ON SOME COMPLEX SUBMANIFOLDS IN KAEHLER MANIFOLDS

MASAHIRO KON

1. Introduction. The purpose of this paper is to give some conditions for complex submanifolds in a Kaehler manifold of constant holomorphic sectional curvature to be Einstein.

For a complex hypersurface which is Einstein, Smyth [8] has obtained its classification and Chern [2] has proved the corresponding local result. Moreover, Takahashi [9] and Nomizu-Smyth [3] generalized this to a complex hypersurface with parallel Ricci tensor. We shall consider a condition weaker than the requirement that the Ricci tensor be parallel, that is we shall consider a complex submanifold with commuting curvature and Ricci operator, which condition was treated by Bishop-Goldberg [1]. For such a complex submanifold, we shall prove that it is Einstein if the Ricci operator commutes to the second fundamental form (Theorem 1). This condition is satisfied for a complex hypersurface automatically.

We shall also consider a complex submanifold with parallel second fundamental form in a Kaehler manifold of constant holomorphic sectional curvature by using Simons' type formula which was given by Simons [7] and studied by Ogiue [4] for a complex submanifold.

2. Preliminaries. Let \overline{M} be a Kaehler manifold of complex dimension n + p with the structure tensor field J and the Kaehler metric \langle , \rangle , and let M be an *n*-dimensional complex submanifold of \overline{M} . The Riemannian metric induced on M is a Kaehler metric, which is denoted by the same \langle , \rangle and all metric properties of M refer to this metric. The Kaehler structure of M is written by J as in \overline{M} . By $\overline{\nabla}$, we denote the covariant differentiation in \overline{M} and by ∇ the one in M determined by the induced metric. Then the Gauss-Weingarten formulas are given by

$$\begin{split} \overline{\nabla}_X Y &= \nabla_X Y + B(X, Y), \qquad X, \ Y \in \mathscr{X}(M), \\ \overline{\nabla}_X N &= -A^N(X) + D_X N, \qquad X \in \mathscr{X}(M), \qquad N \in \mathscr{X}(M)^{\perp} \end{split}$$

where $\langle B(X, Y), N \rangle = \langle A^N(X), Y \rangle$ and *D* is the linear connection in the normal bundle $T(M)^{\perp}$. Both *A* and *B* are called the second fundamental form of *M*. The second fundamental form *B* is a vector valued bilinear form on each $T_m(M)$ taking values in $T_m(M)^{\perp}$ and the second fundamental form *A* is a cross-section of a vector bundle $\text{Hom}(T(M)^{\perp}, S(M))$ where S(M) is the

1442

Received May 23, 1973 and in revised form, October 19, 1973.

bundle whose fibre at each point is the space of symmetric linear transformations of $T_m(M) \to T_m(M)$, i.e., for $w \in T_m(M)^{\perp}$, $A^w : T_m(M) \to T_m(M)$.

M is called a totally geodesic submanifold of \overline{M} if its second fundamental form is identically zero. Since any complex submanifold of a Kaehler manifold is minimal, its mean curvature vanishes, i.e., $\sum B(e_i, e_i) = 0$ where e_1, \ldots, e_{2n} is a frame for $T_m(M)$.

Let \overline{R} and R denote the curvature tensors of \overline{M} and M respectively. If we assume that \overline{M} is of constant holomorphic sectional curvature c, then we have

$$(2.1) \quad \bar{R}_{X,Y}Z = \frac{1}{4}c(\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle Z, JY \rangle JX - \langle Z, JX \rangle JY + 2\langle X, JY \rangle JZ),$$

$$(2.2) \quad \bar{R}_{X,Y}Z = R_{X,Y}Z - A^{B(Y,Z)}(X) + A^{B(X,Z)}(Y).$$

Let v_1, \ldots, v_{2p} be a frame for $T_m(M)^{\perp}$, and let $x, y \in T_m(M)$. Then the Ricci tensor S of M is given by

(2.3)
$$S(x, y) = \frac{1}{2}(n+1)c\langle x, y \rangle - \sum_{i=1}^{2p} \langle A^{i}A^{i}(x), y \rangle.$$

Here we write A^i instead of A^{v_i} to simplify the presentation. From (2.3), the scalar curvature K of M is represented by

(2.4)
$$K = n(n+1)c - ||A||^2$$

where ||A|| denotes the length of the second fundamental form.

