KRONEGKER PRODUCTS AND LOCAL JOINS OF GRAPHS

M. FARZAN AND D. A. WALLER

1. Introduction. When studying the category \mathscr{G} raph of finite graphs and their morphisms, we can exploit the fact that this category has products, [we define these ideas in detail in § 2]. This categorical product of graphs is usually called their Kronecker product, though it has been approached by various authors in various ways and under various names, including tensor product, cardinal product, conjunction and of course categorical product (see for example $[\mathbf{6 ; 7 ; 1 1 ; 1 4 ; 1 7}$ and 23]).

Another 'product' of graphs, the lexicographic product, although not 'categorically correct', has been investigated by several authors. In this paper we shall show that the lexicographic product can be studied using some methods which are appropriate to the Kronecker product. The coordination of approach thus permitted, is mainly due to the 'quotient structure' of the projections of these two products onto their factors, which is shown to have nice functorial properties.

In particular, the 'local structure' of these projections is preserved under pullbacks. The abstraction of this property leads naturally to the other main object of study in this paper, viz. the local join of graphs.
2. The Kronecker product of graphs. We are primarily concerned throughout this paper with finite graphs without loops or multiple edges.

Notation. $V(G)$ and $E(G)$ denote as usual the vertex set and edge set of a graph $G, v \sim_{G} w$ (or $v \sim w$ if no ambiguity) denotes adjacency of the vertices v, w, i.e. there is an edge (denoted $[v, w]$) joining v to w in G. \bar{G} denotes the complement of the graph G. Any notation not explained will be standard (see, for example, Harary [10]).

A morphism (i.e. a graph-homomorphism) is a function $f: V(G) \rightarrow V(H)$ which preserves adjacency, i.e. $v \sim_{G} w$ implies that $f(v) \sim_{H} f(w)$.
\mathscr{G} raph denotes the category of finite graphs and their morphisms.
\mathscr{S} et denotes the category of sets and set-functions.
We shall use only elementary ideas concerning categories and functors, as given in standard books, for example [13].

We now define the Kronecker product of graphs as a binary operation. In any product of graphs we shall denote a product vertex $\left(v_{1}, v_{2}\right)$ by $v_{1} v_{2}$.

Definition. The Kronecker product $G_{1} \wedge G_{2}$ of the graphs G_{1} and G_{2} has

Received March 31, 1975 and in revised form, June 22, 1976.
vertex set $V\left(G_{1} \wedge G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ with adjacency in $G_{1} \wedge G_{2}$ given by $v_{1} v_{2} \sim w_{1} w_{2}$ if and only if $v_{1} \sim_{G_{1}} w_{1}$ and $v_{2} \sim_{G_{2}} w_{2}$.

The projection maps $p_{i}: G_{1} \wedge G_{2} \rightarrow G_{i}(i=1,2)$ are given by $v_{1} v_{2} \mapsto v_{1}$ and are in fact graph-epimorphisms, with the property that both edges [$v_{1} v_{2}, w_{1} w_{2}$] and $\left[v_{1} w_{2}, w_{1} v_{2}\right]$ project to the corresponding edge $\left[v_{i}, w_{i}\right]$ in $G_{i},(i=1,2)$.

Example. The Kronecker product of the circuit graph C_{n} and complete graph K_{2} is $C_{2 n}$ if n is odd and a disjoint union C_{n} II C_{n} if n is even.

The Kronecker product of any two bipartite graphs is disconnected. We take as our basic result:
2.1 Theorem. $K_{m, n} \wedge K_{p, q}=K_{m p, n q}$ II $K_{m q, n p}$.

Proof. Let \bar{K}_{m}, \bar{K}_{n} be the two maximal discrete induced subgraphs of $K_{m, n}$, and \bar{K}_{p}, \bar{K}_{q} those of $K_{p, q}$. Thus $V\left(K_{m, n} \wedge K_{p, q}\right)$ can be conveniently partitioned as $\bar{K}_{m} \wedge \bar{K}_{p}, \bar{K}_{m} \wedge \bar{K}_{q}, \bar{K}_{n} \wedge \bar{K}_{p}$ and $\bar{K}_{n} \wedge \bar{K}_{q}$, i.e. $\bar{K}_{m p}, \bar{K}_{m q}, \bar{K}_{n p}$ and $\bar{K}_{n q}$ respectively.

The given edges between \bar{K}_{m} and \bar{K}_{n} 'multiply' those between \bar{K}_{p} and \bar{K}_{q} according to the definition of Kronecker product, to give (all) joining lines between $\bar{K}_{m p}$ and $\bar{K}_{n q}$ and between $\bar{K}_{m q}$ and $\bar{K}_{n p}$ as indicated by the following figure:

We can apply Theorem 2.1 using the following obvious lemma to give a short proof (Proposition 2.3 below) of Weichsel's Theorem 1 [23]:
2.2 Lemma. Suppose $x, y \in V\left(G_{1} \wedge G_{2}\right)$. If there is a path of length l_{i} from $p_{i} x$ to $p_{i} y$ in $G_{i}(i=1,2)$ such that $l_{1}-l_{2}$ is even, then there is a path from x to y in $G_{1} \wedge G_{2}$.
2.3 Proposition. The Kronecker product $G_{1} \wedge G_{2}$ of two connected graphs is disconnected if and only if both are bipartite.

Proof. Let $v_{1} v_{2}, w_{1} w_{2}$ be vertices of $G_{1} \wedge G_{2}$. If G_{1} is not bipartite then there exists both even and odd paths between ν_{1} and w_{1} in G_{1}.

