NONIMMERSIONS OF COMPLEX GRASSMANN MANIFOLDS

by SAMUEL A. ILORI

(Received 8th May 1979)

1. Introduction

If an oriented manifold M immerses in codimension k, then the normal bundle has dimension k such that its Euler class $\chi \in H^k(M; \mathbb{Z})$ and $\chi^2 \in H^{2k}(M; \mathbb{Z})$. (Cf. (3)).

If M is the complex Grassmann manifold $G_2(\mathbb{C}^n)$ of 2-planes in \mathbb{C}^n (n = 4, 5, ..., 15, 17), then dim $M = 4n - 8 \equiv d$ and we shall show that although M immerses in \mathbb{R}^{2d-1} by classical results (3), M does not immerse in $\mathbb{R}^{d+d/2}$.

The same result was obtained for n = 4 and 5 by Connell (2) and for n = 6 and 7 by the author (6). The nonimmersion results of this paper are new for n = 8, 9, ..., 15, 17 and they are an improvement over the result for the general $G_2(\mathbb{C}^n)$ obtained in (5). In this paper, we use generators of the cohomology ring of $G_2(\mathbb{C}^n)$ different from those used in (2) and (6) and this simplifies the calculations considerably.

2. $G_2(C^n)$

Since the dimension of $G_2(\mathbb{C}^n)$ is 4n-8, it follows that $\chi \in H^{2n-4}(G_2(\mathbb{C}^n); \mathbb{Z})$. We shall first investigate the group, $H^{2n-4}(G_2(\mathbb{C}^n); \mathbb{Z})$. We denote the Schubert variety, $\Omega_{a_0a_1}$ by $[a_1, a_2]$ and the corresponding Schubert class by $[a_0, a_1]^*$.

Lemma 2.1. The cohomology group $H^{2n-4}(G_2(\mathbb{C}^n);\mathbb{Z})$ is freely generated either by the (n-1)/2 Schubert classes

$$\left\{ [0, n-1]^*, [1, n-2]^*, \dots, \left[\frac{n-3}{2}, \frac{n+1}{2}\right]^* \right\}, \text{ if } n \text{ is odd}$$

or by the n/2 Schubert classes

$$\left\{ [0, n-1]^*, [1, n-2]^*, \ldots, \left[\frac{n-2}{2}, \frac{n}{2}\right]^* \right\}, \text{ if } n \text{ is even.}$$

Moreover, the square of each generator is equal to $[0,1]^*$, the generator of $H^{4n-8}(G_2(\mathbb{C}^n);\mathbb{Z})$ and any mixed product of two different generators is equal to zero.

Proof. From Theorem II p. 352 of (4), and since

$$\dim [a_0, a_1] = a_0 + a_1 - 1,$$

1

SAMUEL A. ILORI

it follows that $H^{2n-4}(G_2(\mathbb{C}^n); \mathbb{Z})$ is generated by all Schubert classes

$$\{[a_0, a_1]^* \mid a_0 + a_1 - 1 = n - 2\}.$$

Hence, the first part of the lemma follows. Also from Theorem I p. 327 and Theorem II p. 331 of (4), we have that Schubert varieties of complementary dimension intersect if and only if

$$a_1 + b_0 \ge n - 1$$
 and $a_0 + b_1 \ge n - 1$,

and that the intersection is simple and is at a unique point. Thus the second part of the lemma also follows.

The result of this paper can now be stated as

Proposition 2.2. If
$$d = 4n - 8 = \dim(G_2(\mathbb{C}^n))$$
, and $n = 4, ..., 15, 17$ we have that
 $G_2(\mathbb{C}^n) \subseteq \mathbb{R}^{2d-1}$ and $G_2(\mathbb{C}^n) \notin \mathbb{R}^{d+1/2d}$.

