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Abstract

The paper introduces a graph theory variation of the general position problem: given a graph G, determine
a largest set S of vertices of G such that no three vertices of S lie on a common geodesic. Such a set
is a max-gp-set of G and its size is the gp-number gp(G) of G. Upper bounds on gp(G) in terms of
different isometric covers are given and used to determine the gp-number of several classes of graphs.
Connections between general position sets and packings are investigated and used to give lower bounds
on the gp-number. It is also proved that the general position problem is NP-complete.
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1. Introduction

The classical no-three-in-line problem is to find the maximum number of points that
can be placed in an n × n grid so that no three points lie on a line. This celebrated
century-old problem posed by Dudeney [5] is still open. For some recent related
developments, see [12, 18] and references therein. In [18] the problem is extended to
three dimensions, while in [12] it is proved that at most 2gcd(m,n) points can be placed
with no three in a line on an m × n discrete torus. In discrete geometry, the no-three-
in-line problem was extended to the general position subset selection problem [7, 15].
Here, for a given set of points in the plane one aims to determine a largest subset of
points in general position. In [7] it is proved, among other results, that the problem is
NP-hard, while in [15] asymptotic bounds on the function f (n, `) are derived, where
f (n, `) is the maximum integer such that every set of n points in the plane with no more
than ` collinear contains a subset of f (n, `) points with no three collinear.

The above problems motivated us to define a similar problem in graph theory as
follows: given a graph G, the graph theory general position problem is to find a largest
set of vertices S ⊆ V(G) such that no three vertices of S lie on a common geodesic in
G. Note that an intrinsic difference between the discrete geometry problem and the
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graph theory general position problem is that in the first case for given points x and
y there is only one straight line passing through x and y, while in the graph theory
problem there can be several geodesics passing through two vertices.

We proceed as follows. In the next section we give necessary definitions, general
properties of general position sets and exact values for the gp-number of some classes
of graphs. In Section 3 upper bounds on the gp-number in terms of different isometric
covers are obtained. It is also proved that the set of simplicial vertices of a block graph
forms a maximum general position set. In Section 4 we relate general position sets with
the diameter and the k-packing number and derive lower bounds on the gp-number.
Then, in Section 5, we prove that the general position problem is NP-complete.

2. Preliminaries and examples

In this section we first define concepts and introduce the notation needed. Then we
proceed to give the general position number of some families of graphs and along the
way give some related general properties.

All graphs considered in this paper are connected. The distance dG(u, v) between
vertices u and v of a graph G is the number of edges on a shortest u, v-path. Shortest
paths are also known as geodesics or isometric paths. The diameter diam(G) of G is the
maximum distance between all pairs of vertices of G. A subgraph H = (V(H), E(H))
of a graph G = (V(G), E(G)) is isometric if dH(x, y) = dG(x, y) holds for every pair
of vertices x, y of H. This is one of the key concepts in metric graph theory (see
[2, 16, 17, 19]). A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. A graph is a block graph if every block of it is complete. A vertex of
a graph is simplicial if its neighbours induce a complete subgraph. For n ∈ N, we will
use the notation [n] = {1, . . . , n}.

A set S of vertices of a graph G is a general position set if no three vertices of S
lie on a common geodesic in G. A general position set S of maximum cardinality is
called a max-gp-set of G. The cardinality of a max-gp-set of G is called the general
position number (gp-number for short) of G and denoted by gp(G).

As soon as G has two vertices, gp(G) ≥ 2. For complete graphs, gp(Kn) = n for
n ≥ 1. For paths, gp(Pn) = 2 for n ≥ 2. Consider next the cycle Cn on vertices v1, . . . , vn

with natural adjacencies. Let S be an arbitrary general position set of Cn and assume
without loss of generality that v1 ∈ S . Then

|S ∩ {v2, v3, . . . , vd(n+1)/2e}| ≤ 1,
|S ∩ {vd(n+1)/2e+1, vd(n+1)/2e+2, . . . , vn}| ≤ 1.

It follows that gp(Cn) ≤ 3. If n ≥ 5, then it is easy to find a max-gp-set in Cn of order 3.
Hence, gp(Cn) = 3 for n ≥ 5. Note also that gp(C3) = 3 and gp(C4) = 2. For k ≥ 2 and
` ≥ 2, let Θ(k, `) be the graph consisting of two vertices A and B which are joined by
k internally disjoint paths each of length `. The vertices other than A and B are called
internal vertices of Θ(k, `). See Figure 1, where Θ(4, 5) is drawn. These graphs are
known as theta graphs.
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Figure 1. The theta graph Θ(4, 5) and its max-gp-set.

