
ON THE NUMBER OF CRITICAL POINTS OF A C1

FUNCTION ON THE SPHERE

RAFFAELE CHIAPPINELLI
Dipartimento di Matematica, Universita' di Siena, Via del Capitano 15, 53100 Siena, Italy

e-mail:chiappinelli@unisi.it

To my mother, Isa

(Received 16 October, 1998)

Abstract. For a C1 function f : Rn! R �n � 2�, we consider the least number
k of distinct critical points that f must possess when restricted to the sphere
S � fx 2 Rn : kxk � 1g. Clearly k � 2 (for f attains its absolute minimum and max-
imum on S), and a result of Lusternik and Schnirelmann establishes that k � n if f is
even. Here we prove that k � n if, for a given orthonormal system (ei),
max
S\Vi

f < min
S\V?

i

f, for all i � 1; . . . nÿ 1, where Vi is the subspace spanned by e1; . . . ; ei

and V?i its orthogonal complement. It is shown that this criterion is satis®ed by
suitably restricted perturbations of quadratic forms having n distinct eigenvalues.
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Let f : Rn! R be a C1 function, and let S � fx 2 Rn : kxk � 1g be the unit
sphere in Rn; we denote by �x; y� the usual scalar product of x; y 2 Rn and by
kxk � �x; x�1=2 the euclidian norm. If f is even, i.e. f �ÿx� � f �x� for x 2 Rn, then
according to a famous result of Lusternik and Schnirelmann [4] - reviewed, for
example, in the surveys [7], [8], [9] and [11] - fS � f jS has at least n distinct (pairs of)
critical points, i.e. n points xi 2 S at which the derivative f 0S�xi� � 0 or equivalently
rf �xi� � �ixi; �i � �rf �xi�; xi�; with rf denoting the gradient of f. (Note that cri-
tical points occur in antipodal pairs �x;ÿx� because of the evenness of f .) Moreover
if �ei�1�i�n is an orthonormal basis of Rn, if Vi � �e1; . . . ; ei� denotes the subspace
spanned by e1; . . . ; ei �1 � i � n� and V?i the subspace orthogonal to Vi, then the
corresponding critical values ci � f �xi� satisfy

�iÿ1 � ci � �i �1 � i � n� �1:1�
where

�i � max
S\Vi

f; �iÿ1 � min
S\V?

iÿ1
f �1:2�

with the understanding that �0 � min
S

f (while �n � max
S

f �. The estimate (1.1) fol-

lows easily by the minimax expression of the ci, which will be recalled later.

It is natural to ask what can be said for an f 2 C1 which is not even. In this note
we use the same ideas introduced by Lusternik and Schnirelmann, and later exten-
ded by Krasnoselskii [3], Palais [6], Schwartz [10], Rabinowitz [7, 8, 9], to give a
simple criterion for the existence of n distinct critical points of a general f 2 C1.
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Theorem 1. Let f 2 C1�Rn�, n > 2, let �ei�1�i�n be an orthonormal basis of Rn, and
let �i, �i be de®ned as in (1.2). If �i < �i for 1 � i � nÿ 1, then fS has n distinct cri-
tical values ci �1 � i � n�, which moreover satisfy the inequality (1.1).

We can say this in other terms: if the n subintervals Ji � ��iÿ1; �i� �i � 1; . . . ; n�
of the range ��0; �n� of f do not overlap, then f has (at least) n critical values, one in
each Ji.

Theorem 1 is an easy consequence of the following result.

Theorem 2. Let f 2 C1�Rn� and let V;W be complementary subspaces of Rn so
that Rn � V�W. Set

� � max
S\V

f; � � min
S\W

f: �1:3�

Then if � < �, fS has a critical value c � �. Moreover, given any subspace V0 of V, we
have c � � � min

S\�V0�W�
f.

Proof. Set

c � inf
F2F

max
x2F

f �x� �1:4�

where

F � fF � S nW : F compact; Cat�F;S nW� > 1g �1:5�

and Cat�F;S nW� denotes the Lusternik-Schnirelmann category of the set F in
S nW. That is to say, F is the family of all compact subsets of S nW that are not
contractible to a point by a continuous deformation in S nW.

To prove that c is a critical value having the required properties, we ®rst use the
following two facts, proofs of which can be found, for example, in [3, Chapter 6,
Lemma 2.6 and 2.7].

(i) S \ V 2 F ;
(ii) If F 2 F , then F \ �V0 �W� 6� ; for any subspace V0 of V.

Using (i) and (ii), the estimate � � c � � follows readily from the de®nitions. It
remains to show that c is critical. We argue by contradiction, using the standard
deformation technique due to Palais [6], Rabinowitz [8, 9] et al. (though for our
purposes, the simpler version given in [7] would su�ce). Indeed if not, then there
would be a (continuous) deformationH : �0; 1� � S! Swith the following properties:

(a) f �H�t; x�� � f �x�; 8�t; x� 2 �0; 1� � S;
(b) there exists an � with 0 < � < �ÿ � such that f �x� � c� � implies that

f �H�1; x� � cÿ �.

Let F� 2 F be such that f �x� < c� � for all x 2 F�; then by (a) we have

f �H�t; x�� � f �x� < c� � < � ��t; x� 2 �0; 1� � F��;

which implies that H�t; x� =2W, for all �t; x� 2 �0; 1� � F�. Therefore H deforms F� in
S nW to the set G� � fH�1; x� : x 2 F�g, and since the category of a set does not
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decrease under deformations, it follows that G� 2 F . Also by (b), max
G�

f � cÿ � and
so c � inf

F
max

F
f � cÿ �, a contradiction.

