
9 
World-volume curvature couplings 

We've now seen that we can construct D-branes which, in superstring 
theory, have important extra properties. Much of what we have learned 
about them in the bosonic theory is still true here of course, a key re­
sult being that the world-volume dynamics is governed by the dynamics 
of open strings, etc. Still relevant is the Dirac-Born-Infeld action (equa­
tion (5.21)) for the coupling to the background NS-NS fields, 

SDBI = -Tp J dP+le e-<1> det l / 2(Gab + Bab + 2mx' Fab ), (9.1) 
MpH 

and the non-Abelian extensions mentioned later in chapter 5. 
As we have seen in the previous chapter, for the R-R sector, they are 

sources of C(p+l)' We therefore also have the Wess-Zumino-like term 

Swz = /-Lp J . C(p+l)' 
Mp+l 

(9.2) 

Perhaps not surprisingly, there are other terms of great importance, 
and this chapter will uncover a number of them. In fact, there are many 
ways of deducing that there must be other terms, and one way is to use 
the fact that D-branes turn into each other under T-duality. 

9.1 Tilted D-branes and branes within branes 

There are additional terms in the action involving the D-brane gauge field. 
Again these can be determined from T-duality. Consider, as an example, 
a D 1-brane in the 1-2 plane. The action is 

/-Ll / dxo dx l (COl + 8l X2C02). (9.3) 
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206 9 World-volume curvature couplings 

Under a T-duality in the x 2-direction this becomes 

(9.4) 

We have used the T-transformation of the C fields as discussed in sec­
tion 8.1.1, and also the recursion relation (5.11) between D-brane tensions. 

This has an interesting interpretation. As we saw before in section 5.2.1, 
a Dp-brane tilted at an angle e is equivalent to a D(p + 1)-brane with 
a constant gauge field of strength F = (1/27TCi) tan e. Now we see that 
there is additional structure: the flux of the gauge field couples to the R-R 
potential C(p). In other words, the flux acts as a source for a D(p - 1)­
brane living in the world-volume of the D(p+ 1)-brane. In fact, given that 
the flux comes from an integral over the whole world-volume, we cannot 
localise the smaller brane at a particular place in the world-volume: it is 
'smeared' or 'dissolved' in the world-volume. 

In fact, we shall see when we come to study supersymmetric combina­
tions of D-branes that supersymmetry requires the DO-brane to be com­
pletely smeared inside the D2-brane. It is clear here how it manages this, 
by being simply T-dual to a tilted Dl-brane. We shall see many conse­
quences of this later. 

9.2 Anomalous gauge couplings 

The T -duality argument of the previous section can be generalised to dis­
cover more terms in the action, but we shall take another route to discover 
such terms, exploiting some important physics in which we already have 
invested considerable time. 

Let us return to the type I string theory, and the curious fact that we 
had to employ the Green-Schwarz mechanism (see section 7.1.4, where we 
mixed a classical and a quantum anomaly in order to achieve consistency). 
Focusing on the gauge sector alone for the moment, the classical coupling 
which we wrote in equation (7.35) implies a mixture of the two-form C(2) 

with gauge field strengths: 

We can think of this as an interaction on the world-volume of the D9-
branes showing a coupling to a Dl-brane, analogous to that which we saw 
for a DO-brane inside a D2-brane in equation (9.4). This might seem a bit 
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9.2 Anomalous gauge couplings 207 

of a stretch, but let us write it in a different way: 

8 - J (21TCx')4 C ( Tradj (F4) _ [Tradj (F2)F) 
- /L9 3 X 26 (2) 3 900 

J (21TCx')4 4 
= /L9 4! C(2)Tr(F), (9.6) 

where, crucially, in the last line we have used the properties (7.39) of the 
traces for 80(32) to rewrite things in terms of the trace in the funda­
mental. 

Another exhibit we would like to consider is the kinetic term for the 
modified three-form field strength, G(3), which is 

1 J ~ ~ 
8=--2 G(3)I\*G(3)· 

4K:o 
(9.7) 

Since dW3Y = Tr(F I\F) and dW3L = Tr(RI\R), this gives, after integrating 
by parts and, dropping the parts with R for now: 

(9.8) 

again, we have converted the traces using (7.39), we've used the rela­
tion (7.44) for K:o and we've recalled the definition (7.38). 