On the other hand, we have the following relations between the second fundamental form A and the complex structure J:

(2.5)
$$A^N J + J A^N = 0$$
 and $A^{JN} - J A^N = 0$ for any $N \in \mathscr{X}(M)^{\perp}$.

We also have

(2.6)
$$S(Jx, Jy) = S(x, y)$$
 and $JQ = QJ$

where Q is the Ricci operator of M defined by $S(x, y) = \langle Qx, y \rangle$.

Next we define operators which we later use. Simons [7] defined the following symmetric, positive semi-definite operators:

(2.7)
$$A^{\sim} = {}^{t}A \cdot A$$
 and $A_{\sim} = \sum_{i=1}^{2p} \operatorname{ad} A^{i}\operatorname{ad} A^{i}$.

And we define the operator A^* by setting

(2.8)
$$A^* = \sum_{i=1}^{2p} (A^i)^2.$$

Clearly A^* is symmetric, positive semi-definite operator. And we have Tr $A^* = ||A||^2$ where Tr is the trace of a operator.

3. Complex submanifolds with certain Ricci tensor. Let \overline{M} be a Kaehler manifold of complex dimension n + p and constant holomorphic

sectional curvature c, which will be denoted by $\overline{M}^{n+p}(c)$. Let M be a complex submanifold of \overline{M} of complex dimension n. In this section we consider a condition weaker than the requirement that Q be parallel ($\nabla Q = 0$):

$$(\mathbf{P}) \quad R_{X,Y}(Q) = \mathbf{0},$$

which is equivalent to $R_{X,Y} \cdot Q = Q \cdot R_{X,Y}$ (cf. [1]). This condition is also equivalent to

(T)
$$R_{X,Y}(S) = 0.$$

We also consider a condition $QA^{j} = A^{j}Q$, that is, Q and A^{j} are commuting as operators. This condition is satisfied obviously when M is an Einstein manifold and we shall prove that this condition is satisfied for any complex hypersurface in a Kaehler manifold of constant holomorphic sectional curvature.

Let e_1, \ldots, e_{2n} be a frame for $T_m(M)$ such that $e_{n+t} = Je_t$, and let v_1, \ldots, v_{2p} be a frame for $T_m(M)^{\perp}$ such that $v_{p+s} = Jv_s$.

THEOREM 1. Let \overline{M} be a Kaehler manifold of complex dimension n + p (n > 1)and constant holomorphic sectional curvature c, and let M be an n-dimensional complex submanifold in \overline{M} with a condition (P). If c < 0, then M is an Einstein manifold. If c > 0, then M is an Einstein manifold if and only if Q is commuting with A^{j} (j = 1, ..., p).

Proof. Let $x, y T_m(M)$. By the condition (T), we obtain

$$\sum_{i=1}^{2n} (S(R_{e_i,x}e_i, y) + S(e_i, R_{e_i,x}y)) = 0.$$

By equation (2.2), this becomes

$$\sum_{i=1}^{2n} \{ S(\bar{R}_{e_i,x}e_i, y) + S(A^{B(x,e_i)}(e_i), y) + S(\bar{R}_{e_i,x}y, e_i) + S(A^{B(x,y)}(e_i), e_i) - S(A^{B(e_i,y)}(x), e_i) \} = 0.$$

In the following, we calculate this equation. First we have, by (2.1),

$$\sum_{i=1}^{2n} \left(S(\bar{R}_{e_i,x}e_i, y) + S(\bar{R}_{e_i,x}y, e_i) \right) = \frac{1}{2}nc \left(\frac{K}{2n} \left\langle x, y \right\rangle - S(x, y) \right).$$

We obtain $\sum S(A^{B(x,y)}(e_i), e_i) = 0$, by using (2.5) and (2.6), i.e.,

$$-S(A^{B(x,y)}(e_i), e_i) = -S(JA^{B(x,y)}(e_i), Je_i) = S(A^{B(x,y)}(Je_i), Je_i).$$

We have

$$\sum_{i=1}^{2n} \left(S(A^{B(x,e_i)}(e_i), y) - S(A^{B(e_i,y)}(x), e_i) \right)$$