Given a path from v_{2} to w_{2} in G_{2}, we therefore choose a path of the same 'parity' in G_{1}, and then apply Lemma 2.2 to produce a path from $v_{1} v_{2}$ to $w_{1} w_{2}$, as required.

Conversely, if both G_{1} and G_{2} are bipartite, we can apply Theorem 2.1 to the complete bipartite graphs $K_{m, n}$ and $K_{p, q}$, say, of which G_{1}, G_{2} are spanning subgraphs. $G_{1} \wedge G_{2}$ is clearly a spanning subgraph of $K_{m, n} \wedge K_{p, q}$ and so must be disconnected.
3. Local joins. Graphs indexed by a graph X were introduced by Sabidussi [15] and called X-joins. This concept (especially its particular case, the 'lexicographic product' of graphs) has subsequently received much attention, (see for example $[4 ; 12 ; 15 ; 18$ and 19]).

Some of our results on local joins in this and the following sections were announced in [7].

With a view to studying the functorial properties of local joins in § 4, we begin as follows.

By a projection $p: G \rightarrow X$ of a graph G onto a graph X is meant a map sending vertices to vertices, such that
(i) if $p(v)=p(w)$, then $p([v, w])$ is the vertex $p(v)$; and
(ii) if $p(v) \neq p(w)$, then $p([v, w])$ is the edge $[p(v), p(w)]$.

Thus a projection is a simplicial map (not necessarily a morphism in $\mathscr{G}_{\mathrm{raph}}$). The preimage $p^{-1}(x)$ of a vertex $x \in V(X)$ is called the fibre over x.

A projection $p: G \rightarrow X$ is called a local join if
(i) for each vertex x in X, the fibre over x is an induced subgraph of G; and
(ii) if $[x, y]$ is an edge of X, then $p^{-1}([x, y])$ consists of edges between each vertex of $p^{-1}(x)$ and each vertex of $p^{-1}(y)$.

Note. It is implicit in the definition of projection that if x and y are not joined by an edge in X, then there can be no edges between $p^{-1}(x)$ and $p^{-1}(y)$.

Recall that a graph G is called a join, $G_{1} * G_{2}$ if each vertex of G_{1} is joined to each vertex of G_{2}. There is then an obvious projection $p: G \rightarrow K_{2}$ with $p\left(G_{i}\right)=v_{i},(i=1,2)$, and p sending each 'joining edge' to the edge $\left[v_{1}, v_{2}\right]$.

A local join occurs whenever a graph projection has this property over each edge of X.

Some basic n-ary operations on graphs, viz. disjoint union II and (n-fold) join * (some call it sum; see, for example, $[\mathbf{2 0}]$) can be coordinated as both are examples of local joins:

1. There is a natural projection $\coprod_{i=1}^{n} G_{i} \rightarrow \bar{K}_{n}$, which is a local join with the connected components G_{i} as fibres.
2. There is a natural projection $*_{i=1}^{n} H_{i} \rightarrow K_{n}$ which is a local join with the H_{i} as fibres. In particular, the complete n-partite graph $K_{r_{1}, \tau_{2}, \ldots, r_{n}}$ has a natural structure as an n-fold join, with discrete fibres, projecting to K_{n}.
3. The lexicographic product (composition graph) $G[H]$, a binary operation on graphs (see Sabidussi [15]), is a local join projecting to G with all fibres isomorphic to H. If H has m vertices, then for each edge e of $G, p^{-1} e$ consists of the edges of the complete bipartite graph $K_{m, m}$. In particular $K_{n}\left[\bar{K}_{m}\right]=$ $K_{m, m, \ldots m}(n$-fold).

Decompositions of graphs with respect to local join are best viewed in terms of the binary operation of composition of the projections:
3.1 Proposition. The composite of local joins is a local join. That is, if $p_{1}: W \rightarrow X, p_{2}: X \rightarrow Y$ are local joins then so is $p_{2} \circ p_{1}: W \rightarrow Y$.

Proof. (i) If $y \in V(Y)$ then $\left(p_{2} \circ p_{1}\right)^{-1} y=p_{1}^{-1}\left(p_{2}^{-1}(y)\right)$.
(ii) If $\left[y_{1}, y_{2}\right] \in E(Y)$ then for each $x_{1} \in p_{2}^{-1} y_{1}, x_{2} \in p_{2}^{-1} y_{2}$ we have $\left[x_{1}, x_{2}\right] \in E(X)$ and so for each $w_{i} \in p_{1}^{-1} x_{i}=\left(p_{2} \circ p_{1}\right)^{-1} y_{i}, i=1,2$ we have $\left[w_{1}, w_{2}\right] \in E(W)$ and the result follows.
3.2 Corollary. (i) If $G \xrightarrow{p} X_{1} \amalg X_{2}$ is a local join then G is a disjoint union ($=p^{-1} X_{1}$ I $p^{-1} X_{2}$).
(ii) If $G \xrightarrow{p} X_{1} * X_{2}$ is a local join then $G=\left(p^{-1} X_{1}\right) * p^{-1}\left(X_{2}\right)$.