Upon consideration of the three examples (9.4), (9.6), and (9.8), it 
should be apparent that a pattern is forming. The full answer for the 
gauge sector is the result 118, 119 

j ['" C ] T 21Ta' F+B /Lp L-p (pH) 1\ r e , 
Mp+l 

(9.9) 

(We have included non-trivial B on the basis of the argument given in 
section 5.2.) So far, the gauge trace (which is in the fundamental) has 
the obvious meaning. We note that there is the possibility that in the full 
non-Abelian situation, the C can depend on non-commuting transverse 
fields Xi, and so we need something more general. We will return to this 
later. The expansion of the integrand (9.9) involves forms of various rank; 
the notation means that the integral picks out precisely the terms whose 
rank is (p + 1), the dimension of the Dp-brane's world-volume. 

Looking at the first non-trivial term in the expansion of the exponential 
in the action we see that there is the term that we studied above corre­
sponding to the dissolution of a D(p - 2)-brane into the sub two-plane 
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208 9 World-volume curvature couplings 

in the Dp-brane's world volume formed by the axes Xi and X j , if field 
strength components Fij are turned on. 

At the next order, we have a term which is quadratic in F which we 
could rewrite as: 

s = 7;;24 J C(p-3) 1\ Tr(F 1\ F). (9.10) 

We have used the fact that /-Lp-4/ /-Lp = (27Tyci)4 . Recall that there are 
non-Abelian field configurations called 'instantons' for which the quan­
tity JTr(F 1\ F)/87T2 gives integer values. (See, for example, insert 9.4.) 
Interestingly, we see that if we excite an instanton configuration on a four 
dimensional sub-space of the Dp-brane's world-volume, it is equivalent to 
precisely one unit of D(p - 4)-brane charge, which is remarkable. 

In trying to understand what might be the justification (other than 
T-duality) for writing the full result (9.9) for all branes so readily, the 
reader might recognise something familiar about the object we built the 
action out of. The quantity exp(iF/(27T)), using a perhaps more familiar 
normalisation, generates polynomials of the Chern classes of the gauge 
bundle of which F is the curvature. It is called the Chern character. In 
the Abelian case we first studied, we had non-vanishing first Chern class 
TrF /(27T), which after integrating over the manifold, gives a number which 
is in fact quantised. For the non-Abelian case, the second Chern class 
Tr(F I\F)/(87T2 ) computes the integer known as the instanton number, and 
so on. 

These numbers, being integers, are topological invariants of the gauge 
bundle. By the latter, we mean the fibre bundle of the gauge group over 
the world-volume, for which the gauge field A is a connection. 

A fibre bundle is a rule for assigning a copy of a certain space (the 
fibre: in this case, the gauge group G) to every point of another space (the 
base: here, the world-volume). The most obvious case of this is simply a 
product of two manifolds (since one can be taken as the base and then 
the product places a copy of the other at every point of the base), but 
this is awfully trivial. More interesting is to have only a product space 
locally. Then, the whole structure of the bundle is given by a collection of 
such local products glued together in an overlapping way, together with 
a set of transition functions which tell one how to translate from one 
local patch to another on the overlap. In the case of a gauge theory, this 
is all familiar. The transition rule is simply a G gauge transformation, 
and we are allowed to use the term 'vector bundle' in this case. For the 
connection or gauge field this is: A ----+ gAg-l + gdg- 1 . So the gauge field 
is not globally defined. Perhaps the most familiar gauge bundle is the 
monopole bundle corresponding to a Dirac monopole. See insert 9.1. 
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Insert 9.1. The Dirac monopole as a gauge bundle 

A gauge bundle is sometimes called a principal fibre bundle. Perhaps 
everybody's favourite gauge bundle is the Dirac monopole. Take a 
sphere S2 as our base. We will fibre a circle over it. Recall that S2 
cannot be described by a global set of coordinates, but we can use 
two, the Northern and the Southern hemisphere, with overlap in the 
vicinity of the Equator. Put standard polar coordinates (e, ¢) on S2, 
where e = 'IT /2 is the Equator. Put an angular coordinate ei'I/J on the 
circle. We will use ¢+ in the North and 'I/J- in the South. 
So our bundle is a copy of two patches which are locally S2 x Sl, 

+Patch: {e, ¢, ei'I/J+}; - Patch: {e, ¢, ei'I/J-}, 

together with a transition function which relates them. 