Proposition 2.1. If k ≥ 2 and ` ≥ 3, then gp(Θ(k, `)) = k + 1.

Proof. Let R be a general position set of Θ(k, `). Let Pi, i ∈ [k], denote the distinct
isometric paths of Θ(k, `) joining A and B. Consider arbitrary paths Pi and P j of
Θ(k, `). Then the union of Pi and P j induces an isometric cycle C of Θ(k, `) and hence
|R ∩ V(C)| ≤ 3. Therefore, if R contains either A or B, then each Pi, i ∈ [k], contains
at most one vertex of R other than A or B, respectively. If R contains neither A nor
B, then only one path P j can contain two vertices from R (clearly, it cannot contain
three or more) and all the other paths Pi, where i , j, can have at most one vertex of
R. In either case, |R| ≤ k + 1. Since R is an arbitrary general position set of Θ(k, `),
gp(Θ(k, `)) ≤ k + 1.

Let x1, . . . , xk be the vertices of Θ(k, `) that are adjacent to B and introduce the set
S = {A, x1, . . . , xk}. See Figure 1. It is easy to verify that S is a general position set of
Θ(k, `). Consequently, gp(Θ(k, `)) ≥ k + 1. �

3. Upper bounds on gp(G)

We say that a set of subgraphs {H1, . . . ,Hk} of a graph G is an isometric cover of G
if each Hi, i ∈ [k], is isometric in G and

⋃k
i=1 V(Hi) = V(G). Every isometric cover of

G yields an upper bound on gp(G) as follows.

Theorem 3.1 (Isometric cover lemma). If {H1, . . . ,Hk} is an isometric cover of G, then

gp(G) ≤
k∑

i=1

gp(Hi).

Proof. Let R be a max-gp-set of G and let Ri = R ∩ V(Hi) for i ∈ [k]. We claim that
Ri is a general position set of Hi. Suppose on the contrary that there exist vertices
x, y, z ∈ V(Hi) such that y lies on some x, z-geodesic in Hi, that is, dHi (x, z) = dHi (x, y) +

dHi (y, z). Since Hi is isometric in G, this implies that dG(x, z) = dG(x, y) + dG(y, z). But
then R is not a general position set of G. This contradiction proves the claim. From
the claim it follows that gp(Hi) ≥ |Ri|. We conclude that

gp(G) = |R| =
∣∣∣∣∣ k⋃

i=1

Ri

∣∣∣∣∣ ≤ k∑
i=1

|Ri| ≤

k∑
i=1

gp(Hi). �
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The isometric-path number [6, 13, 14] of a graph G, denoted by ip(G), is the
minimum number of isometric paths (geodesics) required to cover the vertices of
G. We similarly say that the isometric-cycle number of G, denoted by ic(G), is the
minimum number of isometric cycles required to cover the vertices of G. If G admits
no cover with isometric cycles (for instance, if G is a tree), then we set ic(G) =∞.

Since gp(Pn) ≤ 2 for n ≥ 1 and gp(Cn) ≤ 3 for n ≥ 3, the isometric cover lemma has
the following corollary.

Corollary 3.2. If G is a graph, then:

(i) gp(G) ≤ 2 ip(G); and
(ii) gp(G) ≤ 3 ic(G).

The bounds of Corollary 3.2 are sharp as demonstrated by paths and complete
graphs of even order for the first bound, and cycles for the second bound.

For another upper bound we introduce the following concepts. If v is a vertex of
a graph G, then let ip(v,G) be the minimum number of isometric paths, all of them
starting in v, that cover V(G). A vertex of a graph G that lies in at least one max-gp-set
of G is called a max-gp-vertex of G. By applying the concepts of a breadth-first-search
(BFS) tree, one can assert that ip(v,G) is always well defined for connected graphs.

Theorem 3.3. If R is a general position set of a graph G and v ∈ R, then

|R| ≤ ip(v,G) + 1.

In particular, if v is a max-gp-vertex, then gp(G) ≤ ip(v,G) + 1.

Proof. Let R be a general position set and v ∈ R. Let k = ip(v,G). Then there exist k
geodesics {Pvui : ui ∈ V(G), i ∈ [k]} that cover V(G). Since R is a general position set,
v ∈ R and Pvui is a geodesic, we have |R ∩

(
V(Pvui ) \ {v}

)
| ≤ 1 for i ∈ [k]. It follows that

|R| ≤ k + 1 = ip(v,G) + 1.
If v is a max-gp-vertex, then consider R to be a max-gp-set that contains v. By the

above arguments, gp(G) = |R| ≤ ip(v,G) + 1. �

If G is a graph and BFS(v) a breadth-first-search tree of G rooted at v, then let `(v)
denote the number of leaves of BFS(v).