Proof. (i) Compose p with X_{1} I $X_{2} \rightarrow \bar{K}_{2}$ in 2.3.
(ii) Compose p with $X_{1} * X_{2} \xrightarrow{p} K_{2}$ in 2.3.
3.3 Corollary. In the special case of composition graphs we have
(i) $\left(\coprod_{i} G_{i}\right)[H]=\prod_{i}\left(G_{i}[H]\right)$, $\left(\begin{array}{c}* \\ i\end{array} G_{i}\right)[H]={ }_{i}^{*}\left(G_{i}[H]\right)$.
3.4 Proposition. The complement of a local join is a local join. In fact, complementation c gives the double commutative diagram:

For given p, the projection \bar{p} is given by $\bar{p}(v)=p(v)$ and $\bar{p}[v, w]=[p(v), p(w)]$, (defined if and only if $[v, w] \in E(\bar{G})$. Note that the fibres of the complement are the complements of the given fibres).

In particular, taking $X=K_{n}$ in 3.4 we have:

3.5 Corollary

$$
\overline{\underset{i=1}{n} G_{i}}=\coprod_{i=1}^{n} \overline{G_{i}} .
$$

The concept of local join is useful when the vertex set of a graph can be partitioned into subsets $V_{1}, V_{2}, \ldots, V_{p}$ such that there are either no joining lines or all possible joining lines between V_{i} and $V_{j}(i \neq j)$. For example, it clarifies the structure of any Kronecker product of complete k-partite graphs:
3.6 Theorem. $K_{n_{1}, n_{2}, \ldots, n_{r}} \wedge K_{m_{1}, m_{2}, \ldots, m_{s}}$ has the structure of a local join over $K_{r} \wedge K_{s}$, with the fibre $F_{i j}$ over the vertex $v_{i} v_{j}$ equal to $\bar{K}_{n i+m_{j}}(i=1,2, \ldots, r$; $j=1,2, \ldots, s$) and $F_{i j}$ being (fully) joined to F_{k} if and only if $i \neq k$ and $j \neq l$.

In particular, denoting a complete regular r-partite graph by $K_{r(n)}$ we relate Kronecker product to lexicographic product by
3.7 Corollary $K_{r(n)} \wedge K_{s(m)} \cong\left(K_{r} \wedge K_{s}\right)\left[\bar{K}_{m+n}\right]$.

These are particular cases of a more general relationship between Kronecker product and local joins:
3.8 Theorem. Given local joins $p_{i}: G_{i} \rightarrow X_{i}$ with fibre over $x_{i j}$ equal to $F_{i j}$ ($i=1,2$), the local join L over $X_{1} \wedge X_{2}$ whose fibre over $x_{1 j} x_{2 k}$ is $F_{1 j} \wedge F_{2 k}, j=$ $1,2, \ldots,\left|V\left(X_{1}\right)\right|, k=1,2, \ldots,\left|V\left(X_{2}\right)\right|$, is a spanning subgraph of $G_{1} \wedge G_{2}$.

Proof. $V\left(G_{1} \wedge G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)=\bigcup_{j} V\left(F_{1 j}\right) \times \bigcup_{k} V\left(F_{2 k}\right)=V(L)$. Clearly $G_{1} \wedge G_{2}$ will have $F_{1 j} \wedge F_{2 k}$ over $x_{1 j} x_{2 k}$. Also an edge $e_{i}=\left[x_{i j}, x_{i j^{\prime}}\right]$ in X_{i} indicates the presence of all joining lines between $F_{i j}$ and $F_{i j^{\prime}}$ in G_{i} ($i=1,2$). In L these multiply to give (all) joining lines between $F_{1 j} \wedge F_{2 k}$ and $F_{1 j^{\prime}} \wedge F_{2 j^{\prime}}$ (and between $F_{1 j} \wedge F_{2 j^{\prime}}$ and $F_{1 j^{\prime}} \wedge F_{2 k}$) as occur in $G_{1} \wedge G_{2}$.

Sketch of proof of Theorem 3.6. This induced subgraph is the whole of $G_{1} \wedge G_{2}$ if both G_{1} and G_{2} have discrete fibres, for then, these are the only edges L has. Thus Theorem 3.6 follows easily.
4. Functorial properties. The fact that the Kronecker product is the product in the category $\mathscr{G}_{\text {raph }}$ has some interesting consequences. The basic property is that if (G, H) denotes the set of all morphisms from G to H, then there is a natural bijection:

$$
\left(G, H_{1} \wedge H_{2}\right) \underset{\leftrightarrow}{\approx}\left(G, H_{1}\right) \times\left(G, H_{2}\right)
$$

[It is easily verified that the Kronecker product does have this property and that other 'graph-products' do not.]

The distributive law $G_{1} \wedge\left(G_{2} \amalg G_{3}\right)=\left(G_{1} \wedge G_{2}\right)$ II ($G_{1} \wedge G_{3}$) shows that for many problems it suffices to consider connected factors G_{i}. Morphisms $f_{i}: G_{i} \rightarrow H_{i},(i=1,2)$ induce a morphism $f_{1} \wedge f_{2}: G_{1} \wedge G_{2} \rightarrow H_{1} \wedge H_{2}$ defined by $v_{1} v_{2} \mapsto f_{1}\left(v_{1}\right) f_{2}\left(v_{2}\right)$. (Since \wedge is an associative binary operation, such constructions have an obvious n-ary analogue.)

Fixing the graph G_{2} here we obtain a unary operation:

$$
\left(\wedge G_{2}\right): G_{1} \mapsto G_{1} \wedge G_{2}
$$

and this gives:
4.1 Proposition. $\left(\wedge G_{2}\right): \mathscr{G}_{\text {raph }} \rightarrow \mathscr{G}_{\text {raph }}$ is a covariant functor.