N(+) 

--:=---

S(-) 

The relation between the two can be chosen to be 

where n is an integer, since as we go around the equator, ¢ ----+ ¢+2'IT, 
the gluing together of the fibres must still make sense. 
The boring case n = 0 is sensible, but it simply gives the trivial 
bundle S2 x Sl. The case n = 1 is the familiar Hopf fibration, which 
describes the manifold S3 as a circle bundle over S2. It is a Dirac 
monopole of unit charge. Higher values of n give charge n monopoles. 
The integer n is characteristic of the bundle. It is in fact (minus) the 
integral of the first Chern class. 

The reader who found this a little dry might turn straight to 
insert 9.2 where we describe the connection on the bundle and com­
pute the first Chern class explicitly. 
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Insert 9.2. The first Chern class of the Dirac bundle 

Following what we did in insert 9.1, we can uncover more features, 
which will be useful later on. A natural choice for the connection 
one-form (gauge potential) in each patch is simply 

+ Patch: A+ + d?/;+; -Patch: A_ + d?/;_, 

so that the transition function defined in insert 9.1 allows us to con­
nect the two patches, defining the standard U(l) gauge transforma­
tion 

Here are the gauge potentials which are standard in this example: 

A (±1 - cos 0) dA. 
± = n 2 ,+" 

which, while being regular almost everywhere, clearly have a singular­
ity (the famous Dirac string) in the =f patch. The curvature two-form 
is simply 

F = dA = ~ sin OdO 1\ d¢. 

This is a closed form, but it is not exact, since there is not a unique 
answer to what A can be over the whole manifold. According to what 
we describe in the text, we can compute the first Chern number by 
integrating the first Chern class to get: 

j·F (F jF 
S2 21T = J+ 21T + _ 21T = n. 

9.3 Characteristic classes and invariant polynomials 

The topology of a particular fibration can be computed by working out 
just the right information about its collection of transition functions. For 
a gauge bundle, the field strength or curvature two-form F = dA + A 1\ A 
is a nice object with which to go and count, since it is globally defined 
over the whole base manifold. When the group is Abelian, F = dA and 
so dF = O. If the bundle is not trivial, then we can't write F as dA 
everywhere and so F is closed but not exact. Then F is said to be an 
element of the cohomology group H2(B, JPi.) of the base, which we'll call B. 
The first Chern class F /21T defines an integer when integrated over B, 
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Insert 9.3. The Yang-Mills instanton as a gauge bundle 

A favourite non-Abelian example120 is the SU(2) Yang-Mills instan­
ton. The base is S4, with coordinates (r,(),rp,'I/J), which is lR4 with 
the point at infinity added. A metric on it for radius p/2 is: 

ds' ~ (1+ ~:f (dr' + r'(al + a; + all) 

The gauge group (fibre) is G = SU(2), which also happens to be 
the manifold S3. By analogy with what we saw in insert 9.1, we can 
divide the S4 into Northern and Southern hemispheres. The equator 
is in fact an S3 and that is where we define the overlap region. Recall 
that there is a natural SU(2) favoured writing of the coordinates, 
defining an element h((), rp, 'I/J) E SU(2) as in insert 7.4. We can define 
similar Euler angles (a, (3, I) as coordinates on the fibre g, for the 
North (+) and South (-) patches, giving: 

+Patch: {(),rp,'I/J,a+,{J+'I+}; -Patch: {(),rp,'I/J,a_,{L,I_}. 

Our transition functions at the equator, taking us from the North to 
the South fibres are again parametrised by an integer, k: 

Again k = 0 is trivial. The case k = 1 is the Hopf fibration of S7 as 
an S3 over S4. It is the one instanton solution. Other k are the multi­
instantons. Also k will give the second Chern class of the bundle. 

telling us to which topological class F belongs; this integer is a topological 
invariant. 

For the non-Abelian case, F is no longer closed, and so we don't have 
the first Chern class. However, the quantity Tr(F I\F) is closed, since as we 
know from insert 7.3 (p. 167), it is actually dW3Y. So if the Chern-Simons 
three-form W3Y is not globally defined, we have a non-trivial bundle, and 
Tr(F I\F), being closed but not exact, defines an element of the cohomol­
ogy group H4(B, lR). The second Chern class Tr(F 1\ F)/8'IT2 integrated 
over B gives an integer which says to which topological class F belongs. 
See insert 9.4. 

