ON SOME COMPLEX SUBMANIFOLDS IN KAEHLER MANIFOLDS

MASAHIRO KON

1. Introduction. The purpose of this paper is to give some conditions for complex submanifolds in a Kaehler manifold of constant holomorphic sectional curvature to be Einstein.

For a complex hypersurface which is Einstein, Smyth [8] has obtained its classification and Chern [2] has proved the corresponding local result. Moreover, Takahashi [9] and Nomizu-Smyth [3] generalized this to a complex hypersurface with parallel Ricci tensor. We shall consider a condition weaker than the requirement that the Ricci tensor be parallel, that is we shall consider a complex submanifold with commuting curvature and Ricci operator, which condition was treated by Bishop-Goldberg [1]. For such a complex submanifold, we shall prove that it is Einstein if the Ricci operator commutes to the second fundamental form (Theorem 1). This condition is satisfied for a complex hypersurface automatically.

We shall also consider a complex submanifold with parallel second fundamental form in a Kaehler manifold of constant holomorphic sectional curvature by using Simons' type formula which was given by Simons [7] and studied by Ogiue [4] for a complex submanifold.
2. Preliminaries. Let \bar{M} be a Kaehler manifold of complex dimension $n+p$ with the structure tensor field J and the Kaehler metric \langle,$\rangle , and let$ M be an n-dimensional complex submanifold of \bar{M}. The Riemannian metric induced on M is a Kaehler metric, which is denoted by the same \langle,$\rangle and$ all metric properties of M refer to this metric. The Kaehler structure of M is written by J as in \bar{M}. By $\bar{\nabla}$, we denote the covariant differentiation in \bar{M} and by ∇ the one in M determined by the induced metric. Then the GaussWeingarten formulas are given by

$$
\begin{aligned}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+B(X, Y),
\end{aligned} \quad X, Y \in \mathscr{X}(M), \quad ~ \quad X \in \mathscr{X}(M)^{\perp}
$$

where $\langle B(X, Y), N\rangle=\left\langle A^{N}(X), Y\right\rangle$ and D is the linear connection in the normal bundle $T(M)^{\perp}$. Both A and B are called the second fundamental form of M. The second fundamental form B is a vector valued bilinear form on each $T_{m}(M)$ taking values in $T_{m}(M)^{\perp}$ and the second fundamental form A is a cross-section of a vector bundle $\operatorname{Hom}\left(T(M)^{\perp}, S(M)\right)$ where $S(M)$ is the
bundle whose fibre at each point is the space of symmetric linear transformations of $T_{m}(M) \rightarrow T_{m}(M)$, i.e., for $w \in T_{m}(M)^{\perp}, A^{w}: T_{m}(M) \rightarrow T_{m}(M)$.
M is called a totally geodesic submanifold of \bar{M} if its second fundamental form is identically zero. Since any complex submanifold of a Kaehler manifold is minimal, its mean curvature vanishes, i.e., $\sum B\left(e_{i}, e_{i}\right)=0$ where $e_{1}, \ldots, e_{2 n}$ is a frame for $T_{m}(M)$.

Let \bar{R} and R denote the curvature tensors of \bar{M} and M respectively. If we assume that \bar{M} is of constant holomorphic sectional curvature c, then we have

$$
\begin{align*}
& \bar{R}_{X, Y} Z=\frac{1}{4} c(\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle Z, J Y\rangle J X \tag{2.1}\\
&\quad-\langle Z, J X\rangle J Y+2\langle X, J Y\rangle J Z) \\
& \bar{R}_{X, Y} Z= R_{X, Y} Z-A^{B(Y, Z)}(X)+A^{B(X, Z)}(Y) \tag{2.2}
\end{align*}
$$

Let $v_{1}, \ldots, v_{2 p}$ be a frame for $T_{m}(M)^{\perp}$, and let $x, y \in T_{m}(M)$. Then the Ricci tensor S of M is given by

$$
\begin{equation*}
S(x, y)=\frac{1}{2}(n+1) c\langle x, y\rangle-\sum_{i=1}^{2 p}\left\langle A^{i} A^{i}(x), y\right\rangle \tag{2.3}
\end{equation*}
$$