Corollary 3.4. If G is a graph, then

gp(G) ≤ 1 + min{`(v) : v is a max-gp-vertex of G}.

Proof. Let v be a max-gp-vertex of G and let S be a max-gp-set containing v. Then
ip(v,G) ≤ `(v) and hence gp(G) ≤ ip(v,G) + 1 ≤ `(v) + 1. Since the argument holds for
any max-gp-vertex, the assertion follows. �

Corollary 3.4 is particularly useful for vertex-transitive graphs because in that case
it suffices to consider a single BFS tree. For a simple example, consider the cycle
Cn, n ≥ 3. Then `(v) = 2 for any vertex v of Cn and hence gp(Cn) ≤ 3 holds by
Corollary 3.4.
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Figure 2. The solid vertices form general position sets. (a) A general position set containing the unique
simplicial vertex. (b) A general position set without the simplicial vertex. (c) A general position set with

none of the six simplicial vertices.

To show that in Corollary 3.4 the minimum cannot be taken over all vertices,
consider the following example. Let n ≥ 2 and let Gn be the graph on the vertex set
Xn ∪ Yn ∪ Zn ∪ {w}, where Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn} and Zn = {z1, . . . , zn}.
The vertices from Xn induce a complete subgraph. In addition, xi is adjacent to yi and
zi for i ∈ [n], while w is adjacent to all vertices from Zn. Then the BFS tree rooted
in w has n leaves, that is, `(w) = n. On the other hand, if u, v ∈ Yn ∪ Zn, u , v, then
dGn (u, v) ∈ {2, 3}. It follows that Yn ∪ Zn is a general position set of Gn and therefore
gp(Gn) ≥ 2n.

We now turn our attention to simplicial vertices.

Lemma 3.5. If S is the set of simplicial vertices of a graph G, then S is a general
position set.

Proof. Assume on the contrary that there exist different vertices u, v,w ∈ S such that
dG(u,w) = dG(u, v) + dG(v,w) and let P be a u,w-geodesic that contains v. Let v′ and
v′′ be the neighbours of v on P, where v′ lies in the u, v-subpath of P and v′′ in the v,w-
subpath of P. (Note that it is possible that v′ = u or v′′ = w.) Since v is a simplicial
vertex, v′v′′ ∈ E(G). But then P is not a geodesic, which is a contradiction. �

So, simplicial vertices form general position sets. The examples in Figure 2
illustrate that there is no general correlation between sets of simplicial vertices and
max-gp-sets. However, in specific classes of graphs, the set of simplicial vertices
forms a max-gp-set. We have already noticed that this holds for complete graphs. By
applying Theorem 3.3, we can generalise this observation to all block graphs.

Theorem 3.6. Let S be the set of simplicial vertices of a block graph G. Then S is a
max-gp-set and hence gp(G) = |S |.

Proof. Let S be the set of simplicial vertices of a block graph G and let R be a general
position set of G. Let w be an arbitrary vertex of R. Since G is a block graph, w is
either a simplicial vertex or a cut-vertex. Hence, we distinguish two cases.
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Figure 3. The glued binary tree GT (4).

Case 1: w ∈ S .
Consider Ψw = {Pwv : v , w, v ∈ S ,Pwv is a w, v-geodesic}. It is known [13] that Ψw

is an isometric path cover of G. Hence, Theorem 3.3 implies that |R| ≤ |Ψw| + 1 = |S |.

Case 2: w < S , that is, w is a cut-vertex.
Let Ψw = {Pwv : v ∈ S , Pwv is a w, v-geodesic}. Then again Ψw is an isometric path

cover of G and hence as before |R| ≤ |Ψw| + 1 = |S | + 1. Let now v1 and v2 be simplicial
vertices of G that are in different connected components of G − w. Let P be the
concatenation of the geodesics Pwv1 and Pwv2 . It is easy to see that P is a geodesic
in G. Since |R ∩ V(P)| ≤ 2, one of Pwv1 and Pwv2 intersects R only in w. Hence,
|R| ≤ (|S | + 1) − 1 = |S |.

We have thus proved that in both cases |R| ≤ |S |, so that gp(G) ≤ |S |. Lemma 3.5
completes the argument. �

Corollary 3.7. If L is the set of leaves of a tree T , then gp(T ) = |L|.