As we have said above, D-branes appear to compute certain topological 
features of the gauge bundle on their world-volumes, corresponding here 
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Insert 9.4. The BPST one-instanton connection 

Just as with the Dirac monopole case, we can write the connection 
I-form for each patch: 

P h -lA -ld - atc : 9_ -9- + 9- 9-, 

so that the transition function defined in insert 9.3 allows us to con­
nect the two patches with a gauge transformation 

The k = 1 solution can be written quite simply: 

where the O"n are the left-invariant one-forms. This solution is smooth 
everywhere except at a singularity at r = O. The South pole solution 
is obtained by gauge transformation: 

2 2 

A_ = hA+h- 1 + hdh- 1 = - 2 P 2 dhh- 1 = 2 P 2 iTnijn, 
p +r p +r 

where the ijn are the right-invariant one-forms. This solution is sin­
gular at r = 00. The curvature two-form is best described using the 
veilbiens {eO,el,e2,e3} = (1 +rlp)-2{dr,rO"l,r0"2,r0"3}: 

_ A A A _. 2 (0 k 1 i j) F+ - d + 1\ - 7Tk p2 e 1\ e + 2Ekije 1\ e . 

Of course, F_ = hF+h- 1 . It is worth checking that this solution is 
self dual, i.e. * F = F, with anti-self duality made by O"n +--+ ijn. The 
instanton number is (minus) the second Chern class integrated over 
the S4: 

where in the latter we have used that the volume of the S4 is 1T2 p4 16. 
Here, p has the interpretation as the 'core size' of the instanton. 
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to the Chern classes of the cohomology. As we shall see, they compute 
other topological numbers as well, and so let us pause to appreciate a 
little of the tools that they employ, in order to better be able to put them 
to work for us. 

The first and second Chern classes shall be denoted Cl (F) and C2 (F) 
and so on, cj(F) for the jth Chern class. Let us call the gauge group G, 
and keep in mind U(n) (we will make appropriate modifications to our 
statements to include O(n) later). We'd like to know how to compute the 
cj(F). The remarkable thing is that they arise from forming polynomials 
in F which are invariant under G. Forget that F is a two-form for now, 
and just think of it as an nXn matrix. The cj(F) are found by expanding 
a natural invariant expression in F as a series in t: 

det tI + _7 = L cn-j(F)tj . ( ·F) n 

21T j=O 
(9.11) 

(Here, we use the i in F to keep the expression real, since U (N) gener­
ators are anti-Hermitean.) The great thing about this is that there is an 
excellent trick for finding explicit expressions for the CjS which will allow 
us to manipulate them and relate them to other quantities. Assume that 
the matrix iF /2'IT has been diagonalised. Call this diagonal matrix X, 
with n distinct non-vanishing eigenvalues Xi, i = 1, ... ,n. Then we have 

n n 

(9.12) 
i=l j=O 

and we find by explicit computation that the CjS are symmetric polyno­
mials: 

Co = 1, 

n 

Cj = 

n 

C2 = L Xil Xi2' 

il <i2 

(9.13) 

Now rewrite the expressions on the eigenvalues back as matrix expressions 
in terms of X, and then replace X by iF/2'IT, to get: 

7 
Co (F) = 1, Cl (F) = 2'IT Tr F, 

- _7 [TrF /\ TrF - Tr(F /\ F)], 1 ( . )2 
2 2'IT 

cn(F) (2~) n det F. (9.14) 
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In the case of SU(N), the generators are traceless, and so 

1 
c2(F) = -2 Tr(F 1\ F), 

87T 

the expression we saw before. The cj(F) are rank 2j forms, so of course, 
the largest one that gives a meaningful quantity is the one for which 
dim (B) = 2j. 