Here we write A^{i} instead of $A^{v_{i}}$ to simplify the presentation. From (2.3), the scalar curvature K of M is represented by
(2.4) $\quad K=n(n+1) c-\|A\|^{2}$
where $\|A\|$ denotes the length of the second fundamental form.
On the other hand, we have the following relations between the second fundamental form A and the complex structure J :
(2.5) $A^{N} J+J A^{N}=0$ and $A^{J N}-J A^{N}=0$ for any $N \in \mathscr{X}(M)^{\perp}$.

We also have

$$
\begin{equation*}
S(J x, J y)=S(x, y) \quad \text { and } \quad J Q=Q J \tag{2.6}
\end{equation*}
$$

where Q is the Ricci operator of M defined by $S(x, y)=\langle Q x, y\rangle$.
Next we define operators which we later use. Simons [7] defined the following symmetric, positive semi-definite operators:

$$
\begin{equation*}
A^{\sim}={ }^{t} A \cdot A \quad \text { and } \quad A_{\sim}=\sum_{i=1}^{2 p} \operatorname{ad} A^{i} \operatorname{ad} A^{i} \tag{2.7}
\end{equation*}
$$

And we define the operator A^{*} by setting

$$
\begin{equation*}
A^{*}=\sum_{i=1}^{2 p}\left(A^{i}\right)^{2} \tag{2.8}
\end{equation*}
$$

Clearly A^{*} is symmetric, positive semi-definite operator. And we have $\operatorname{Tr} A^{*}=\|A\|^{2}$ where Tr is the trace of a operator.
3. Complex submanifolds with certain Ricci tensor. Let \bar{M} be a Kaehler manifold of complex dimension $n+p$ and constant holomorphic
sectional curvature c, which will be denoted by $\bar{M}^{n+p}(c)$. Let M be a complex submanifold of \bar{M} of complex dimension n. In this section we consider a condition weaker than the requirement that Q be parallel $(\nabla Q=0)$:
(P) $\quad R_{X, Y}(Q)=0$,
which is equivalent to $R_{X, Y} \cdot Q=Q \cdot R_{X, Y}$ (cf. [1]). This condition is also equivalent to
(T) $\quad R_{X, Y}(S)=0$.

We also consider a condition $Q A^{j}=A^{j} Q$, that is, Q and A^{j} are commuting as operators. This condition is satisfied obviously when M is an Einstein manifold and we shall prove that this condition is satisfied for any complex hypersurface in a Kaehler manifold of constant holomorphic sectional curvature.

Let $e_{1}, \ldots, e_{2_{n}}$ be a frame for $T_{m}(M)$ such that $e_{n+t}=J e_{t}$, and let $v_{1}, \ldots, v_{2 p}$ be a frame for $T_{m}(M)^{\perp}$ such that $v_{p+s}=J v_{s}$.

Theorem 1. Let \bar{M} be a Kaehler manifold of complex dimension $n+p(n>1)$ and constant holomorphic sectional curvature c, and let M be an n-dimensional complex submanifold in \bar{M} with a condition (P). If $c<0$, then M is an Einstein manifold. If $c>0$, then M is an Einstein manifold if and only if Q is commuting with $A^{j}(j=1, \ldots, p)$.

