ON THE NUMBER OF CRITICAL POINTS OF A C^1 FUNCTION ON THE SPHERE

RAFFAELE CHIAPPINELLI

Dipartimento di Matematica, Universita' di Siena, Via del Capitano 15, 53100 Siena, Italy e-mail:chiappinelli@unisi.it To my mother, Isa

To my motiler, isa

(Received 16 October, 1998)

Abstract. For a C^1 function $f : \mathbb{R}^n \to \mathbb{R}$ $(n \ge 2)$, we consider the least number k of distinct critical points that f must possess when restricted to the sphere $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$. Clearly $k \ge 2$ (for f attains its absolute minimum and maximum on S), and a result of Lusternik and Schnirelmann establishes that k = n if f is even. Here we prove that k = n if, for a given orthonormal system (e_i) , $\max_{S \cap V_i} f < \min_{S \cap V_i} f$, for all $i = 1, \ldots n - 1$, where V_i is the subspace spanned by e_1, \ldots, e_i and V_i^{\perp} its orthogonal complement. It is shown that this criterion is satisfied by suitably restricted perturbations of quadratic forms having n distinct eigenvalues.

1991 Mathematics Subject Classification. 26BXX, 47H15, 57R70, 58E05.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function, and let $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit sphere in \mathbb{R}^n ; we denote by (x, y) the usual scalar product of $x, y \in \mathbb{R}^n$ and by $||x|| = (x, x)^{1/2}$ the euclidian norm. If f is *even*, i.e. f(-x) = f(x) for $x \in \mathbb{R}^n$, then according to a famous result of Lusternik and Schnirelmann [4] - reviewed, for example, in the surveys [7], [8], [9] and [11] - $f_S \equiv f|_S$ has at least n distinct (pairs of) critical points, i.e. n points $x_i \in S$ at which the derivative $f'_S(x_i) = 0$ or equivalently $\nabla f(x_i) = \lambda_i x_i, \ \lambda_i = (\nabla f(x_i), x_i)$, with ∇f denoting the gradient of f. (Note that critical points occur in antipodal pairs (x, -x) because of the evenness of f.) Moreover if $(e_i)_{1 \leq i \leq n}$ is an orthonormal basis of \mathbb{R}^n , if $V_i = [e_1, \ldots, e_i]$ denotes the subspace spanned by e_1, \ldots, e_i $(1 \leq i \leq n)$ and V_i^{\perp} the subspace orthogonal to V_i , then the corresponding critical values $c_i = f(x_i)$ satisfy

$$\beta_{i-1} \le c_i \le \alpha_i \qquad (1 \le i \le n) \tag{1.1}$$

where

$$\alpha_i = \max_{S \cap V_i} f, \qquad \beta_{i-1} = \min_{S \cap V_{i-1}^\perp} f \tag{1.2}$$

with the understanding that $\beta_0 = \min_S f$ (while $\alpha_n = \max_S f$). The estimate (1.1) follows easily by the minimax expression of the c_i , which will be recalled later.

It is natural to ask what can be said for an $f \in C^1$ which is *not* even. In this note we use the same ideas introduced by Lusternik and Schnirelmann, and later extended by Krasnoselskii [3], Palais [6], Schwartz [10], Rabinowitz [7, 8, 9], to give a simple criterion for the existence of *n* distinct critical points of a general $f \in C^1$.

THEOREM 1. Let $f \in C^1(\mathbb{R}^n)$, n > 2, let $(e_i)_{1 \le i \le n}$ be an orthonormal basis of \mathbb{R}^n , and let α_i , β_i be defined as in (1.2). If $\alpha_i < \beta_i$ for $1 \le i \le n - 1$, then f_S has n distinct critical values c_i $(1 \le i \le n)$, which moreover satisfy the inequality (1.1).

We can say this in other terms: if the *n* subintervals $J_i \equiv [\beta_{i-1}, \alpha_i]$ (i = 1, ..., n) of the range $[\beta_0, \alpha_n]$ of *f* do not overlap, then *f* has (at least) *n* critical values, one in each J_i .