Proof. A morphism $f: G_{1} \rightarrow H_{1}$ induces a morphism $f \wedge 1_{G_{2}}: G_{1} \wedge G_{2} \rightarrow$ $H_{1} \wedge G_{2}$ defined by $v_{1} v_{2} \mapsto f\left(v_{1}\right) v_{2}$. It is easily seen that this construction respects identity maps and composites.

The Kronecker double cover \widetilde{G} of a graph G has vertices $v_{i}, v_{i}{ }^{\prime}$ for each vertex v_{i} of G, with adjacency: $v_{i} \sim \sim_{G} v_{j}$ if and only if $v_{i} \sim v_{j}{ }^{\prime}$ and $v_{i}{ }^{\prime} \sim v_{j}$ in \widetilde{G}. (Such double covers are studied in [22]).

Clearly $\widetilde{G} \cong G \wedge K_{2}$, and the Kronecker product projection $p_{1}: G \wedge K_{2} \rightarrow$ G is the (2:1) covering projection (see $\S 19$ of Biggs [1]). For example, $K_{4} \wedge K_{2}$ is the 3 -cube Q_{3}.

As a result of 4.1, a morphism $f: G \rightarrow H$ induces a covering morphism $\tilde{f}: \widetilde{G} \rightarrow \tilde{H}$ of their double covers. In particular an automorphism a of G induces an automorphism \tilde{a} of \widetilde{G} defined by $v \mapsto a(v)$ and $v^{\prime} \mapsto(a(v))^{\prime}$.

For both this and the following section we need the concept of induced projection. All projections concerning Kronecker products are graph-morphisms, but not so those concerning local joins [not even the (non-categorical) lexicographic product].

Definition. If $p: G \rightarrow X$ is any projection [as in $\S 3$, i.e. not necessarily a
morphism], and $\alpha: Y \rightarrow X$ is any graph-morphism, then the graph induced by α from p is

$$
G_{\alpha}=\{(y, g): y \in Y, g \in G \text { and } \alpha(y)=p(g)\}
$$

[Notation. Here $g \in G$ denotes $g \in V(G) \cup E(G)$, i.e. g is either a vertex or an edge.]

The set of vertices and edges defined are joined in the obvious way, i.e.

$$
\begin{aligned}
& V\left(G_{\alpha}\right)=\{(y, g) \in V(Y) \times V(G): p(g)=\alpha(y)\} \text { with } \\
& \quad\left[(y, g) \sim\left(y^{\prime}, g^{\prime}\right)\right] \in E\left(G_{\alpha}\right) \text { if and only if } \\
& {\left[g, g^{\prime}\right] \in E(G) \text { and }\left[y, y^{\prime}\right] \in E(Y) .}
\end{aligned}
$$

G_{α} has an induced projection onto Y, given by $p_{\alpha}:(y, g) \mapsto y$.
When the projection p is a morphism, so is the induced projection p_{α}, and this construction is simply the 'pullback' in the category $\mathscr{G} r a p h$. The projection $\tilde{\alpha}: G_{\alpha} \rightarrow G$ given by $(y, g) \mapsto g(y \in V(Y) \amalg E(Y))$ is a morphism in any case.

In the case where $p_{1}: G_{1} \wedge G_{2} \rightarrow G_{1}$ is a Kronecker product projection, it is easily shown that the graph induced by $\alpha: Y \rightarrow G_{1}$ from $p_{1}: G_{1} \wedge G_{2} \rightarrow G_{1}$ is isomorphic to the Kronecker product $Y \wedge G_{2}$ (with its projection to Y).

Note in particular that if $\alpha: Y \rightarrow G_{1}$ is a subgraph-inclusion, then α induces $Y \wedge G_{2}$ which is isomorphic to the subgraph $\alpha(Y) \wedge G_{2}$ of $G_{1} \wedge G_{2}$.

Taking $Y=G_{1}$ and α an automorphism of G_{1}, we obtain an automorphism $\tilde{\alpha}: G_{1} \wedge G_{2} \rightarrow G_{1} \wedge G_{2}$ given by $v_{1} v_{2} \mapsto \alpha\left(v_{1}\right) v_{2}, v_{i} \in V\left(G_{i}\right)$.

At this stage, we introduce an alternative notation, $*_{X}\left(G_{x}\right)$ denoting the local join $p: G \rightarrow X$ where the G_{x} are the fibres, indexed by vertices of a graph X.
4.2 Proposition. If $\left\{\alpha_{x}: G_{x} \rightarrow H_{x}\right\}_{x \in V(X)}$ is any collection of maps indexed by the vertices of a graph X, then we obtain an induced map

$$
*_{X}\left(\alpha_{x}\right): *_{X}\left(G_{x}\right) \rightarrow *_{X}\left(H_{x}\right)
$$

given by $v_{x} \mapsto \alpha_{x}\left(v_{x}\right),\left[v_{x}, w_{x}\right] \mapsto\left[\alpha_{x}\left(v_{x}\right), \alpha_{x}\left(w_{x}\right)\right]$ and $\left[v_{x}, v_{y}\right] \mapsto\left[\alpha_{x}\left(v_{x}\right), \alpha_{y}\left(v_{y}\right)\right]$ (this is well defined by the definition of local joins).
4.3 Corollary. If $\left\{\alpha_{i}: G_{i} \rightarrow H_{i}\right\}$ is any collection of maps, then we get induced maps:
(i) $\coprod_{i} \alpha_{i}: \coprod_{i} G_{i} \rightarrow \coprod_{i} H_{i}$,
(ii) $\underset{i}{*} \alpha_{i}: \underset{i}{*} G_{i} \rightarrow * H_{i}$.