The natural object which D-branes seem to have on their world-volume 
is in fact the Chern character, ch(F) = Trexp(iF/27T). This computes a 
specific combination of the Chern classes, and we can compute this by 
using our symmetric polynomial expressions in (9.13). Working with the 
diagonal X again we have 

(9.15) 

The Chern character is to be thought of as an important generating func­
tion of the Chern classes and in fact it is a powerful tool, in that it is well 
behaved in the sense that for bundle E and a bundle F, the relations 

ch(E EEl F) = ch(E) + ch(F) and ch(E ® F) = ch(E) 1\ ch(F) (9.16) 

are true. This is part of an important technology to doing 'algebra' on 
bundles allowing one to perform operations which compare them to each 
other, etc. 

For the case G = O(n), the characteristic classes are called Pontryagin 
classes. We may think of the bundle as a real vector bundle. Now we have 

( F) n . 
det tI + - = LPn-j(FW. 

27T j=O 
(9.17) 

Again, consider having diagonalised to X. We can't quite diagonalise, but 
can get it into the block diagonal form: 

o Xl 

-Xl 0 

X= (9.18) 
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Now we have the relation: 

det (tI + X) = det (tI + XT) = det (tI - X), 

and so we see that the pj(F) must be even in F. A bit of work similar to 
that which we did above for the Chern classes gives: 

1 ( 1 )2 pl(F) = -"2 27T TrF2, 

1 ( 1 ) 4 [ 2 2 4] P2(F) ="8 27T (TrF) - 2TrF , ... , etc., 

( 1 )n 
P[il'l (F) = 27T det F, (9.19) 

where [n/2] = n/2 if n is even or (n - 1)/2 otherwise. 
Now an important case of orthogonal groups is of course the tangent 

bundle to a manifold of dimension n. Using the veilbiens formalism of sec­
tion 2.8, the structure group is O(n). The two-form to use is the curvature 
two-form R. Then we have, e.g. 

(9.20) 

The Euler class is naturally defined here too. For an orient able even 
dimensional n = 2k manifold M, the Euler class class e(M) is defined via 

e(X)e(X) = Pk(X). 

We write X here and not the two-form R, since we would have a 4k-form 
which vanishes on M. However, e(R) makes sense as a form since its rank 
is n, which is the dimension of M. For an example, see insert 9.5. 

Two other remarkable generating functions of importance are the A 
('A-roof') or Dirac genus: 

(9.21) 

and the Hirzebruch i-polynomial 

(9.22) 
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Insert 9.5. The Euler number of the sphere 

Lets test this out for the two-sphere S2. Using the formalism of 
section 2.8, the curvature two-form can be computed as Re¢ 

sin ()d() /\ d¢. Then we can compute 

1 ( 1 )2 PI (S2) = --2 TrR /\ R = - sin ()d() /\ d¢ 
81T 21T 

So we see that 
e(S2) = ~ sin ()d() /\ d¢. 

21T 
The integral of this from over the manifold given the Euler number: 

a result we know well and have used extensively. 

where the Bn are the Bernoulli numbers, BI = 1/6, B2 = 1/30, B3 = 

1/42, .... These are very important characteristics as well, and again have 
useful algebraic properties for facilitating the calculus of vector bundles 
along the lines given by equations (9.16). As we shall see, they also play 
a very natural role in our story here. 

9.4 Anomalous curvature couplings 

So we seem to have wandered away from our story somewhat, but in fact 
we are getting closer to a big part of the answer. If the above formula (9.9) 
is true, then D-branes evidently know how to compute the topological 
properties of the gauge bundle associated to their world-volumes. This is 
in fact a hint of a deeper mathematical structure underlying the structure 
of D-branes and their charge, and we shall see it again later. 

There is another strong hint of what is going on based on the fact that 
we began to deduce much of this structure using the terms we discovered 
were needed to cancel anomalies. So far we have only looked at the terms 
involving the curvature of the gauge bundle, and not the geometry of 
the brane itself which might have non-trivial R associated to its tangent 
bundle. Indeed, since the gauge curvature terms came from anomalies, we 
might expect that the tangent bundle curvatures do too. Since these are so 
closely related, one might expect that there is a very succinct formula for 
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those couplings as well. Let us look at the anomaly terms again. The key 
terms are the curvature terms in (7.35) and the curvature terms arising 
from the modification (7.38) of the field strength of C(3) to achieve gauge 
invariance. The same deduction we made to arrive at (9.8) will lead us 
to TrR2 terms coupling to C(6)' Also, if we convert to the fundamental 
representation, we can see that there is a term 

This mixed anomaly type term can be generated in a number of ways, but 
a natural guess 110, 111, 112 (motivated by remarks we shall make shortly) 
is that there is a VA term on the world volume, multiplying the Chern 
characteristic. In fact, the precise term, written for all branes, is: 

(9.23) 

Working with this expression, using the precise form given in (9.21) 
will get the mixed term precisely right, but the C(6) tr R2 will not have the 
right coefficient, and also the remaining fourth order terms coupling to 
C(2) are incorrect, after comparing the result to (7.35). 