Consider next the glued binary tree GT (r), r ≥ 2, which is obtained from two
copies of the complete binary trees of depth r by pairwise identifying their leaves.
The construction should be clear from Figure 3, where the glued binary tree GT (4) is
shown. The vertices obtained by identification are shown as solid dots; we will call
them quasi-leaves of the glued binary tree.

Proposition 3.8. If r ≥ 2, then gp(GT (r)) = 2r.

Proof. Let R be a max-gp-set of GT (r) and let S be the set containing the quasi-leaves
of GT (r). We now consider two cases.

https://doi.org/10.1017/S0004972718000473 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000473


[7] A general position problem in graph theory 183

Case 1: R ∩ S , ∅.
Let u be an arbitrary vertex from R ∩ S . Then it is easy to construct geodesics Puv

from u to all other vertices v of S in such a way {Puv : v ∈ S } is an isometric path cover
of GT (r). Therefore, gp(GT (r)) ≤ 1 + (|S | − 1) = |S | by Theorem 3.3.

Case 2: R ∩ S = ∅.
Let u be a vertex of R that is closest to a quasi-leaf among the vertices of R and let

w be a quasi-leaf that is closest to u among all quasi-leaves. Then R′ = (R \ {u}) ∪ {w}
is a general position set. Indeed, suppose that this is not the case. Then a triple U
of vertices from R′ exists such that they lie on the same geodesic. Clearly, w ∈ U for
otherwise R would not be a general position set. But then (U \ {w}) ∪ {u} is a triple
of vertices of R lying on a common geodesic. This contradiction proves that R′ is a
general position set. Since |R′| = |R|, the set R′ is actually a max-gp-set. But now we
are in Case 1 and hence conclude again that gp(GT (r)) ≤ |S |.

We have thus proved that gp(GT (r)) ≤ |S |. Since it is easy to see that S is a general
position set of GT (r), we also have gp(GT (r)) ≥ |S |. We are done because |S | = 2r. �

4. Lower bounds on gp(G)

In this section we consider lower bounds on the general position number. We
already have a lower bound based on Lemma 3.5: if S is the set of simplicial vertices
of a graph G, then gp(G) ≥ |S |.

Additional lower bounds given here are in terms of the diameter of a graph and
the k-packing number that is defined as follows. A set S of vertices of a graph G
is a k-packing if d(u, v) > k holds for every pair of different u, v ∈ S . The k-packing
number αk(G) of G is the cardinality of a maximum k-packing set [11]. For additional
results on k-packing, see [4, 10]. Moreover, k-packings are the key ingredients for
the concept of the S -packing chromatic number (see [1, 3, 9] and references therein).
The 1-packings are precisely independent sets and so the independence number α(G)
is just α1(G).

A general position set need not be an independent set and vice versa. But we do
have the following connection.

Proposition 4.1. Let G be a graph and k ≥ 1. Then diam(G) ≤ 2k + 1 if and only if
every k-packing of G is a general position set.

Proof. Suppose that S is a k-packing of G that is not a general position set. Then S
contains vertices x, y, z such that y lies on an xz-geodesic Pxz. Since S is a k-packing,
we have d(x, y) ≥ k + 1 and d(y, z) ≥ k + 1. Since Pxz is a geodesic, it follows that
d(x, z) ≥ 2k + 2. So, diam(G) ≥ 2k + 2.

Conversely, suppose that diam(G) ≥ 2k + 2. Let x and z be vertices with d(x, z) =

2k + 2. In addition, let Pxz be an xz-geodesic and let y be a vertex of Pxz such that
d(x, y) = d(y, z) = k + 1. Then {x, y, z} is a k-packing that is not a general position set.

�

Proposition 4.1 provides a lower bound on gp-sets of a graph.
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Figure 4. gp(P) ≥ 6.

Corollary 4.2. If G is a graph with diam(G) ≤ 2k + 1, then gp(G) ≥ αk(G).

Since 1-packing sets of a graph are precisely its independent sets, Proposition 4.1
for k = 1 asserts the following corollary.

Corollary 4.3. Let G be a graph and k ≥ 1. Then diam(G) ≤ 3 if and only if every
independent set of G is a general position set.

In general, however, there is no connection between the independence number α(G)
of G and gp(G). For instance, gp(Kn) = n and α(Kn) = 1, while, on the other hand,
gp(Pn) = 2 and α(Pn) = dn/2e.

Another lower bound on gp(G) involves the distance between the edges of a graph,
which is defined as follows. If e = uv and f = xy are edges of a graph G, then

d(e, f ) = min{d(u, x), d(u, y), d(v, x), d(v, y)}.