Proof. Take X as \bar{K}_{n} in (i) and as K_{n} in (ii).
4.4 Theorem. $*_{X}$ is a covariant functor of n variables $(|V(X)|=n)$,

$$
*_{X}: \mathscr{G} \text { raph } \rightarrow \mathscr{G} \text { raph }
$$

i.e. (i) $*_{X}\left(1_{X}: G_{x} \rightarrow G_{x}\right)$ equals the identity on $*_{X} G_{x}$;
(ii) if $\alpha_{x}: G_{x} \rightarrow H_{x}, p_{x}: F_{x} \rightarrow G_{x}$; then

$$
*_{X}\left(\alpha_{x}\right) \circ *_{X}\left(\beta_{x}\right)=*_{X}\left(\alpha_{x} \circ \beta_{x}\right) .
$$

4.5 Proposition. If $\left\{p_{x}: G_{x} \rightarrow H_{x}\right\}$ is a collection of local joins then $*_{x}\left(p_{x}\right)$: $*_{X}\left(G_{x}\right) \rightarrow *_{X}\left(H_{x}\right)$ is a local join where $\left(*_{X}\left(p_{x}\right)\right)^{-1} h=p *^{-1} h$ for $h \in H_{x}$.
4.6 Corollary. The disjoint union and join of local joins $p_{i}: G_{i} \rightarrow H_{i}$ are themselves local joins.

Proof. ($\left.\amalg p_{i}\right)^{-1} h=p_{i}^{-1} h$ for $h \in H_{i}$, and similarly for *.
4.7 Proposition. If $p: G \rightarrow X$ is a local join then so is $p_{\alpha}: G_{\alpha} \rightarrow Y$ with $G_{\alpha}=*_{Y}\left(p^{-1}(\alpha(Y))\right.$.

Remark. p is a local join if and only if for every edge-inclusion map $e: K_{2} \rightarrow$ X, the induced projection $p_{e}: G_{e} \rightarrow K_{2}$ is a join.

Definition. If $p: G \rightarrow X, p^{\prime}: G^{\prime} \rightarrow X$ are local joins, then a map of local joins is a map $f: G \rightarrow G^{\prime}$ such that $p^{\prime} f=p$, i.e. the following diagram commutes.

The collection L_{X} of local joins over X together with maps of local joins over X form a category $(\mathscr{L})_{X}$.
4.8 Proposition. (i) A morphism $\alpha: Y \rightarrow X$ induces from the map $f: G \rightarrow G^{\prime}$ of local joins, a map $f_{\alpha} ; G_{\alpha} \rightarrow G_{\alpha}{ }^{\prime}$ of local joins, defined by $f_{\alpha}:(y, g) \mapsto(y, f(g))$.
(ii) There is a covariant functor $\alpha *: \mathscr{L}_{X} \rightarrow \mathscr{L}_{Y}$, defined by $G \mapsto G_{\alpha}, f \mapsto f_{\alpha}$.

Proof. (i) Let $p_{\alpha}: G_{\alpha} \rightarrow Y, p_{\alpha}{ }^{\prime}: G_{\alpha}{ }^{\prime} \rightarrow Y$ be the local joins induced by α from $p: G \rightarrow X, p^{\prime}: G^{\prime} \rightarrow X$ respectively. Then $p_{\alpha}(y, g)=y$ by definition and $p_{\alpha}(y, f(g))=y$, since $\alpha(g)=p(g)=(p f)(g)=p(f(g))$.

Hence

is commutative.
(ii) α induces from the maps $G \xrightarrow{f} G^{\prime} \xrightarrow{h} G^{\prime \prime}$ the maps $G_{\alpha} \xrightarrow{f_{\alpha}} G_{\alpha}{ }^{\prime} \xrightarrow{h_{\alpha}} G_{\alpha}{ }^{\prime \prime}$ such that for each $(y, g) \in G_{\alpha}$:

$$
h_{\alpha} f_{\alpha}(y, g)=h_{\alpha}(y, f(g))=(y, h f(g))=(h f)_{\alpha}(y, g)
$$

Therefore, $h_{\alpha} f_{\alpha}=(h f)_{\alpha}$ and $\alpha * h \cdot \alpha * f=\alpha *(h f)$; also $(\alpha * 1)(y, g)=1(y, g)$, by definition of $\alpha *$.
4.9 Theorem. The correspondence

$$
L:\left\{\begin{array}{l}
X \mapsto L_{X} \\
\alpha \mapsto L_{\alpha}
\end{array}\right.
$$

gives a contravariant functor $L: \mathscr{G}$ raph $\rightarrow \mathscr{S}$ et where $L_{\alpha}: L_{X} \rightarrow L_{Y}$ is the setfunction given by $L_{\alpha}(p: G \rightarrow X)=\left(p_{\alpha}: G_{\alpha} \rightarrow Y\right)$.

Proof. (i) In the case $\alpha=1_{X}: X \rightarrow X$, we get $L_{1_{X}}(p)=p$.
(ii) If $Z \xrightarrow{\alpha^{\prime}} Y \xrightarrow{\alpha} X$ then $L_{\alpha^{\prime}} L_{\alpha}(p)=L_{\alpha^{\prime}}\left(p_{\alpha}\right)=\left(p_{\alpha}\right)_{\alpha^{\prime}}=p_{\alpha \alpha^{\prime}}=L_{\alpha \alpha^{\prime}}(p)$.
5. Planarity of Kronecker products. In this section we show that if a graph is decomposable as a Kronecker product, this helps in deciding whether the graph is planar. First we deal with circuit-graphs $C_{k}(k>2)$.
5.1 Lemma. The Kronecker product of any two circuits is non-planar.