Proof. Let $x, y T_{m}(M)$. By the condition (T), we obtain

$$
\sum_{i=1}^{2 n}\left(S\left(R_{e_{i}, x} e_{i}, y\right)+S\left(e_{i}, R_{e_{i}, x} y\right)\right)=0
$$

By equation (2.2), this becomes

$$
\begin{aligned}
& \sum_{i=1}^{2 n}\left\{S\left(\bar{R}_{e i, x} e_{i}, y\right)+S\left(A^{B\left(x, e_{i}\right)}\left(e_{i}\right), y\right)+S\left(\bar{R}_{e_{i}, x} y, e_{i}\right)\right. \\
&\left.+S\left(A^{B(x, y)}\left(e_{i}\right), e_{i}\right)-S\left(A^{B\left(e_{i}, y\right)}(x), e_{i}\right)\right\}=0 .
\end{aligned}
$$

In the following, we calculate this equation. First we have, by (2.1),

$$
\sum_{i=1}^{2 n}\left(S\left(\bar{R}_{e i, x} e_{i}, y\right)+S\left(\bar{R}_{e i}, x y, e_{i}\right)\right)=\frac{1}{2} n c\left(\frac{K}{2 n}\langle x, y\rangle-S(x, y)\right) .
$$

We obtain $\sum S\left(A^{B(x, y)}\left(e_{i}\right), e_{i}\right)=0$, by using (2.5) and (2.6), i.e.,

$$
-S\left(A^{B(x, y)}\left(e_{i}\right), e_{i}\right)=-S\left(J A^{B(x, y)}\left(e_{i}\right), J e_{i}\right)=S\left(A^{B(x, y)}\left(J e_{i}\right), J e_{i}\right)
$$

We have

$$
\begin{aligned}
\sum_{i=1}^{2 n} & \left(S\left(A^{B\left(x, e_{i}\right)}\left(e_{i}\right), y\right)-S\left(A^{B\left(e_{i}, y\right)}(x), e_{i}\right)\right) \\
& =\sum_{i=1}^{2 n} \sum_{j=1}^{2 p}\left(\left\langle A^{j}\left(e_{i}\right), Q y\right\rangle\left\langle A^{j}(x), e_{i}\right\rangle-\left\langle A^{j}(x), Q e_{i}\right\rangle\left\langle A^{j}(y), e_{i}\right\rangle\right) \\
& =\sum_{j=1}^{2 p}\left(\left\langle Q A^{j} A^{j}(x), y\right\rangle-\left\langle A^{j} Q A^{j}(x), y\right\rangle\right)
\end{aligned}
$$

Consequently, we obtain

$$
\begin{aligned}
\frac{1}{2} n c\left(\frac{K}{2 n}\langle x, y\rangle-S(x, y)\right) & \\
& +\sum_{j=1}^{2 p}\left(\left\langle Q A^{j} A^{j}(x), y\right\rangle-\left\langle A^{j} Q A^{j}(x), y\right\rangle\right)=0
\end{aligned}
$$

From this, we can see that

$$
\begin{align*}
n c\left(\frac{K^{2}}{2 n}-\|Q\|^{2}\right) & =2 \sum_{j=1}^{2 p} \operatorname{Tr}\left(Q A^{j} Q A^{j}-Q Q A^{j} A^{j}\right) \tag{3.1}\\
& =-\sum_{j=1}^{2 p}\left\|\left[Q, A^{j}\right]\right\|^{2} \leqslant 0
\end{align*}
$$

where $\left[Q, A^{j}\right]=Q A^{j}-A^{j} Q$.
On the other hand, we always have $K^{2} \leqq 2 n\|Q\|^{2}$, and equality holding if and only if M is Einstein. If $c<0$, then M is an Einstein manifold by (3.1). Let $c>0$. If $Q A^{j}=A^{j} Q$, then $Q J A^{j}=J Q A^{j}=J A^{j} Q$ by using (2.6). Therefore if $Q A^{j}=A^{j} Q(j=1, \ldots, p),(3.1)$ implies that M is Einstein.

Corollary 1. Let M be a complex hypersurface in $\bar{M}^{n+1}(c), c>0, n>1$. If M satisfies (P), then either M is totally geodesic, or M is a locally symmetric Einstein manifold with scalar curvature $K=n^{2} c$.