Proof. The fact that $G_2(\mathbb{C}^n) \subseteq \mathbb{R}^{2d-1}$ follows from (3). Now the generator $[0, 1]^*$ of the cohomology group $H^{4n-8}(G_2(\mathbb{C}^n); \mathbb{Z})$ is given by

$$[0, 1]^* = w_{2,n-2}(1; F) = [\sigma_2(\gamma_0, \gamma_1)]^{n-2}.$$

(Cf. p. 328 of (7), where $\sigma_2(\gamma_0, \gamma_1) = c_2(\gamma)$, the second Chern class of the canonical bundle γ over $G_2(\mathbb{C}^n)$). Hence from Section 3 of (5), it follows that the generator y can be identified as

$$\mathbf{y} = -\sigma_2(\boldsymbol{\gamma}_0, \boldsymbol{\gamma}_1).$$

Hence a generator of $H^{4n-8}(G_2(\mathbb{C}^n); \mathbb{Z})$ is

$$[0, 1]^* = [\sigma_2(\gamma_0, \gamma_1)]^{n-2} = (-y)^{n-2}.$$

Now consider the case when n is odd and assume M immerses in $\mathbf{R}^{d+d/2}$. Let

$$\chi = a_1[0, n-1]^* + a_2[1, n-2]^* + \ldots + a_{(n-1)/2}\left[\frac{n-3}{2}, \frac{n+1}{2}\right]^*$$

be the Euler class of the normal bundle. Therefore, χ is an element of $H^{d/2}(G_2(\mathbb{C}^n); \mathbb{Z})$ and by Lemma 2.1 above,

$$\chi^{2} = (a_{1}^{2} + a_{2}^{2} + \ldots + a_{(n-1)/2}^{2})[0, 1]^{*}$$

= $-(a_{1}^{2} + a_{2}^{2} + \ldots + a_{(n-1)/2}^{2})y^{n-2}.$

Then by (3), $\chi^2 = p_{n-2}$ where p_r is the r-th Pontrjagin class, and from Section 5 of (5) we have

$$a_1^2 + a_2^2 + \ldots + a_{(n-1)/2}^2 = 3\binom{3t-1}{t-1}\binom{3t-2}{t-2}\frac{t^2-9t+6}{(t-1)(3t-2)},$$

where n = 2t + 1. Now the right hand side of the above quadratic equation is negative if and only if $2 \le t \le 8$, i.e. if and only if n = 5, 7, 9, 11, 13, 15, 17. In these cases, the quadratic equation has no integral solution. This is a contradiction and so nonimmersion in codimension 2n - 4 = d/2 is established.

2

Similarly, we obtain the following quadratic equation when n is even.

$$a_1^2 + a_2^2 + \ldots + a_{n/2}^2 = {\binom{3t-3}{t-2}}^2 \frac{t^2 - 8t + 6}{(t-1)^2},$$

where n = 2t. The right hand side is negative if and only if $2 \le t \le 7$, i.e. if and only if n = 4, 6, 8, 10, 12, 14. In these cases, the quadratic equation has no integral solution and so nonimmersion in codimension 2n - 4 = d/2 is also established. This completes the proof of the proposition.

REFERENCES

(1) A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.

(2) FRED. J. CONNELL, Nonimmersions of low dimensional flag manifolds, Proc. Amer. Math. Soc. 44 (1974), 474-478.

(3) M. HIRSCH, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.

(4) W. V. D. HODGE and D. PEDOE, Methods of algebraic geometry, Vol. II (Cambridge Univ. Press, New York, 1952).

(5) S. G. HOGGAR, A nonembedding result for complex Grassmann manifolds, Proc. Edinburgh Math. Soc. 17 (1970), 149–153.

(6) S. A. ILORI, Nonimmersions of flag manifolds, Proc. Amer. Math. Soc. 61 (1976), 141-144.

(7) A. W. INGLETON, Tangent flag bundles and generalized Jacobian varieties. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8 (1969), 323-329, 505-510.

Department of Mathematics University of Ibadan Ibadan, Nigeria