Proposition 4.4. Let G be a graph with diam(G) = k ≥ 2. If F is a set of edges of G
such that d(e, f ) = k for every e, f ∈ F, e , f , then gp(G) ≥ 2|F|.

Proof. We claim that the set S consisting of the end-vertices of the edges from F is a
general position set. If x ∈ S , then let fx be the edge of F containing x. Let x, y, z be an
arbitrary triple of vertices from S and suppose that y lies on an x, z-geodesic P. Clearly,
fx , fz. Since d( fx, fz) = k and diam(G) = k, we must necessarily have d(x, z) = k.
Suppose without loss of generality that fy , fx. But, then, as P is a geodesic, we have
d(y, x) ≤ k − 1 and hence d( fx, fy) ≤ k − 1, which is a contradiction. �

As an application of the above proposition, consider the Petersen graph P. In
Figure 4, three dotted edges of P pairwise at distance 2 are shown. Hence, gp(P) ≥ 6
by Proposition 4.4. Since V(P) can be covered with two disjoint isometric cycles,
gp(P) ≥ 6 by Corollary 3.2(ii). Thus, gp(P) = 6.
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Additional examples demonstrating sharpness of Proposition 4.4 where k is large
can be constructed as follows. Start with the star K1,n and subdivide each edge of
it the same number of times. Then to each of the n leaves attach a private triangle
by identifying a vertex of the triangle with the leaf. The n edges of these triangles
whose end-vertices are of degree 2 are edges that satisfy the assumption(s) of the
proposition.

5. Computational complexity of the problem

The (graph) general position problem is the following:

General Position Problem
Input: A graph G and an integer k.

Question: Is gp(G) ≥ k?

The general position subset selection problem from discrete geometry which is a
main motivation of this paper has been proved as NP-hard [7, 15]. We next prove a
parallel result for the General Position Problem.

Theorem 5.1. The General Position Problem is NP-complete.

Proof. Note first that the General Position Problem is in NP. A set S of vertices of
a graph G is a general position set of G if and only if for each pair of vertices x and
z of S , we have d(x, z) , d(x, y) + d(y, z) for every y in S . This task can be done in
polynomial time. In the rest of the proof, we give a reduction of the NP-complete
Maximum Independent Set Problem to the General Position Problem. The former
problem is one of the classical NP-complete problems [8].

Given a graph G = (V, E), we construct a graph G̃ = (Ṽ , Ẽ) as follows. Its vertex
set is Ṽ = V ∪ V ′ ∪ V ′′, where V ′ = {v′ : v ∈ V} and V ′′ = {v′′ : v ∈ V}. The set of
edges is Ẽ = E ∪ E′ ∪ E′′ ∪ E′′′, where E′ is the set of all possible edges between the
vertices of V ′, while E′′ = {vv′ : v ∈ V} and E′′′ = {v′v′′ : v ∈ V}. Thus, the graph
G̃ can be considered as composed of three parts: the original graph G, the complete
graph induced by V ′ and the independence set induced by V ′′. These three parts are
connected by the matching E′′ between V and V ′ and the matching E′′′ between V ′

and V ′′.
We first claim that X ⊆ V is an independent set of G if and only if X ∪ V2 is a general

position set of G̃. Suppose first that X ⊆ V is an independent set of G. Then, clearly,
X ∪ V ′′ is an independent set of G̃. Since diam(G̃) = 3, Corollary 4.3 implies that
X ∪ V ′′ is a general position set of G̃. Conversely, assume that X is not independent
and let x, y ∈ X be adjacent vertices. Then the path xyy′y′′ is a geodesic, which in turn
implies that X ∪ V ′′ is not a general position set of G̃.

We next claim that α(G) ≥ k if and only if gp(G̃) ≥ k + |V |. It suffices to show that if
S is a general position set of G̃, then there exists a general position set S̃ of G̃ such that
S̃ = X ∪ V ′′, where X is an independent set of G and |S̃ | ≥ |S |. For any two vertices
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x and y of V and the corresponding vertices x′ and y′ of V ′ and x′′ and y′′ of V ′′,
x′′x′y′y′′ is a geodesic in G̃. For some u ∈ V , if both u′ and u′′ are in S , then no other
vertices v′′ , u′′ will be in S . This will contradict the maximality of the gp-set of G̃
when |V | ≥ 3. If u′ ∈ S and u′′ < S , then consider set S̃ = S ∪ {u′′} \ {u′}. We conclude
that given a general position set S of G̃, there exists a general position set S̃ of G̃ such
that S̃ ∩ V ′ = ∅. From here the claim follows and this completes the argument. �
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