Theorem 1 follows from Theorem 2 on taking, for 2 � i � nÿ 1,
V � Vi � �e1; . . . ; ei�, W � V?i and V0 � �ei�, so that V0 �W � V?iÿ1 and � � �iÿ1.
The corresponding critical values ci are thus de®ned by

ci � inf
F2F i

max
x2F

f �x� �1:6�

where

F i � fF � S n V?i : F compact; Cat�F;S n V?i � > 1g: �1:7�

For i � 1 and i � n, the existence of a critical value in ��0; �1� and ��nÿ1; �n�,
respectively, is trivial since �0 � min

S
f and �n � max

S
f. However, the conditions

�1 < �1 and �nÿ1 < �nÿ1 ensure that �0 and �n ``do not mix'' with the remaining ci's.
Let us further remark that �n � cn, with cn de®ned by (1.6), (1.7) for i � n. Indeed, it
is easily seen that F n � fSg; i.e. the only subset of S which is not contractible to a
point in S is S itself. We are unable to prove in general the corresponding equality
�0 � c1.

Remark 1. More generally, fS has (at least) s� 1 distinct critical values, where
s is the total number of indices i 2 f1; . . . ; nÿ 1g such that �i < �i (of course, the
case s � 0 is included). It remains an open question as to what properties (if any) the
numbers ci - which are well-de®ned anyway by the formulas (1.6),(1.7) - have in
general and what happens in particular when ci � ci�1 � � � � � ci�p, for some i and
p > 0. One obvious remark is that if the stronger condition

� min
S\V?

iÿ1
f �� �iÿ1 � �i � �i�1 � � � � � �i�p �� max

S\Vi�p
f �

holds, then f is constant on S \ �ei; . . . ei�p�, and so there is a p-dimensional con-
tinuum of critical points of fS corresponding to this constant value.

Remark 2. Returning to Theorem 1 - whose assumptions imply a priori that
the ci's are all distinct - an independent open problem is to see how many critical
points of fS correspond to the same critical value ci. In analogy with the case in
which f �x� � 1

2 �Ax; x� is the quadratic form associated with a symmetric n� n
matrix A, or more generally the case in which f is an even function, one expects that
there are at least two.

Remark 3. In case f is even, fS possesses at least n distinct (pairs of) critical
points. They are associated with the critical values ci � inf

Zi

max
F

f where

Zi � fF � S : F compact; symmetric; �F� � ig;

�F� denoting the genus of F; for this matter, see in particular Rabinowitz [7, 8, 9]
and Szulkin [11]. (In the original work of Lusternik and Schnirelmann [4], the ci's
were de®ned via the category of sets in the projective space obtained by identifying
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antipodal points of S; that the two approaches are equivalent was proved in [7].) The
estimate �iÿ1 � ci � �i �i � 1; . . . ; nÿ 1� mentioned in the Introduction follows
easily from the properties of ; in particular the following two:

(i) �S \ V� � i if V is a subspace of dimension i;
(ii) if F 2 F i and dimW < i, then F \W? 6� ;.

Remark 4. A more general version of Theorem 2 is given in [1] (see also [2]),
where it is used to prove the existence of normed eigenfunctions for a class of semi-
linear elliptic problems. It was suggested by a result of Krasnoselskii ([3, Chapter 6,
Theorem 2.2]) and provides a sort of constrained version of Rabinowitz' Saddle
Point Theorem ([9, Theorem 4.6]; see also [5, Theorem 4.7]).

Remark 5. The above results hold unaltered if S is replaced by
rS � fx 2 Rn : kxk � rg or more generally by a C1 submanifold of Rn that is sphere-
like; i.e. di�eomorphic to S via the radial projection p�x� � x=kxk �x 6� 0�.

One disadvantage of Theorem 1 is that it relates the existence of critical points
of f to its behaviour along a given orthonormal system. Sometimes however, the
choice of this system is transparent from the problem itself, as shown by the fol-
lowing example.

Pproposition 1. Let A � �aij� be a symmetric n� n matrix having n simple
eigenvalues �01 < �02 < . . . < �0n, and let

d � minf�0i�1 ÿ �0i : 1 � i � nÿ 1g:

Also, let F 2 C�Rn;Rn� be a gradient vector ®eld such that F�0� � 0 and, for some
p; q 2 R,

p � �F�x�; x��x; x� � q �0 < kxk � 1�: �H�

If qÿ p < d, then A� F has n distinct norm-one eigenvectors; i.e. n points xi 2 S such
that

Axi � F�xi� � �ixi:

Proof. We use Theorem 1, taking as orthonormal basis the normalized eigen-
vectors ei of A, Aei � �0i ei. Then for i � 1; . . . ; n we have

�0i � max
x2S\Vi

�Ax; x� � min
x2S\V?

iÿ1
�Ax; x�: �1:8�

Set f0�x� � 1
2 �Ax; x� and f �x� � f0�x� � h�x�, where

h�x� �
Z 1

0

�F�tx�; x� dt �1:9�

is the primitive of F vanishing at x � 0; thus rf �x� � Ax� F�x�, for x 2 Rn. Then
using (1.9) and (H), it follows easily that for x 2 S we have
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1

2
p � h�x� � 1

2
q: �1:10�

Given 1 � i � nÿ 1, (1.8) and (1.10) imply that

f �x� � 1
2 ��0i � q�; x 2 S \ Vi;

f �x� � 1
2 ��0i�1 � p�; x 2 S \ V?i ;

(

and the result follows, since by assumption �0i � q < �0i�1 � p. It also follows from
Theorem 1 that

�0i � p � ci � f �xi� � �0i � q �1 � i � n�: �1:11�
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