The reason why they are not correct is because there is another crucial 
contribution which we have not included. There is an orientifold 09-plane 
of charge -32f-Lg as well. As we saw, it is crucial in the anomaly cancel­
lation story of the previous chapter and it must be included here for 
precisely the same reasons. While it does not couple to the 50(32) gauge 
fields (open strings), it certainly has every right to couple to gravity, and 
hence source curvature terms involving R. Again, as will be clear shortly, 
the precise term for Op-planes of this type is 125: 

(9.24) 

where £(R) is defined above in equation (9.22). Remarkably, expand­
ing this out will repair the pure curvature terms so as to give all of 
the correct terms in Xs to reproduce (7.35), and the C(6) coupling is 
precisely: 

(9.25) 
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Beyond just type I, it is worth noting that the R 1\ R term will play an 
important role on the world volumes of branes. It can be written in the 
form: 

(9.26) 

By straightforward analogy with what we have already observed about 
instantons, another way to get a D(p - 4)-brane inside the world-volume 
of a Dp-brane is to wrap the brane on a four dimensional surface of non­
zero Pl(R). Indeed, as we saw in equation (7.54), the K3 surface has 
PI = -2X = -48, and so wrapping a Dp-brane on K3 gives D(p - 4)­
brane charge of precisely -1. This will be important to us later115, 121. 

9.5 A relation to anomalies 

There is one last amusing fact that we should notice, which will make 
it very clear that the curvature couplings that we have written above 
are natural for branes and O-planes of all dimensionalities. The point 
is that the curvature terms just don't accidentally resemble the anomaly 
polynomials we saw before, but are built out of the very objects which can 
be used to generate the anomaly polynomials that we listed in insert 7.2. 

In fact, we can use them to generate anomaly polynomials for dimension 
D = 4k + 2. We can pick out the appropriate powers of the curvature two 
forms by using the substitution 

2k+l 1 L x;m = -(-1)mtrR2m. 
i=l 2 

Then in fact the polynomial 11/2 is given by the A genus: 

(9.27) 

https://doi.org/10.1017/9781009401371.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.010


9.5 A relation to anomalies 219 

where 
2k+1 1 ( l)m 

Y2m = L y;m = - -- trR2m. 
i=1 2 4 

The trick is then to simply pick out the piece of the expansion which 
fits the dimension of interest, remembering that the desired polynomial 
is of rank D + 2. So for example, picking out the order 12 terms will give 
precisely the 12-form polynomial in insert 7.2, etc. 

The gravitino polynomials come about in a similar way. In fact, 

( 
2k+1 ) 

13/ 2 = h/2 -1 + 2 L coshxi 
)=1 

= h/2 (D - 1 + 4Y2 + ~ Y4 + 485 Y6 + ... ). 

Also, the polynomials for the antisymmetric tensor come from 

1 1 2k+1 . 
A ""' x) 1A = --£(R) = -- ~ 

8 8 j=1 tanh Xj 

= -~ - ~Y2 + (~- ~y2) 
8 6 45 9 2 

1 ( 3 ) + 2835 -496Y6 + 588Y2Y4 - 140Y2 + .... 

(9.28) 

(9.29) 

Finally, it is easy to work out the anomaly polynomial for a charged 
fermion. One simply multiplies by the Chern character: 

(9.30) 

Now it is perhaps clearer what must be going on111 , 112. The D-branes 
and O-planes, and any intersections between them all define sub­
spacetimes of the ten dimensional spacetime, where potentially anoma­
lous theories live. This is natural, since as we have already learned, and 
shall explore much more, there are massless fields of various sorts living 
on them, possibly charged under any gauge group they might carry. 