=
$$\sum_{i=1}^{2n} \sum_{j=1}^{2p} \left(\langle A^j(e_i), Qy \rangle \langle A^j(x), e_i \rangle - \langle A^j(x), Qe_i \rangle \langle A^j(y), e_i \rangle \right)$$

=
$$\sum_{j=1}^{2p} \left(\langle QA^j A^j(x), y \rangle - \langle A^j QA^j(x), y \rangle \right).$$

Consequently, we obtain

$$\frac{1}{2}nc\left(\frac{K}{2n}\langle x,y\rangle - S(x,y)\right) + \sum_{j=1}^{2p} \left(\langle QA^{j}A^{j}(x),y\rangle - \langle A^{j}QA^{j}(x),y\rangle\right) = 0.$$

From this, we can see that

(3.1)
$$nc\left(\frac{K^2}{2n} - ||Q||^2\right) = 2\sum_{j=1}^{2p} Tr(QA^jQA^j - QQA^jA^j)$$

 $= -\sum_{j=1}^{2p} ||[Q, A^j]||^2 \leq 0,$

where $[Q, A^j] = QA^j - A^jQ$.

On the other hand, we always have $K^2 \leq 2n||Q||^2$, and equality holding if and only if M is Einstein. If c < 0, then M is an Einstein manifold by (3.1). Let c > 0. If $QA^j = A^jQ$, then $QJA^j = JQA^j = JA^jQ$ by using (2.6). Therefore if $QA^j = A^jQ$ (j = 1, ..., p), (3.1) implies that M is Einstein.

COROLLARY 1. Let M be a complex hypersurface in $\overline{M}^{n+1}(c)$, c > 0, n > 1. If M satisfies (P), then either M is totally geodesic, or M is a locally symmetric Einstein manifold with scalar curvature $K = n^2c$.

Proof. Let v, Jv be a frame for $T_m(M)^{\perp}$. Then we have

$$S(x, y) = \frac{1}{2}(n+1)c\langle x, y \rangle - 2\langle A^{v}A^{v}(x), y \rangle.$$

Hence we have $S(A^{v}(x), y) = S(x, A^{v}(y))$, which shows that $QA^{v} = A^{v}Q$. By the above theorem, M is an Einstein manifold and we have our assertion by Theorem C of Takahashi [9].

COROLLARY 2. Let M be a complex hypersurface in $\overline{M}^{n+1}(c)$, c < 0, n > 1. If M has the property (P), then M is totally geodesic.

Proof. By Theorem 1, M is Einstein and we have our result by the theorem of Chern [2], or Takahashi [9].

Remark 1. Let M be a complex hypersurface of $\overline{M}(c)$. If the Ricci tensor of M is parallel, then M is Einstein [3; 9]. Our results are the partial generalization of these results.

4. Simons' type formula of complex submanifolds. Let \overline{M} be a Kaehler manifold of complex dimension n + p, and let M be an n-dimensional complex submanifold of \overline{M} . We can take a frame e_1, \ldots, e_{2n} for $T_m(M)$ such that $e_{n+t} = Je_t$ and a frame v_1, \ldots, v_{2p} for $T_m(M)^{\perp}$ such that $v_{p+s} = Jv_s$.

MASAHIRO KON

From (2.5), we obtain $JA^{j}A^{i}JA^{j} = -A^{j}A^{i}A^{j}$, hence we have (see [7, p. 94])

$$\langle A_{\sim} \cdot A, A \rangle = \sum_{i,j=1}^{2p} ||[A^{i}, A^{j}]||^{2} = 2 \sum_{i,j=1}^{2p} \sum_{t=1}^{2n} \langle A^{i}A^{i}A^{j}(e_{t}), A^{j}(e_{t}) \rangle$$

= $2 \sum_{t=1}^{2n} \langle (A^{*})^{2}(e_{t}), e_{t} \rangle.$

By (2.5), we can see easily $JA^* = A^*J$. Since A^* is symmetric, positive semidefinite, using a suitable basis, A^* is represented by the matrix form

$$A^* \equiv \begin{bmatrix} \lambda_1 & & & 0 \\ & \cdot & & \\ & & \cdot & \\ & & \cdot & \\ 0 & & & \ddots & \\ 0 & & & \lambda_{2n} \end{bmatrix}, \qquad \lambda_{n+t} = \lambda_t, \quad \lambda_t \ge 0.$$