Theorem 1 is an easy consequence of the following result.

THEOREM 2. Let $f \in C^1(\mathbb{R}^n)$ and let V, W be complementary subspaces of \mathbb{R}^n so that $\mathbb{R}^n = V \oplus W$. Set

$$\alpha = \max_{S \cap W} f, \qquad \beta = \min_{S \cap W} f. \tag{1.3}$$

Then if $\alpha < \beta$, f_S has a critical value $c \le \alpha$. Moreover, given any subspace V_0 of V, we have $c \ge \theta \equiv \min_{S \cap (V_0 \oplus W)} f$.

Proof. Set

$$c = \inf_{F \in \mathcal{F}} \max_{x \in F} f(x) \tag{1.4}$$

where

 $\mathcal{F} = \{F \subset S \setminus W : F \text{ compact, } Cat(F; S \setminus W) > 1\}$ (1.5)

and $\operatorname{Cat}(F; S \setminus W)$ denotes the Lusternik-Schnirelmann category of the set F in $S \setminus W$. That is to say, \mathcal{F} is the family of all compact subsets of $S \setminus W$ that are not contractible to a point by a continuous deformation in $S \setminus W$.

To prove that c is a critical value having the required properties, we first use the following two facts, proofs of which can be found, for example, in [3, Chapter 6, Lemma 2.6 and 2.7].

(i) S ∩ V ∈ F;
(ii) If F ∈ F, then F ∩ (V₀ ⊕ W) ≠ Ø for any subspace V₀ of V.

Using (i) and (ii), the estimate $\theta \le c \le \alpha$ follows readily from the definitions. It remains to show that *c* is critical. We argue by contradiction, using the standard deformation technique due to Palais [6], Rabinowitz [8, 9] et al. (though for our purposes, the simpler version given in [7] would suffice). Indeed if not, then there would be a (continuous) deformation $H : [0, 1] \times S \rightarrow S$ with the following properties:

(a) $f(H(t, x)) \le f(x), \forall (t, x) \in [0, 1] \times S;$

(b) there exists an ϵ with $0 < \epsilon < \beta - \alpha$ such that $f(x) \le c + \epsilon$ implies that $f(H(1, x) \le c - \epsilon)$.

Let $F_{\epsilon} \in \mathcal{F}$ be such that $f(x) < c + \epsilon$ for all $x \in F_{\epsilon}$; then by (a) we have

$$f(H(t, x)) \le f(x) < c + \epsilon < \beta \qquad ((t, x) \in [0, 1] \times F_{\epsilon}),$$

which implies that $H(t, x) \notin W$, for all $(t, x) \in [0, 1] \times F_{\epsilon}$. Therefore *H* deforms F_{ϵ} in $S \setminus W$ to the set $G_{\epsilon} \equiv \{H(1, x) : x \in F_{\epsilon}\}$, and since the category of a set does not

decrease under deformations, it follows that $G_{\epsilon} \in \mathcal{F}$. Also by (b), $\max_{G_{\epsilon}} f \leq c - \epsilon$ and so $c = \inf_{\tau} \max_{G_{\epsilon}} f \leq c - \epsilon$, a contradiction.

Theorem 1 follows from Theorem 2 on taking, for $2 \le i \le n-1$, $V = V_i = [e_1, \ldots, e_i]$, $W = V_i^{\perp}$ and $V_0 = [e_i]$, so that $V_0 \oplus W = V_{i-1}^{\perp}$ and $\theta = \beta_{i-1}$. The corresponding critical values c_i are thus defined by

$$c_i = \inf_{F \in \mathcal{F}_i} \max_{x \in F} f(x) \tag{1.6}$$

where

$$\mathcal{F}_{i} = \{F \subset S \setminus V_{i}^{\perp} : F \text{ compact, } \operatorname{Cat}(F; S \setminus V_{i}^{\perp}) > 1\}.$$
(1.7)