Proof. In order to utilise the pullback construction of §4, we observe that there is a morphism $f: C_{n} \rightarrow C_{3}$ defined by

$$
v_{0} \mapsto v_{0}, v_{r} \mapsto v_{1} \text { if } r \text { is odd, } v_{r} \mapsto v_{2} \text { if } r(\neq 0) \text { is even, }
$$

if and only if n is odd. This morphism of circuits has "winding number 1 " in the sense of maps of circles. Similarly we can define morphism $f: C_{n} \rightarrow C_{4}$ of "winding number 1 " if and only if n is even.

The pullback diagram

$$
C_{2 k+i} \wedge C_{n} \xrightarrow{\stackrel{f}{\rightarrow}} C_{i} \wedge C_{n}
$$

shows that $C_{2 k+i} \wedge C_{n}$ is non-planar if $C_{i} \wedge C_{n}$ is non-planar. Thus it suffices to show non-planarity of $C_{3} \wedge C_{3}, C_{3} \wedge C_{4}$ and $C_{4} \wedge C_{4}$. The first two of these are easily shown to have a subgraph contractible to K_{5}. Finally $C_{4} \wedge C_{4}$ is $K_{2,2} \wedge K_{2,2}$ and so by Theorem 2.1, this is $K_{4,4}$ II $K_{4,4}$. The result then follows by Kuratowski's Theorem.

In order to obtain our main characterisation theorem (5.3) for planarity of Kronecker products, we need other sufficient conditions for non-planarity.
5.2 Lemma. The Kronecker product $G_{1} \wedge G_{2}$ is non-planar if either
(i) both G_{1} and G_{2} contain $K_{1,3}$ as a subgraph, or
(ii) one of the G_{1} and G_{2} contains one of the graphs X_{i} shown below, and the other one has the path-graph P_{5} or the complete graph K_{3} as a subgraph.

Proof. (i) Theorem 2.1 implies that $K_{1,3} \wedge K_{1,3}=K_{3,3}$ II $K_{1,9}$, and the result follows by Kuratowski's Theorem.
(ii) Our 'forbidden subgraphs' are

The following diagram illustrates the fact that $X_{1} \wedge K_{3}$ and $X_{1} \wedge P_{5}$ each have a subgraph contractible to $K_{3,3}$. The other cases are similar, and are left to the reader.

(The arrows indicate the obvious contractions).
These two lemmas enable us to characterise planar Kronecker products. For convenience, graphs with less than five vertices are dealt with separately in 5.4. By a 1 -contraction of G we mean the removal from G of each vertex of degree 1 (and its incident edge).
5.3 Theorem. Let G_{1} and G_{2} be connected graphs with more than four vertices. Then $G_{1} \wedge G_{2}$ is planar if and only if either
(i) one of the graphs is a path and the other one is 1-contractible to a path or a circuit, or
(ii) one of them is a circuit and the other is 1-contractible to a path.

Proof. Let $G_{1} \wedge G_{2}$ be planar. By 5.2(i), not both the graphs contain $K_{1,3}$ as a subgraph. It follows that at least one of them, say G_{1}, is a path or a circuit. If G_{1} is a path, then $P_{5} \subset G_{1}$ and so G_{2} cannot contain any of the graphs X_{1}, X_{2}, X_{3} in 5.2. Therefore G_{2} is either a path or a circuit or 1-contractible to a path or a circuit.

If G_{1} is a circuit then G_{2} cannot contain a circuit [for Lemma 5.1 would contradict planarity] or the graph X_{1}, so G_{2} is either a path or is 1-contractible to a path, and the necessity is complete.

Sufficiency is easily established. We shall just give the following diagrams of three typical cases of conditions (i) and (ii). Planarity of all such cases is self-evident.

Clearly the conditions (i), (ii) in 5.3 are sufficient for planarity of all graphs. However for graphs with less than five vertices, the conditions are not in general necessary. We can supplement Theorem 5.3 by considering the cases where (at least) one of the graphs has less than five vertices. Results can be summarised as follows:
5.4 Proposition. (i) Each of the graphs $K_{4} \wedge G$ and $K_{4 / 1} \wedge G$ is planar if and only if G is K_{2}. [$K_{4 / 1}$ denotes the graph .]
(ii) $\triangle \wedge G$ is planar if and only if G is a path.
(iii) $K_{1,3} \wedge G$ is planar if and only if G is a path or a circuit.
(iv) $C_{4} \wedge G$ is planar if and only if G is a tree.
(v) $C_{3} \wedge G$ is planar if and only if G is a path or 1-contractible to a path.

Proof. Lemmas 5.1 and 5.2 are applied with similar arguments to those used in the proof of 5.3.
6. Complexity of local joins and Kronecker products. The complexity ${ }_{\kappa}(G)$ of a graph G is the number of spanning trees of G (see, for example, Biggs [1]).

For a regular graph $G, \kappa(G)$ can be evaluated using the spectrum $S(G)$ of the graph, i.e. the set of eigenvalues of the adjacency matrix $\mathbf{G}=\left[g_{i j}\right](i, j=$ $1, \ldots, n=|V(G)|)$ where $g_{i j}$ is the number of edges between the vertices labelled v_{i} and v_{j}.
6.1 Proposition (Cvetkovic [2]). If G is regular of degree d, then $S(G)=$ $\left\{d, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $\kappa(G)=n^{-1} \prod_{j=2}^{n}\left(d-\lambda_{j}\right)$.

