on P(Z) if F o <t> ë P(Z) whenever <f> £ P ( Z ) and range (<£) C 
A. If A = ( — 1,1) and F is real-valued then Rudin [13] has shown t h a t F mus t 
be of the form 

oo 

F(pc) = Yl cnXn, for \x\ < 1, and 

cn^0 for n = 0, 1,2, 

Our next result is s ta ted and proved only for the case a t hand. I t will be 
clear t h a t this result can be proved on any LCAG. 

5.3. LEMMA. Let F: ( — 1, 1) —• R be continuous and have the property that 
F o \p £ Pr{Z) whenever \p is a finitely supported member of Pr(Z) with range 
OA) C ( — 1 , 1). Then F operates on Pr(Z). 

Proof. Let \p Ç Pr{Z) have range (i£) C (—1, 1) and let (Kn) be the Fejér 
kernel in L i ( T ) . Then Kn G Pr(Z) and is finitely supported for every n. Since 
0 ^ Kn ^ 1, we have range (KnxP) C ( - 1 , 1). T h u s Fo (Kn^) £ i \ ( Z ) . 
Since (Kn) is an approximate ident i ty for L i ( T ) we have ^ = limre i ? ^ point-
wise and thus F o \j/ = limTO F o Kn\p pointwise. In part icular F o \f/ £ Pr(Z) 
and the result is proved. 

5.4. PROPSOITION. Suppose p is finite and not an even integer. Then there exists 
a finitely supported function <j> belonging to Pr(Z) for which \<t>\p does not belong 
toP(Z). 

Proof. Let H: ( - 1 , 1) -> R be defined by H(x) = \x\p. I t is easy to see tha t 
i 7 i s not of the form (3) and so cannot operate on Pr(Z). H is cont inuous and 
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so, applying 5.3, there exists a finitely supported (/> Ç P r ( Z ) with range (0) C 
( - 1 , 1) and \<l>\p £ P r ( Z ) . This proves the result. 

We can now present the necessary examples. The germ of this method is to be 
found, in a disguised form, in [3, p. 163]. 

5.5. T H E O R E M . Suppose that p ^ 1 is finite and not an even integer. Then lv(Z) 
does not have the UMP, 

Proof. By 5.2 it is enough to show tha t there exist a pair, / , g, of finitely 
supported functions on Z such tha t g m a j o r i z e s / a n d \\g\\p < | | / | |P . 

Let (j) be as in 5.4. As <j> is positive definite it is self-adjoint ( that is, $ ( — n) = 
4>(n) for all w ^ Z) and so is \<t>\p. Thus \(j)\p has a real-valued Fourier transform. 
Since \cj)\p g P r ( Z ) , there is an x G T for which (\<j>\py(x) < 0, t ha t is 

oo 

£ \4>(l)\p e-ux < 0. 
Z=-oo 

Define y ë Z by y (l) = eilx, for each / £ Z, and for a real parameter / we 
define funct ions /* on Z by ft = (1 + /Y)<£, where 1 s tands for the constant 
function with value 1. Note tha t each ft is finitely supported and ft £ P(Z) 
when / ^ 0. Moreover, if t ^ 0 we have \f-t\ =77 -

Let the function F be defined on R by 

oo 

Z = — o o 

Notice tha t , for every /, the function / —» |1 + ty(l)\p is differentiable a t 0 and 
so, since the sum defining F is really finite, we have: 

OO 7 

no) = x; k(or|[|i + <7(on̂ o 
Z=-oo & £ 

oo 

= P E |*(/)rRe(7(0) 
Z=-co 

Thus ^ '(O) < 0 and there must be a positive /0 for which F(t0) < F ( — to). If 
we l e t / = /_ / 0 and g = ft0 we obtain the required pair of functions. 

5.6. In this section we sketch an al ternat ive proof of 5.5 for p a rational 
number bu t not an even integer. This method, except for a minor modification 
due to Z not being compact, is directly analogous to the example first pro
duced by H a r d y and Littlewood for L 3 ( T ) (see [5, p. 305] and [2, p. 255]). 

Let 1 ^ p < oo and suppose p is not an even integer. For each positive 
integer n, let cn be the binomial coefficient 

p/2(p/2 - ! ) • • • (p/2 - n + l) 
n\ 
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Let k be the least positive integer for which cn < 0. We need a function (/> in 

/ i (Z) with the following properties: 

(a) </> = g, for some nontrivial, nonnegative C°° function g on T ; 
(b) for an integer L, to be specified later, the functions {0*|1 ^ / ^ £} are 

mutual ly orthogonal in / 2 (Z ) . Note tha t these products are defined by point-
wise multiplication. 

To obtain such a function <j> we need a nontrivial , nonnegative C°° function 
g on T for which the convolution powers {g*?|l S l S L) are mutual ly orthog
onal in L 2 ( T ) . Since the convolution powers are nonnegative they are orthog
onal if and only if their supports are disjoint. Suppose g is suppor ted by a 
small interval [a, b] with 0 < a < b < 27r. These convolution powers will have 
disjoint supports provided tha t b is sufficiently small and a is sufficiently close 
to b. 

Now let \p = 4>2/p. Since 0 is the Fourier transform of a C°° function, the same 
is t rue of \f/\ in particular, \p £ / i ( Z ) . Let X be a real number with | \ | ^ 1 and 
let t be a positive parameter . We define functions f\ by 

A = iKi + ** + x/V), 
where 1 is the constant function whose sole value is 1. T h e n / x belongs to / i ( Z ) . 