For i = 1 and i = n, the existence of a critical value in $[\beta_0, \alpha_1]$ and $[\beta_{n-1}, \alpha_n]$, respectively, is trivial since $\beta_0 = \min_S f$ and $\alpha_n = \max_S f$. However, the conditions $\alpha_1 < \beta_1$ and $\alpha_{n-1} < \beta_{n-1}$ ensure that β_0 and α_n "do not mix" with the remaining c_i 's. Let us further remark that $\alpha_n = c_n$, with c_n defined by (1.6), (1.7) for i = n. Indeed, it is easily seen that $\mathcal{F}_n = \{S\}$; i.e. the only subset of S which is not contractible to a point in S is S itself. We are unable to prove in general the corresponding equality $\beta_0 = c_1$.

REMARK 1. More generally, f_s has (at least) s + 1 distinct critical values, where s is the total number of indices $i \in \{1, ..., n-1\}$ such that $\alpha_i < \beta_i$ (of course, the case s = 0 is included). It remains an open question as to what properties (if any) the numbers c_i - which are well-defined anyway by the formulas (1.6),(1.7) - have in general and what happens in particular when $c_i = c_{i+1} = \cdots = c_{i+p}$, for some i and p > 0. One obvious remark is that if the stronger condition

$$(\min_{S \cap V_{i-1}^{\perp}} f =) \beta_{i-1} = \alpha_i = \alpha_{i+1} = \cdots = \alpha_{i+p} (= \max_{S \cap V_{i+p}} f)$$

holds, then f is constant on $S \cap [e_i, \ldots, e_{i+p}]$, and so there is a p-dimensional continuum of critical points of f_S corresponding to this constant value.

REMARK 2. Returning to Theorem 1 - whose assumptions imply *a prior*i that the c_i 's are all distinct - an independent open problem is to see how many critical points of f_S correspond to the same critical value c_i . In analogy with the case in which $f(x) = \frac{1}{2}(Ax, x)$ is the quadratic form associated with a symmetric $n \times n$ matrix A, or more generally the case in which f is an even function, one expects that there are at least two.

REMARK 3. In case f is even, f_S possesses at least n distinct (pairs of) critical points. They are associated with the critical values $c_i = \inf_{Z_i} \max_{F} f$ where

$$\mathcal{Z}_i = \{F \subset S : F \text{ compact, symmetric, } \gamma(F) \ge i\},\$$

 $\gamma(F)$ denoting the *genus* of F; for this matter, see in particular Rabinowitz [7, 8, 9] and Szulkin [11]. (In the original work of Lusternik and Schnirelmann [4], the c_i 's were defined via the category of sets in the projective space obtained by identifying

RAFFAELE CHIAPPINELLI

antipodal points of *S*; that the two approaches are equivalent was proved in [7].) The estimate $\beta_{i-1} \leq c_i \leq \alpha_i$ (i = 1, ..., n - 1) mentioned in the Introduction follows easily from the properties of γ ; in particular the following two:

(i) $\gamma(S \cap V) = i$ if *V* is a subspace of dimension *i*; (ii) if $F \in \mathcal{F}_i$ and dimW < i, then $F \cap W^{\perp} \neq \emptyset$.

REMARK 4. A more general version of Theorem 2 is given in [1] (see also [2]), where it is used to prove the existence of normed eigenfunctions for a class of semilinear elliptic problems. It was suggested by a result of Krasnoselskii ([3, Chapter 6, Theorem 2.2]) and provides a sort of constrained version of Rabinowitz' Saddle Point Theorem ([9, Theorem 4.6]; see also [5, Theorem 4.7]).

REMARK 5. The above results hold unaltered if S is replaced by $rS = \{x \in \mathbb{R}^n : ||x|| = r\}$ or more generally by a C^1 submanifold of \mathbb{R}^n that is *sphere-like*; i.e. diffeomorphic to S via the radial projection $p(x) = x/||x|| \ (x \neq 0)$.

One disadvantage of Theorem 1 is that it relates the existence of critical points of f to its behaviour along a given orthonormal system. Sometimes however, the choice of this system is transparent from the problem itself, as shown by the following example.