As the world-volume intersections may be thought of as embedded in 
the full ten dimensional theory, there is a mechanism for cancelling the 
anomaly which generalises that which we have already encountered. For 
example, since the Dp-brane is also a source for the R-R sector field 
C(p+2), it modifies it according to 

(9.31) 
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where the delta functions are chosen to localise the contribution to the 
world-volume of the brane, extended in the directions xo, Xl, ... , xp. Also 
/-Lp is the Dp-brane (or Op-plane) charge, and the polynomial :F must 
be chosen so that the classically anomalous variation 8C(p+l) required 
to keep C(p+2) gauge invariant can cancel the anomaly on the branes' 
intersection. Following this argument to its logical conclusion, and using 
the previously mentioned fact that the possible anomalies are described 
in terms of the characteristic classes exp(iF), A(R) and £(R), reveals 
that :F takes the form of the couplings that we have already written. 
We see that the Green-Schwarz mechanism from type I is an example of 
something much more general, involving the various geometrical objects 
which can appear embedded in the theory, and not just the fundamental 
string itself. 

Arguments along these lines also uncover the feature that the normal 
bundle also contributes to the curvature couplings as well. The full ex­
pressions, for completeness, are: 

and 

A( 47T2a' RT) 

A( 47T2a' RN ) , 

£( 7T 2a' RT ) 

£( 7T2a' RN ) , 

(9.32) 

(9.33) 

where the subscripts 'T', 'N' denote curvatures of the tangent and the 
normal frame, respectively. 

9.6 D-branes and K-theory 

In fact, the sort of argument above is an independent check on the precise 
normalisation of the D-brane charges, which we worked out by direct 
computation in previous sections. As already said before, the close relation 
to the topology of the gauge and tangent bundles of the branes suggests 
a connection with tools which might uncover a deeper classification. This 
tool is called 'K-theory'. K-theory should be thought of as a calculus for 
working out subtle topological differences between vector bundles, and as 
such makes a natural physical appearance here113, 18. 

This is because there is a means of constructing a D-brane by a mech­
anism known as 'tachyon condensation' on the world-volume of higher 
dimensional branes. Recall that in chapter 8 we observed that a Dp-brane 
and an anti-Dp-brane will annihilate. Indeed, there is a tachyon in the 
spectrum of pp strings. Let us make the number of branes be N, and the 

https://doi.org/10.1017/9781009401371.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.010


9.7 Further non-Abelian extensions 221 

number of anti-branes be N. Then the tachyon is charged under the gauge 
group U(N) x U(N). The idea is that a suitable choice of the tachyon can 
give rise to topology which must survive even if all of the parent branes 
annihilate away. For example, if the tachyon field is given a topologically 
stable kink (see insert 1.4, p. 18) as a function of one of the dimensions 
inside the brane, then there will be a p-l dimensional structure left over, 
to be identified with a D(p - 1)-brane. This idea is the key to seeing how 
to classify D-branes, by constructing all branes in this way. 

Most importantly, we have two gauge bundles, that of the Dp-branes, 
which we might call E, and that of the Dp-branes, called F. To classify the 
possible D-branes which can exist in the world volume, one must classify 
all such bundles, defining as equivalent all pairs which can be reached by 
brane creation or annihilation: If some number of Dp-branes annihilate 
with Dp-branes (or if the reverse happens, i.e. creation of Dp-Dp pairs), 
the pair (E, F) changes to (E EEl G, F EEl G), where G is the gauge bundle 
associated to the new branes, identical in each set. These two pairs of 
bundles are equivalent. The group of distinct such pairs is (roughly) the 
object called K(X), where X is the spacetime that the branes fill (the base 
ofthe gauge bundles). Physically distinct pairs have non-trivial differences 
in their tachyon configurations which would correspond to different D­
branes after complete annihilation had taken place. So K-theory, defined 
in this way, is a sort of more subtle or advanced cohomology which goes 
beyond the more familiar sort of cohomology we encounter daily. 

The technology of K-theory is beyond that which we have room for 
here, but it should be clear from what we have seen in this chapter 
that it is quite natural, since the world-volume couplings of the charge 
of the branes is via the most natural objects with which one would 
want to perform sensible operations on the gauge bundles of the branes 
like addition and subtraction: the characteristic classes, exp( iF), A( R) 
and i(R). Actually, this might have been enough to simply get the re­
sult that D-brane charges were classified by cohomology. That it is in 
fact K-theory (which can compute differences between bundles that co­
homology alone would miss) is probably related to a very important 
physical fact about the underlying theory which will be more manifest 
one day. 