Then we have

$$\langle A_{\sim} \cdot A, A \rangle = 2 \sum_{i=1}^{2n} \lambda_i^2 \geqslant \frac{1}{n} \left(\sum_{i=1}^{2n} \lambda_i \right)^2,$$

$$\langle A_{\sim} \cdot A, A \rangle = 2 \left(\left(\sum_{i=1}^{2n} \lambda_i \right)^2 - \sum_{i \neq j}^{2n} \lambda_i \lambda_j \right)$$

$$= 2 \left(\sum_{i=1}^{2n} \lambda_i \right)^2 - 8 \sum_{i \neq j}^n \lambda_i \lambda_j - \langle A_{\sim} \cdot A, A \rangle.$$

On the other hand, we obtain $(\sum_{i=1}^{2n}\lambda_i)^2 = ||A||^4$. Consequently, we get the following

(4.1) $\frac{1}{n} ||A||^4 \leq \langle A_{\sim} \cdot A, A \rangle \leq ||A||^4.$

From this, we obtain the following

PROPOSITION 1. Let \overline{M} be an (n + p)-dimensional Kaehler manifold, and let M be an n-dimensional complex submanifold of \overline{M} . If $A^i A^j = A^j A^i$ for all i, j, then M is totally geodesic.

Remark 2. If \overline{M} is a Kaehler manifold and M its complex submanifold, then $A^i A^j = A^j A^i$ for all i, j if and only if $(\overline{R}_{X,Y}N)^{\perp} = R_{\overline{X},Y}^{\perp}N$ for any $X, Y \in \mathscr{X}(M), N \in \mathscr{X}(M)^{\perp}$, where R^{\perp} is the normal connection of M, because we can see, by the direct calculation,

$$(\bar{R}_{X,Y}N)^{\perp} = R_{X,Y}N - B(A^{N}(Y), X) + B(A^{N}(X), Y).$$

Let \overline{M} be a real space form and M be a submanifold of \overline{M} . Then $A^{i}A^{j} = A^{j}A^{i}$ if and only if the normal connection of M is trivial $(R^{\perp} = 0)$.

https://doi.org/10.4153/CJM-1974-138-5 Published online by Cambridge University Press

1446

For the operator A^{\sim} , $JA^{\sim} = A^{\sim}J$ (see Simons [7, p. 76]). By the similar way as in the case of A^* , A^{\sim} is represented by the matrix form, for a suitable basis,

 $A^{\sim} \equiv \begin{bmatrix} \mu_{1} & & & 0 \\ & \ddots & & \\ & & \ddots & & \\ 0 & & & \mu_{2p} \end{bmatrix}, \quad \mu_{p+l} = \mu_{l}, \quad \mu_{l} \ge 0.$

Then we have

$$\langle A \cdot A^{\sim}, A \rangle = \sum_{i=1}^{2p} \langle A \cdot A^{\sim}(v_i), A^i \rangle = \sum_{i=1}^{2p} \mu_i \langle A^{\sim}(v_i), v_i \rangle = \sum_{i=1}^{2p} \mu_i^2.$$

From this we obtain the following:

(4.2)
$$\frac{1}{2p} ||A||^4 \leqslant \langle A \cdot A^{\sim}, A \rangle \leqslant \frac{1}{2} ||A||^4.$$

LEMMA 1. Let M be a complex submanifold of complex dimension n (n > 1)in $\overline{M}^{n+p}(c)$. Then M is Einstein if and only if $\langle A_{\sim} \cdot A, A \rangle = (1/n)||A||^4$.

Proof. We have already that

$$\langle A_{\sim} \cdot A, A \rangle = 2 \sum_{t=1}^{2n} \langle (A^*)^2(e_t), e_t \rangle$$
 and $Q = \frac{1}{2}(n+1)cI - A^*$.