PPROPOSITION 1. Let $A = (a_{ij})$ be a symmetric $n \times n$ matrix having n simple eigenvalues $\lambda_1^0 < \lambda_2^0 < \ldots < \lambda_n^0$, and let

$$d = \min\{\lambda_{i+1}^0 - \lambda_i^0 : 1 \le i \le n - 1\}.$$

Also, let $F \in C(\mathbb{R}^n, \mathbb{R}^n)$ be a gradient vector field such that F(0) = 0 and, for some $p, q \in \mathbb{R}$,

$$p \le \frac{(F(x), x)}{(x, x)} \le q$$
 $(0 < ||x|| \le 1).$ (H)

If q - p < d, then A + F has n distinct norm-one eigenvectors; i.e. n points $x_i \in S$ such that

$$Ax_i + F(x_i) = \lambda_i x_i.$$

Proof. We use Theorem 1, taking as orthonormal basis the normalized eigenvectors e_i of A, $Ae_i = \lambda_i^0 e_i$. Then for i = 1, ..., n we have

$$\lambda_i^0 = \max_{x \in S \cap V_i} (Ax, x) = \min_{x \in S \cap V_{i-1}^{\perp}} (Ax, x).$$
(1.8)

Set
$$f_0(x) = \frac{1}{2}(Ax, x)$$
 and $f(x) = f_0(x) + h(x)$, where

$$h(x) = \int_0^1 (F(tx), x) dt$$
(1.9)

is the primitive of F vanishing at x = 0; thus $\nabla f(x) = Ax + F(x)$, for $x \in \mathbb{R}^n$. Then using (1.9) and (H), it follows easily that for $x \in S$ we have

$$\frac{1}{2}p \le h(x) \le \frac{1}{2}q.$$
(1.10)

Given $1 \le i \le n - 1$, (1.8) and (1.10) imply that

$$\begin{cases} f(x) \le \frac{1}{2}(\lambda_i^0 + q), & x \in S \cap V_i, \\ f(x) \ge \frac{1}{2}(\lambda_{i+1}^0 + p), & x \in S \cap V_i^{\perp}, \end{cases}$$

and the result follows, since by assumption $\lambda_i^0 + q < \lambda_{i+1}^0 + p$. It also follows from Theorem 1 that

$$\lambda_i^0 + p \le c_i = f(x_i) \le \lambda_i^0 + q \qquad (1 \le i \le n).$$
(1.11)

REFERENCES

1. R. Chiappinelli, Bounds on eigenvalues of nonlinearly perturbed compact selfadjoint operators, *Panamer. Math. J.* 8 (1998), No. 2, 1–29.

2. R. Chiappinelli, Constrained critical points and eigenvalue approximation for semilinear elliptic operators, *Forum Math.* 11 (1999), 459–481.

3. M. A. Krasnoselskii, *Topological methods in the theory of nonlinear integral equations* (Pergamon Press, 1964).

4. L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problemes variationnels (Hermann, 1934).

5. J. Mawhin and M. Willem, *Critical point theory and Hamiltonian systems* (Springer-Verlag, 1989).

6. R. Palais, Critical point theory and the minimax principle, in *Global Analysis*, Proc. Symp. Pure Math. Vol. 15 (Amer. Math. Soc., 1970), 185–212.

7. P. Rabinowitz, Some aspects of nonlinear eigenvalue problems, *Rocky Mountain J. Math.* **3** (1973), 161–202.

8. P. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in *Eigenvalues of nonlinear problems* (G. Prodi, ed.) (Cremonese, 1974), 141–195.

9. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series Math. Vol. 65 (Amer. Math. Soc., 1986).

10. J. T. Schwartz, Generalizing the Lusternik-Schnirelmann theory of critical points, *Comm. Pure Appl. Math.* 17 (1964), 307–315.

11. A. Szulkin, Critical point theory of Lusternik-Schnirelmann type and applications to partial differential equations, in *Minimax results of Lusternik-Schnirelmann type and applications*, Proc. NATO ASI (Les Presses de l'Université de Montréal, 1989), 35–96.

287