9.7 Further non-Abelian extensions 

One can use T-duality to go a bit further and deduce a number of non­
Abelian extensions of the action, being mindful of the sort of complications 
mentioned at the beginning of section 5.5. In the absence of geometrical 
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curvature terms it turns out to be51 , 52: 

I/. 1 Tr ([e27TCii1>i1> '" C ] e 27TOCI F +B) rp L-p (p+1) . 
p-brane 

(9.34) 

Here, we ascribe the same meaning to the gauge trace as we did previ­
ously (see section 5.5). The meaning of ix is as the 'interior product' in 
the direction given by the vector <I>i, which produces a form of one degree 
fewer in rank. For example, on a two form C(2) (<I» = (lj2)Cij (<I»dXi dXj, 
we have 

. . 1·· 
iq,iq,C(2)(<I» = <I>J<I>%Cij(<I» = "2 [<I> \ <I>JjCij(<I», 

(9.35) 

where we see that the result of acting twice is non-vanishing when we 
allow for the non-Abelian case, with C having a non-trivial dependence 
on <I>. We shall see this action work for us to produce interesting physics 
later. 

9.8 Further curvature couplings 

We deduced geometrical curvature couplings to the R-R potentials a 
few subsections ago. In particular, such couplings induce the charge of 
lower p branes by wrapping larger branes on topologically non-trivial sur­
faces. 

In fact, as we saw before, if we wrap a Dp-brane on K3, there is induced 
precisely -1 units of charge of a D(p - 4)-brane. This means that the 
charge of the effective (p - 4)-dimensional object is 

(9.36) 

where VK3 is the volume of the K3. However, we can go further and notice 
that since this is a BPS object of the six dimensional N = 2 string theory 
obtained by compactifying on K3, we should expect that it has a tension 
which is 

Vi -1 
T = Tp K3 - Tp-4 = 98 fL· (9.37) 

If this is indeed so, then there must be a means by which the curvature 
of K3 induces a shift in the tension in the world-volume action. Since 
the part of the action which refers to the tension is the Dirac-Born­
Infeld action, we deduce that there must be a set of curvature couplings 
for that part of the action as well. Some of them are given by the 

https://doi.org/10.1017/9781009401371.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.010


9.8 Further curvature couplings 223 

following122, 128: 

S = -Tp J dP+1e e-<Pdet1/2(Gab+:Fab)(1- 3 x ~87T2 X 

( Rabed R abed - R a(3ab Ra(3ab + 2Ra(3 R a(3 - 2Rab R ab) + 0 ( 0:/4 ) ) , 

(9.38) 

where Rabed = (47T 20:/)Rabed, etc., and a, b, c, d are the usual tangent space 
indices running along the brane's world-volume, while 0:, {3 are normal 
indices, running transverse to the world-volume. 

Some explanation is needed. Recall that the embedding of the brane 
into D-dimensional spacetime is achieved with the functions X /L (ea ), 

(a = 0, ... , Pi /L = 0, ... , D - 1) and the pull-back of a spacetime field 
F/L is performed by soaking up spacetime indices /L with the local 'tan­
gent frame' vectors oaX/L, to give Fa = F/LoaX/L. There is another frame, 
the 'normal frame', with basis vectors (~, (0: = P + 1, ... , D - 1). Or­
thonormality gives (~(5G/Ll/ = Da(3 and also we have (~oaXl/G/Ll/ = 0. 

We can pull back the spacetime Riemann tensor R/LI/K,A in a number 

of ways, using these different frames, as can be seen in the action. R 
with two indices are objects which were constructed by contraction of the 
pulled-back fields. They are not the pull-back of the bulk Ricci tensor, 
which vanishes at this order of string perturbation theory anyway. 

In fact, for the case of K3, it is Ricci flat and everything with normal 
space indices vanishes and so we get only RabedRabcd appearing, which 
alone computes the result (7.54) for us, and so after integrating over K3, 
the action becomes: 

(9.39) 

where again we have used the recursion relation between the D-brane 
tensions. So we see that we have correctly reproduced the shift in the 
tension that we expected on general grounds for the effective D(p - 4)­
brane. We will use this action later. 
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