Proof. Let $v, J v$ be a frame for $T_{m}(M)^{\perp}$. Then we have

$$
S(x, y)=\frac{1}{2}(n+1) c\langle x, y\rangle-2\left\langle A^{v} A^{v}(x), y\right\rangle .
$$

Hence we have $S\left(A^{v}(x), y\right)=S\left(x, A^{v}(y)\right)$, which shows that $Q A^{v}=A^{v} Q$. By the above theorem, M is an Einstein manifold and we have our assertion by Theorem C of Takahashi [9].

Corollary 2. Let M be a complex hypersurface in $\bar{M}^{n+1}(c), c<0, n>1$. If M has the property (P), then M is totally geodesic.

Proof. By Theorem 1, M is Einstein and we have our result by the theorem of Chern [2], or Takahashi [9].

Remark 1. Let M be a complex hypersurface of $\bar{M}(c)$. If the Ricci tensor of M is parallel, then M is Einstein [3;9]. Our results are the partial generalization of these results.
4. Simons' type formula of complex submanifolds. Let \bar{M} be a Kaehler manifold of complex dimension $n+p$, and let M be an n-dimensional complex submanifold of \bar{M}. We can take a frame $e_{1}, \ldots, e_{2_{n}}$ for $T_{m}(M)$ such that $e_{n+t}=J e_{t}$ and a frame $v_{1}, \ldots, v_{2 p}$ for $T_{m}(M)^{\perp}$ such that $v_{p+s}=J v_{s}$.

From (2.5), we obtain $J A^{j} A^{i} J A^{j}=-A^{j} A^{i} A^{j}$, hence we have (see [7, p. 94])

$$
\begin{aligned}
\left\langle A_{\sim} \cdot A, A\right\rangle & =\left.\sum_{i, j=1}^{2 p}\left\|\left[A^{i}, A^{j}\right]\right\|\right|^{2}=2 \sum_{i, j=1}^{2 p} \sum_{t=1}^{2 n}\left\langle A^{i} A^{i} A^{j}\left(e_{t}\right), A^{j}\left(e_{t}\right)\right\rangle \\
& =2 \sum_{t=1}^{2 n}\left\langle\left(A^{*}\right)^{2}\left(e_{t}\right), e_{t}\right\rangle .
\end{aligned}
$$

By (2.5), we can see easily $J A^{*}=A^{*} J$. Since A^{*} is symmetric, positive semidefinite, using a suitable basis, A^{*} is represented by the matrix form

$$
A^{*} \equiv\left[\begin{array}{ccccc}
\lambda_{1} & & & & \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & & \\
& & & & \\
0 & & & & \cdot \\
\\
& & & & \\
\lambda_{2 n}
\end{array}\right], \quad \lambda_{n+t}=\lambda_{t}, \quad \lambda_{t} \geqq 0
$$

Then we have

$$
\begin{aligned}
\left\langle A_{\sim} \cdot A, A\right\rangle & =2 \sum_{i=1}^{2 n} \lambda_{i}{ }^{2} \geqslant \frac{1}{n}\left(\sum_{i=1}^{2 n} \lambda_{i}\right)^{2}, \\
\left\langle A_{\sim} \cdot A, A\right\rangle & =2\left(\left(\sum_{i=1}^{2 n} \lambda_{i}\right)^{2}-\sum_{i \neq j}^{2 n} \lambda_{i} \lambda_{j}\right) \\
& =2\left(\sum_{i=1}^{2 n} \lambda_{i}\right)^{2}-8 \sum_{i \neq j}^{n} \lambda_{i} \lambda_{j}-\left\langle A_{\sim} \cdot A, A\right\rangle .
\end{aligned}
$$

On the other hand, we obtain $\left(\sum_{i=1}{ }^{2 n} \lambda_{i}\right)^{2}=\|A\|^{4}$. Consequently, we get the following

$$
\begin{equation*}
\frac{1}{n}\|A\|^{4} \leqslant\left\langle A_{\sim} \cdot A, A\right\rangle \leqslant\|A\|^{4} \tag{4.1}
\end{equation*}
$$

From this, we obtain the following
Proposition 1. Let \bar{M} be an $(n+p)$-dimensional Kaehler manifold, and let M be an n-dimensional complex submanifold of \bar{M}. If $A^{i} A^{j}=A^{j} A^{i}$ for all i, j, then M is totally geodesic.