We can instead represent G by another matrix $M(G)=\left[m_{i j}\right]$ defined by $m_{i j}=g_{i j}, i \neq j ; m_{i i}=n-d_{i}, i=$ degree of v_{i}. This matrix is row-regular of degree n, i.e. all row-sums are equal to n, and this enables us to generalise to arbitrary graphs some matrix-properties of regular graphs (see [21]). In particular, we can generalise to arbitrary graphs a theorem of Finck and Grohmann [8, Satz 3] for regular graphs, characterising decomposability of graphs with respect to the join operation $*$. It is an unsolved problem to characterise graphs G by the rank of \mathbf{G}; it appears that the rank of $M(G)$ is more relevant.
6.2 Theorem. (i) The following propositions are equivalent:
(a) $M(G)$ has rank $n-k$,
(b) G is a $(k+1)$-fold join,
(c) n has multiplicity $k+1$ in the spectrum $S M(\bar{G})$ of $M(\bar{G})$.
(ii) G is *-indecomposable if and only if $0 \in S M(\bar{G})$.

The matrix $M(G)$ can be interpreted as the adjacency matrix of a graph ρG obtained from G by the adjoining of $n-d_{i}$ loops at each vertex of degree d_{i}. Since $\kappa(\rho G)=\kappa(G)$, we can find the complexity of any graph using the following generalisation of 6.1 (see [20]):
6.3 Proposition. If $S(\rho G)=\left\{n, \lambda_{2}{ }^{\prime}, \ldots, \lambda_{n}{ }^{\prime}\right\}$ then $\kappa(G)=n^{-1} \Pi_{j=2}^{n}\left(n-\lambda_{j}{ }^{\prime}\right)$.

Similarly 6.1 holds for any row-regular graph of degree d (i.e. whose adjacency matrix has all row-sums equal to d).

With a view to computing complexities of local joins and Kronecker products, we first consider their eigenvalues. Let $p: G \rightarrow X$ be a local join, where X is a (labelled) graph with $V(X)=\left\{x_{1}, \ldots, x_{n}\right\}$ and adjacency matrix $\mathbf{X}=\left[x_{i j}\right]$. Suppose the fibre $G_{i}=p^{-1} x_{i}$ has m_{i} vertices, adjacency matrix \mathbf{G}_{i}, and spectrum $S\left(G_{i}\right)=\left\{\mu_{j}{ }^{i} \mid j=1, \ldots, m_{i}\right\}$.
6.4 Theorem. If the fibres G_{i} of the local join $p: G \rightarrow X$ are row-regular of degree d_{i} then the eigenvalues of G are:
(i) $\mu_{j}{ }^{i}, j=2,3, \ldots, m_{i}, i=1,2, \ldots, n$;
(ii) the n eigenvalues of the matrix $A=\mathbf{X}\left[m_{1}, \ldots, m_{n}\right]^{t}+\operatorname{diag}\left[d_{1}, \ldots, d_{n}\right]$.

Proof. (i) Each G_{i} has largest eigenvalues d_{i} with $[1,1, \ldots, 1]^{t}$ as an associated eigenvector. Whether G_{i} is connected or not, the other eigenvalues $\mu_{2}{ }^{i}, \ldots, \mu_{m_{i}}{ }^{i}$ have associated eigenvectors $\mathbf{X}_{2}{ }^{i}, \ldots, \mathbf{x}_{m_{i}}{ }^{i}$ whose sum of coordinates in each case is zero.

The adjacency matrix of G can be expressed as

$$
\mathbf{G}=\left[\begin{array}{llllll}
\mathbf{G}_{1} & \mathbf{X}_{12} & \cdot & \cdot & \cdot & \mathbf{X}_{1 n} \\
\mathbf{X}_{21} & \mathbf{G}_{2} & \cdot & \cdot & \cdot & \mathbf{X}_{2 n} \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
& & & & \mathbf{X}_{n-1, n} \\
\mathbf{X}_{n 1} & \mathbf{X}_{n 2} & \ldots & \mathbf{X}_{n, n-1} & \mathbf{G}_{n}
\end{array}\right]
$$

where \mathbf{G}_{i} is the submatrix consisting of the matrix of G_{i} and $\mathbf{X}_{i j}$ is the $m_{i} \times$ m_{j}-matrix whose every entry is $x_{i j}$, i.e. a block of 1 's or 0 's according as $x_{i j}$ is 1 or 0 .

The eigenvector equations for the fibres are

$$
\mathbf{G}_{i j} \mathbf{x}^{i}=\mu_{j}{ }^{i} \mathbf{x}_{j}{ }^{i},
$$

Also we have

$$
\mathbf{X}_{i j} \mathbf{x}^{i}=\mathbf{0} \quad \text { for } i \neq j
$$

It follows that $x=\left[\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}, \mathbf{x}_{j}{ }^{i}, \mathbf{0}, \ldots, \mathbf{0}\right]^{t}$ satisfies

$$
\begin{aligned}
\mathbf{G} \mathbf{x} & =\left[\mathbf{0}, \ldots, \mathbf{0}, \mu_{j}{ }^{i} \mathbf{x}^{i}{ }^{i}, \mathbf{0}, \ldots, \mathbf{0}\right]^{t} \\
& =p_{j}{ }^{i} \mathbf{x}, \quad j=2, \ldots, m_{i}, i=1, \ldots, n .
\end{aligned}
$$

Thus $\mu_{j}{ }^{i}$ is an eigenvalue for \mathbf{G} with \mathbf{x} as eigenvector.
(ii) It remains to derive the other n eigenvalues of G from the given eigenvalues d_{i} for G_{i} where d_{i} has associated eigenvector $\xi_{i}=[1, \ldots, 1]^{t}$ (m_{i}-fold), $i=1,2, \ldots, n$.