Therefore we obtain

$$\langle A_{\sim} \cdot A, A \rangle = \frac{1}{n} ||A||^4 - \frac{1}{n} K^2 + 2||Q||^2,$$

where ||Q|| denotes the length of the Ricci operator Q. Generally, $K^2 \leq 2n||Q||^2$ and equality holding if and only if M is Einstein. Hence M is Einstein if and only if $\langle A_{\sim} \cdot A, A \rangle = (1/n)||A||^4$.

If \overline{M} is of constant holomorphic sectional curvature c, then the Simons' type formula is given by (see [4] and [7, p. 81])

(4.3) $\nabla^2 A = \frac{1}{2}(n+2)cA - A \cdot A^{\sim} - A_{\sim} \cdot A.$

Here we notice that if the length of the second fundamental form A is constant, then $\langle \nabla A, \nabla A \rangle = -\langle \nabla^2 A, A \rangle$.

PROPOSITION 2. Let M be an Einstein complex hypersurface of $\overline{M}^{n+1}(c)$. Then the second fundamental form A of M is parallel ($\nabla A = 0$). *Proof.* By (4.2), (4.3) and Lemma 1, we get

$$\langle \nabla A, \nabla A \rangle = \frac{(n+2)}{2n} \left(||A||^2 - nc \right) ||A||^2.$$

By Corollary 1 and (2.4), we get $||A||^2 = nc$, hence $\nabla A = 0$.

Remark 3. Let M be a complex hypersurface of $\overline{M}(c)$. If A is parallel, then Q is parallel. Hence by Corollary 1, M is Einstein. Consequently, M is Einstein if and only if $\nabla A = 0$. (Compare also Nomizu-Smyth [3, p. 507, Lemma 5].)

THEOREM 2. Let M be an n-dimensional complex submanifold of $\overline{M}^{n+p}(c)$ with parallel second fundamental form $(\nabla A = 0)$. If $c \leq 0$, then M is totally geodesic. If c > 0, then the scalar curvature K of M satisfies

$$K \ge \frac{n^2 c(n+p+1)}{(n+2p)}$$

and if equality holds, then M is an Einstein manifold.

Proof. From (4.1), (4.2) and (4.3), we get the following inequality:

$$0 = \langle \nabla A, \nabla A \rangle \geqslant \left(\frac{n+2p}{2pn} ||A||^2 - \frac{(n+2)c}{2} \right) ||A||^2.$$

Hence if $c \leq 0$, then M is totally geodesic in \overline{M} .

Let c > 0. Then we obtain $||A||^2 \leq pn(n+2)c/(n+2p)$. From this and (2.4), we can see that $K \geq n^2c(n+p+1)/(n+2p)$. If equality holds, then $||A||^2 = pn(n+2)c/(n+2p)$ and hence, by (4.1), (4.2) and (4.3),

$$\begin{cases} \frac{(n+2)c}{2} - \frac{1}{2p} ||A||^2 \\ \end{cases} ||A||^2 \geqslant \langle A_{\sim} \cdot A, A \rangle \geqslant \frac{1}{n} ||A||^4, \\ \frac{(n+2)c}{2} - \frac{1}{2p} ||A||^2 = \frac{1}{n} ||A||^2, \end{cases}$$

which imply $\langle A_{\sim} \cdot A, A \rangle = (1/n)||A||^4$. Therefore, by Lemma 1, M is an Einstein manifold.

Remark 4. For an Einstein complex hypersurface, Chern [2] proved that if $c \leq 0$, then *M* is totally geodesic. By Proposition 2, our theorem is the extension of this. (See also Nomizu-Smyth [3] and Takahashi [9].)

References

- 1. R. L. Bishop and S. I. Goldberg, On conformally flat spaces with commuting curvature and Ricci transformations, Can. J. Math. 24 (1972), 799-804.
- S. S. Chern, Einstein hypersurfaces in a Kaehler manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967), 21–31.
- K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces, II, J. Math. Soc. Japan 20 (1968), 498-521.

1448

- 4. K. Ogiue, Complex submanifolds of the complex projective space with second fundamental form of constant length, Ködai Math. Sem. Rep. 21 (1969), 252-254.
- 5. ——— On Kaehler immersions, Can. J. Math. 24 (1972), 1178-1182.
- 6. B. O'Neill, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 907-917.
- 7. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
- 8. B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.
- 9. T. Takahashi, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967), 199-204.

Science University of Tokyo, Tokyo, Japan