Remark 2. If \bar{M} is a Kaehler manifold and M its complex submanifold, then $A^{i} A^{j}=A^{j} A^{i}$ for all i, j if and only if $\left(\bar{R}_{X, Y} N\right)^{\perp}=R_{X, Y}^{\perp} N$ for any $X, Y \in \mathscr{X}(M), N \in \mathscr{X}(M)^{\perp}$, where R^{\perp} is the normal connection of M, because we can see, by the direct calculation,

$$
\left(\bar{R}_{X, Y} N\right)^{\perp}=R_{X, Y} N-B\left(A^{N}(Y), X\right)+B\left(A^{N}(X), Y\right) .
$$

Let \bar{M} be a real space form and M be a submanifold of \bar{M}. Then $A^{i} A^{j}=$ $A^{j} A^{i}$ if and only if the normal connection of M is trivial $\left(R^{\perp}=0\right)$.

For the operator $A^{\sim}, J A^{\sim}=A^{\sim} J$ (see Simons [7, p. 76]). By the similar way as in the case of A^{*}, A^{\sim} is represented by the matrix form, for a suitable basis,

$$
A^{\sim} \equiv\left[\begin{array}{llllll}
\mu_{1} & & & & & 0 \\
& \cdot & & & & \\
& & \cdot & & & \\
& & & \cdot & & \\
& & & & \cdot & \\
0 & & & & \cdot & \\
0 & & & & \mu_{2 p}
\end{array}\right], \quad \mu_{p+t}=\mu_{t}, \quad \mu_{t} \geqq 0 .
$$

Then we have

$$
\left\langle A \cdot A^{\sim}, A\right\rangle=\sum_{i=1}^{2 p}\left\langle A \cdot A^{\sim}\left(v_{i}\right), A^{i}\right\rangle=\sum_{i=1}^{2 p} \mu_{i}\left\langle A^{\sim}\left(v_{i}\right), v_{i}\right\rangle=\sum_{i=1}^{2 p} \mu_{i}{ }^{2} .
$$

From this we obtain the following:

$$
\begin{equation*}
\frac{1}{2 p}\|A\|^{4} \leqslant\left\langle A \cdot A^{\sim}, A\right\rangle \leqslant \frac{1}{2}\|A\|^{4} \tag{4.2}
\end{equation*}
$$

Lemma 1. Let M be a complex submanifold of complex dimension $n(n>1)$ in $\bar{M}^{n+p}(c)$. Then M is Einstein if and only if $\left\langle A_{\sim} \cdot A, A\right\rangle=(1 / n)\|A\|^{4}$.

Proof. We have already that

$$
\left\langle A_{\sim} \cdot A, A\right\rangle=2 \sum_{t=1}^{2 n}\left\langle\left(A^{*}\right)^{2}\left(e_{t}\right), e_{t}\right\rangle \quad \text { and } \quad Q=\frac{1}{2}(n+1) c I-A^{*} .
$$

Therefore we obtain

$$
\left\langle A_{\sim} \cdot A, A\right\rangle=\frac{1}{n}\|A\|^{4}-\frac{1}{n} K^{2}+2\|Q\|^{2},
$$

where $\|Q\|$ denotes the length of the Ricci operator Q. Generally, $K^{2} \leqq 2 n\|Q\|^{2}$ and equality holding if and only if M is Einstein. Hence M is Einstein if and only if $\left\langle A_{\sim} \cdot A, A\right\rangle=(1 / n)\|A\|^{4}$.

