THE PRIMALITY OF $N=2 A 3^{n}-1$

BY
H. C. WILLIAMS

1. Introduction. Lehmer [3] and Reisel [7] have devised tests for determining the primality of integers of the form $A 2^{n}-1$. Tables of primes of these forms may be found in [7] and Williams and Zarnke [10]. Little work, however, seems to have been done on integers of the form $N=2 A 3^{n}-1$. Lucas [6] gave conditions that were only sufficient for the primality of N. Recently Lehmer [4] has given a method for determining the primality of an integer N if the factorization of $N+1$ is known. If $N+1=q^{n} m$ (q a prime, $q^{n}>m$), this test can be simplified somewhat, but the test is still only a sufficient criterion for N to be prime. It is, therefore, quite probable that an application of this test will not resolve the question of the primality of N. In this paper we give a criterion which is both necessary and sufficient for the primality of $N=2 A 3^{n}-1$, when $3^{n}>2 A$. This test, like Lehmer's, can be easily implemented on a high speed computing device and also requires just about the same number of operations as Lehmer's test.
2. Preliminary results. We need some previously known results which we shall simply state here.

Theorem 1. (Kummer [9], Lehmer [5]). Let p be any prime, let q be a prime congruent to 1 modulo 3 , and let $4 q=r^{2}+27 s^{2}$, where r is congruent to 1 modulo 3. If p does not divide $q s$, the congruence

$$
x^{3}-3 q x-q r \equiv 0 \quad(\bmod p)
$$

has an integer root if and only if

$$
p^{(\alpha-1) / 3} \equiv 1 \quad(\bmod q)
$$

Theorem 2. (Cailler [1]). Let p be any prime congruent to -1 modulo $3, \Delta=$ $27 h^{2}+4 g^{3}$, and $(3 \Delta \mid p)=-1$. If p does not divide g,

$$
x^{3}+g x+h \equiv 0 \quad(\bmod p)
$$

has an integer root if and only if

$$
U_{(p+1) / 3} \equiv 0 \quad(\bmod p)
$$

where

$$
U_{m}=\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}
$$

α and β are the roots of

$$
z^{2}+t z+u=0
$$

and t, u are coprime integers such that

$$
g t \equiv 3 h, \quad 3 u \equiv-g \quad(\bmod p)
$$

Theorem 3. (Lehmer [3]). If $U_{m_{ \pm 1}} \equiv 0(\bmod m)$ and $\left(U_{\left(m_{ \pm}\right) / a}, m\right)=1$, where a is a prime, then the prime factors of m are of the forms $k a^{v} \pm 1$, where v is the highest power to which a occurs as a factor of $m \pm 1$.

We shall also require two lemmas. The first of these is based upon an idea of Robinson [8].

Lemma 1. If all the prime factors of $N=2 A 3^{n}-1$, where A is not divisible by 3 , and $1 \leq A<4.3^{n}-1$, are of the forms $k 3^{n} \pm 1, N$ is a prime.

Proof. The smallest possible factor of N is $2.3^{n}-1$. If this is a divisor of N,

$$
2 A 3^{n} \equiv 1 \quad\left(\bmod 2.3^{n}-1\right)
$$

or

$$
A-1 \equiv A-2 A 3^{n} \equiv 0 \quad\left(\bmod 2.3^{n}-1\right)
$$

hence,

$$
A-1=m\left(2.3^{n}-1\right)
$$

Since 3 does not divide A, m cannot equal 1 ; therefore, $A \geq 2\left(2.3^{n}-1\right)+1=4.3^{n}-1$, which is impossible. It may be shown in a similar manner that $2.3^{n}+1$ is not a prime divisor of N.