We first examine the / / , (Z)-norm of/x. We have | | / x | | / = | | /xp / 2 | |2
2 and, if t is 

small enough, we can apply the binomial theorem to (1 + t<j> + \tk(t>k)p/2. When 
we do this we obtain an absolutely convergent double series (in hiZ)) and thus 

CO 

/xp / 2 = f ' \ l + t<t>+ \tk4>ky<2 = 4, j : j8 I ( /0) ' , 
1=0 

where ft = ct for 0 ^ / ^ ^ — 1 and 0* = Ci\ + ^ . If we write 

1=0 

then using (b) with L = 2k + 1, we obtain 

l l /x l l /=I IA p / 2 l | 2
2 = t letfW^Wf ?> + <>«>*). 

1=0 

Our choice of k shows tha t | | / i | | / < | | / _ i | | / if t is sufficiently small. This takes 
care of the norm inequality. 

We would like to know if / i major izes/_i . This would certainly be the case if 
\f/ were positive definite. For general p the au thor does not know if we can 
assume tha t \p = 4>2/p is positive definite in addit ion to conditions (a) and (b) . 
However, if p is rational this is qui te easily done. For suppose p = m/l\ then 
2/p = 2l/m. If we let \p = g21 and <$> = gm then \pp/2 = <f>, \p is positive definite 
and \p belongs to / i (Z) . H e n c e / i major izes /_ i . T h e only change required for 
the norm computa t ion is to replace L by mL in condition (b) . 
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6. Examples derived from the integer group. In this section we prove 
the main theorem for the remaining two cases, namely R and discrete torsion 
groups with elements of arbitrari ly large orders. 

We first consider R, for which a slightly modified form of a device due to 
de Leeuw (see [10, p. 375]) is required. The proof is the same as his and so is 
omitted. Before giving this lemma we remark tha t finitely supported functions 
on Z can be identified with finite sums of point masses (concentrated a t integer 
points) on R. 

6.1. LEMMA. Let 1 ^ p < GO . Suppose that </> £ AC(R) (the space of compactly 
supported members of A(R)) is nonnegative, has nonnegative Fourier transform 
and satisfies 

a) iHi, = i 

(2) supp (<t>) C [a, u + 1] for some real number a. 

Then for any finitely supported function a on Z we have a * </> Ç S(R) and 

lk*4>ll,= Ikll,-
Since any interval of length one will work in (2) an example of such a <f>, 

except for a normalizing factor required in (1), is $(x) = max (1 — 2\x\, 0) . 

6.2. T H E O R E M . Suppose that p ^ 1 is not an even integer or oo. Then LP(R) 
does not have the UMP. 

Proof. Let <j> be as in 6.1 and suppose tha t D is a positive constant . From the 
proof of 5.5 we have finitely supported functions X, /x on Z which satisfy 
|X| ^ J on T (hence on R ) and ||X||P > Z)||/x||p. Set / = \ * 0 a t g = / x * 0 . 
Then g majorizes / a n d | | / | | p > D\\g\\p. 

6.3. T H E O R E M . The main theorem holds if G is a discrete abelian group con
taining elements of arbitrarily large order. 

Proof. Let D be a positive constant^and suppose tha t / ' , gf are finitely sup
ported functions on Z which satisfy | / ' | ^ gf on T and \\f'\\v > D\\gr\\p. There 
is a positive integer n such tha t 

supp ( / ' ) \J supp (g') C Sn. 

where Sn = [ — n, n] Pi Z. 
Sn has 2n + 1 members and by hypothesis G contains a cyclic subgroup H 

with r ^ 2n + 1 members. Identify H with the subgroup {1, £, • • • , J7"-1} o r T , 
where £ = exp (2wi/r). The map p: Z —» G defined by p(k) = £k is a continuous 
homomorphism with image contained in H. I t is also true tha t p restricted to 
Sn is injective. Define a func t ion / on G by 

fM = if U) X = P(J)J€ ^n 
n ' (0 otherwise; 
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define g similarly in terms of gr. Then / , g G S (G) and | | / | |p > .D||g||p since 
ll/H, = ||/'||,and||g||, = \\g'\\P. 

To see that g majorizes/ we note that since/ and g are supported by H we 
can identify / and g with the functions / ' and gf on G/HL = H = H. If y G H 
corresponds to £k (0 ^ k ^ r — 1) we have f(y) = /'(£*) and a similar equality 
for g and g'. Thus g majorizes/ and the proof is complete. 

6.4. By combining 4.1, 4.2, 5.5, 6.2 and 6.3 we obtain the main theorem. 

7. Final remarks. 

7.1. There are other spaces which could be used instead of 5(G) in the defini
tion of the UMP. Obvious possibilities are LX(G) C\ Lœ(G), U{G) C\ LP(G), 
AC(G), the space of compactly supported members of A(G), and SC(G), the 
subspace of S(G) consisting of functions with compactly supported Fourier 
transforms. Standard use of an approximate identity (see [7, (33.12)]) for 
Li(G) or L\(G) shows that the resulting notions of UMP are equivalent to 
that defined in (2.1). 

When G = R" we can use the space of compactly supported C°° functions. 
In [11] we have shown how the whole space LP(G) can be used to give an 
equivalent notion of UMP. 

7.2. A property dual to the UMP is the lower majorant property (see [1 ; 2, and 
5]). In [11] we have proved an analogue of the Boas duality theorem (see the 
introduction). That an analogue of the Hardy-Littlewood duality theorem 
holds on a noncompact LCAG was recently established by E. Lee and G. 
Sunouchi in [8; 9]. In [8] they have also given a proof of our main theorem for 
the integer group. 
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