If \bar{M} is of constant holomorphic sectional curvature c, then the Simons' type formula is given by (see [4] and [7, p. 81])

$$
\begin{equation*}
\nabla^{2} A=\frac{1}{2}(n+2) c A-A \cdot A^{\sim}-A_{\sim} \cdot A . \tag{4.3}
\end{equation*}
$$

Here we notice that if the length of the second fundamental form A is constant, then $\langle\nabla A, \nabla A\rangle=-\left\langle\nabla^{2} A, A\right\rangle$.

Proposition 2. Let M be an Einstein complex hypersurface of $\bar{M}^{n+1}(c)$. Then the second fundamental form A of M is parallel $(\nabla A=0)$.

Proof. By (4.2), (4.3) and Lemma 1, we get

$$
\langle\nabla A, \nabla A\rangle=\frac{(n+2)}{2 n}\left(\|A\|^{2}-n c\right)\|A\|^{2} .
$$

By Corollary 1 and (2.4), we get $\|A\|^{2}=n c$, hence $\nabla A=0$.
Remark 3. Let M be a complex hypersurface of $\bar{M}(c)$. If A is parallel, then Q is parallel. Hence by Corollary $1, M$ is Einstein. Consequently, M is Einstein if and only if $\nabla A=0$. (Compare also Nomizu-Smyth [3, p. 507, Lemma 5].)

Theorem 2. Let M be an n-dimensional complex submanifold of $\bar{M}^{n+p}(c)$ with parallel second fundamental form $(\nabla A=0)$. If $c \leqq 0$, then M is totally geodesic. If $c>0$, then the scalar curvature K of M satisfies

$$
K \geqq \frac{n^{2} c(n+p+1)}{(n+2 p)}
$$

and if equality holds, then M is an Einstein manifold.
Proof. From (4.1), (4.2) and (4.3), we get the following inequality:

$$
0=\langle\nabla A, \nabla A\rangle \geqslant\left(\frac{n+2 p}{2 p n}\|A\|^{2}-\frac{(n+2) c}{2}\right)\|A\|^{2} .
$$

Hence if $c \leqq 0$, then M is totally geodesic in \bar{M}.
Let $c>0$. Then we obtain $\|A\|^{2} \leqq p n(n+2) c /(n+2 p)$. From this and (2.4), we can see that $K \geqq n^{2} c(n+p+1) /(n+2 p)$. If equality holds, then $\|A\|^{2}=p n(n+2) c /(n+2 p)$ and hence, by (4.1), (4.2) and (4.3),

$$
\begin{aligned}
&\left\{\frac{(n+2) c}{2}-\frac{1}{2 p}\|A\|^{2}\right\}\|A\|^{2} \geqslant\left\langle A_{\sim} \cdot A, A\right\rangle \geqslant \frac{1}{n}\|A\|^{4}, \\
& \frac{(n+2) c}{2}-\frac{1}{2 p}\|A\|^{2}=\frac{1}{n}\|A\|^{2}
\end{aligned}
$$

which imply $\left\langle A_{\sim} \cdot A, A\right\rangle=(1 / n)\|A\|^{4}$. Therefore, by Lemma $1, M$ is an Einstein manifold.

Remark 4. For an Einstein complex hypersurface, Chern [2] proved that if $c \leqq 0$, then M is totally geodesic. By Proposition 2, our theorem is the extension of this. (See also Nomizu-Smyth [3] and Takahashi [9].)

References

1. R. L. Bishop and S. I. Goldberg, On conformally flat spaces with commuting curvature and Ricci transformations, Can. J. Math. 24 (1972), 799-804.
2. S. S. Chern, Einstein hypersurfaces in a Kaehler manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967), 21-31.
3. K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces, II, J. Math. Soc. Japan 20 (1968), 498-521.
4. K. Ogiue, Complex submanifolds of the complex projective space with second fundamental form of constant length, Kōdai Math. Sem. Rep. 21 (1969), 252-254.
5. - On Kaehler immersions, Can. J. Math. 24 (1972), 1178-1182.
6. B. O'Neill, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 907-917.
7. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
8. B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.
9. T. Takahashi, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967), 199-204.

Science University of Tokyo,
Tokyo, Japan