Since $N<\left(4.3^{n}-1\right)^{3}$, if N is composite it must be a product of two prime factors $t_{1} 3^{n}-1$ and $t_{2} 3^{n}+1$, where $t_{1}, t_{2} \geq 4$, i.e.

$$
\begin{aligned}
2 A=t_{1} t_{2} 3^{n}+t_{1}-t_{2} & >t_{2}\left[t_{1} 3^{n}-1\right] \\
& >8.3^{n}-2
\end{aligned}
$$

thus, N is prime.
Lemma 2. Let $N=2 A 3^{n}-1,4 q=r^{2}+27 s^{2},(q, N)=1$, and $q K \equiv 1(\bmod N)$. If

$$
P_{1} \equiv K^{A} V_{2 A} \quad(\bmod N)
$$

and

$$
P_{k+1} \equiv P_{k}\left(P_{k}^{2}-3\right) \quad(\bmod N)
$$

then

$$
P_{n} \equiv K^{(N+1) / 6} V_{(N+1) / 3}(\bmod N)
$$

where
and α, β are the roots of

$$
V_{m}=\alpha^{m}+\beta^{m}
$$

$$
z^{2}+r z+q=0
$$

Proof. Put

$$
P_{k} \equiv K^{A 3^{k-1}} V_{2 A 3^{k-1}}(\bmod N)
$$

Since

$$
V_{3 m}=V_{m}\left[V_{m}^{2}-3 q^{m}\right]
$$

we have

$$
P_{k+1} \equiv P_{k}\left(P_{k}^{2}-3\right) \quad(\bmod N)
$$

hence,

$$
P_{n} \equiv K^{(N+1) / 6} V_{(N+1) / 3}(\bmod N)
$$

3. The main result.

Theorem 4. Let $N=2 A 3^{n}-1$, where 3 does not divide A and $1 \leq A<4.3^{n}-1$; let q be any prime such that q is congruent to 1 modulo 3 and

$$
N^{(q-1) / 3} \not \equiv 1 \quad(\bmod q)
$$

finally, let $4 q=r^{2}+27 s^{2}$, where $r \equiv 1(\bmod 3)$. If $(q s, N)=1, N$ is a prime if and only if

$$
P_{n} \equiv \pm 1 \quad(\bmod N)
$$

where P_{n} is defined in Lemma 2.
Proof. If N is a prime,

$$
x^{3}-3 q x-q r \equiv 0 \quad(\bmod N)
$$

is not resolvable by Theorem 1; hence, by Theorem 2

$$
U_{(N+1) / 3} \not \equiv 0 \quad(\bmod N)
$$

where $U_{m}=\left(\alpha^{m}-\beta^{m}\right) /(\alpha-\beta)$ and α, β are defined in Lemma 2. Since (Lehmer [3])

$$
U_{N+1} \equiv 0 \quad(\bmod N)
$$

we have

$$
U_{(N+1) / 3}\left[V_{(N+1) / 3}^{2}-q^{(N+1) / 3}\right] \equiv 0 \quad(\bmod N)
$$

or

$$
V_{(N+1) / 3} \equiv \pm q^{(N+1) / 6}(\bmod N)
$$

hence,

$$
P_{n} \equiv \pm K^{(N+1) / 6} q^{(N+1) / 6} \equiv \pm 1 \quad(\bmod N)
$$

If

$$
P_{n} \equiv \pm 1 \quad(\bmod N)
$$

then

$$
V_{(N+1) / 3} \equiv \pm q^{(N+1) / 6}(\bmod N)
$$

Since
we have

$$
V_{(N+1) / 3}^{2}+27 s^{2} U_{(N+1) / 3}^{2}=4 q^{(N+1) / 3}
$$

$$
27 s^{2} U_{(N+1) / 3}^{2} \equiv 3 q^{(N+1) / 3} \quad(\bmod N)
$$

Consequently, $\left(U_{(N+1) / 3}, N\right)=1$. Also

$$
\begin{aligned}
U_{N+1} & \equiv U_{(N+1) / 3}\left[V_{(N+1) / 3}^{2}-q^{(N+1) / 3}\right] \\
& \equiv 0 \quad(\bmod N)
\end{aligned}
$$

By Theorem 3 the prime factors of N must be of the form $k 3^{n} \pm 1$; by Lemma 1, N is a prime.

If $A=1, q=7$, we obtain the following:
Corollary. If $n \equiv a(\bmod 6)$, where $a=1,2,3,5$ and P_{1} is selected from Table 1 below, $N=2.3^{n}-1$ is a prime if and only if

$$
P_{n} \equiv \pm 1(\bmod N)
$$

where

$$
P_{k+1} \equiv P_{k}\left(P_{k}^{2}-3\right) \quad(\bmod N)
$$

a	1	2	3	5
P_{1}	$4(N-5) / 7+1$	$2(N-3) / 7-1$	$5(N-4) / 7+1$	$3(N-2) / 7-1$

Table 1.
We now summarize the steps necessary to carry out the test for the primality of $N=2 A 3^{n}-1, A<4.3^{n}-1,3 \dagger A$. We give some idea of the time required for these steps by indicating the approximate number of operations needed to complete each of them.
(1) Find a prime $q \equiv 1(\bmod 3)$ such that

$$
N^{(a-1) / 3} \equiv 1 \quad(\bmod q)
$$

This is not very difficult in practice; in fact, for $n<1000, A \leq 50$, we can find such a $q \leq 79$.
(2) Obtain integers r and s such that

$$
4 q=r^{2}+27 s^{2}
$$

where $r \equiv 1(\bmod 3)$. For small values of q, table 2 below should suffice for this operation. For q beyond the range of this table, the table in Cunningham [2] could be used. On a computer, however, it would be easier to simply obtain these numbers by exclusion, a process requiring approximately \sqrt{q} operations.
(3) Calculate K such that

$$
q K \equiv 1 \quad(\bmod N)
$$

This is best accomplished using the Euclidean algorithm. The average time required for this step varies directly with the logarithm of q.
(4) Find $V_{2 A}$. For small values of A this can be done by using the recurrence relation

$$
V_{m}=-r V_{m-1}-q V_{m-2}
$$

where $V_{0}=2, V_{1}=-r$. For large values of A a duplication formula such as that described in [4] should be used. The number of operations required for this step is of order $\log A$.
(5) We put

$$
P_{1} \equiv V_{2 A} K^{A} \quad(\bmod N)
$$

This is a process of order $\log A$ (see [4]). Define

$$
P_{k+1} \equiv P_{k}\left(P_{k}^{2}-3\right) \quad(\bmod N)
$$

and calculate $P_{n}(\bmod N) . N$ will be a prime if and only if N divides one of $P_{n}+1$ or $P_{n}-1$. It is easy to see that the time required to complete the entire algorithm varies directly with $\log N$.

q	r	s									
7	1	1	31	4	2	61	1	3	79	-17	1
13	-5	1	37	-11	1	67	-5	3	97	19	1
19	7	1	43	-8	2	73	7	3	103	13	3

Table 2.
4. Example. Let $N=13121=2.3^{8}-1$; then $P_{1}=2(13118) / 7-1=3747$. The successive values of $P_{k}(\bmod N)$ are then $3747,879,5842,1288,521,1060,6529,1$.

Bibliography

1. C. Cailler, Sur les congruences du troisième degré, L'Enseig. Math., 10 (1908), 474-487.
2. A. J. C. Cunningham, Quadratic Partitions, London, 1907.
3. D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2), 31 (1930), 419-448.
4. - Computer technology applied to the theory of numbers, M.A.A. studies in Mathematics, 6 (1969), 117-151.
5. Emma Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
6. Edouard Lucas, Théorie des functions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
7. H. Reisel, Lucasian criteria for the primality of $N=h \cdot 2^{n}-1$, Math. Comp. 23 (1969). 869-875.
8. R. M. Robinson, The converse of Fermat's theorem, Amer. Math. Monthly, 64 (1957), 703-710.
9. H. J. S. Smith, Report on the Theory of Numbers, Chelsea, New York, (1965), 103-105.
10. H. C. Williams and C. R.Zarnke, A report on prime numbers of the forms $M=(6 a+1) 2^{2 m-1}-1$ and $M^{\prime}=(6 a-1) 2^{2 m}-1$, Math. Comp. 22 (1968), 420-422.

University of Manitoba,
Winnipeg, Manitoba