If r is such an eigenvalue then $|G-\mu I|=0$.
This gives a system of linear equations:

$$
\begin{aligned}
& \left(d_{1}-\mu\right)+x_{12} m_{2}+x_{13} m_{3}+\ldots+x_{1 n} m_{n}=0 \quad\left(m_{1} \text { times }\right) \\
& x_{21} m_{1}+\left(d_{2}-\mu\right)+x_{23} m_{3}+\ldots+x_{2 n} m_{n}=0 \quad\left(m_{2} \text { times }\right), \ldots, \\
& x n_{1} m_{1}+x_{n 2} m_{2}+x_{n 3} m_{3}+\ldots+x_{n, n-1} m_{n-1}+\left(d_{n}-\mu\right)=0 \quad\left(m_{n} \text { times }\right) .
\end{aligned}
$$

Equivalently, μ is an eigenvalue of the matrix A required.
Denoting by $\varphi(G)$ the characteristic polynomial of $G, 6.4$ gives in particular:
6.5 Corollary. (i) If the fibres G_{i} of $p: G \rightarrow X$ each have cardinality m, and each is row-regular of degree d, then

$$
\varphi(G)=\prod_{i=1}^{n}\left[\left(x-m \lambda_{i}-d\right) \prod_{j=2}^{m}\left(x-\mu_{j}{ }^{i}\right)\right] .
$$

(ii) If Y is row-regular of degree d, with $S(Y)=\left\{d, \mu_{2}, \ldots, \mu_{m}\right\}$, then for the lexicographic product we have

$$
\varphi(X[Y])=\prod_{i=1}^{n}\left(x-m \lambda_{i}-d\right) \prod_{j=2}^{m}\left(x-\mu_{j}\right) .
$$

Finally we exploit the fact that κ ignores loops to derive from 6.4 a complexity theorem for local joins, with fibres having no regularity restriction:
6.7 Theorem. Suppose $p: G \rightarrow X$ is a local join whose fibres G_{i} each have m vertices, with $|V(X)|=n$, and $x_{i}=p\left(G_{i}\right)$ of degree r_{i}. If $S(\rho G)=$ $\left\{m, \mu_{2}{ }^{i}, \ldots, \mu_{m}{ }^{i}\right\}$ then $\kappa(G)=m^{n-2} \kappa(X) \prod_{i=1}^{n} \prod_{j=2}^{m}\left(m r_{i}+m-\mu_{j}{ }^{i}\right)$.

Proof. Construct a local join $H \rightarrow X$ whose fibre H_{i} over x_{i} is obtained by adjoining $d_{i}=m\left(n-r_{i}-1\right)$ loops to each vertex of ρG_{i}. Such adjoining increases each eigenvalue by d_{i} (see [20,2.2]), thus

$$
S\left(H_{i}\right)=\left\{m+d_{i}, \mu_{2}{ }^{i}+d_{i}, \ldots, \mu_{m}{ }^{i}+d_{i}\right\} .
$$

The matrix A in 6.4 becomes (for H) equal to

$$
m \mathbf{X}+\operatorname{diag}\left(d_{1}+m, d_{2}+m, \ldots, d_{n}+m\right)
$$

i.e. $m\left(\mathbf{X}+\operatorname{diag}\left(n-r_{1}, \ldots, n-r_{m}\right)\right)$, which is $m . M(X)$.

Thus by 6.4 , the eigenvalues $\xi_{k}, k=1, \ldots, m n$, of H are:
(i) $d_{i}+\mu_{j}{ }^{i}, \quad j=2, \ldots, m, i=1, \ldots, n$.
(ii) $m \lambda_{i}, \quad \lambda_{i} \in S(\rho X)$.

For any $h \in V(H)$ in the fibre H_{i} we have

$$
\operatorname{deg}_{H} h=\operatorname{deg}_{H_{i}} h+m \operatorname{deg}_{X} x_{i}=m\left(n-r_{i}\right)+m r_{i}=m n
$$

Therefore $H=\rho G$, and 6.3 gives:

$$
\begin{aligned}
& \kappa(G)= \frac{1}{m n} \prod_{k=2}^{m n}\left(m n-\xi_{k}\right) \\
&= \frac{1}{m n} \prod_{i=2}^{n}\left(m n-m \lambda_{i}\right) \prod_{i=1}^{n} \prod_{j=2}^{m}\left(m n-\left(\mu_{j}{ }^{i}+d_{i}\right)\right) \\
&=m^{n-2} \frac{1}{n} \prod_{i=2}^{n}\left(n-\lambda_{i}\right) \prod_{i=1}^{n}\left[\prod_{j=2}^{m}\left(m r_{i}+m-\mu_{j}^{i}\right)\right], \quad(u \operatorname{sing} 6.3) \\
&=m^{n-2} \kappa(X) \prod_{i=1}^{n} \prod_{j=2}^{m}\left(m r_{i}+m-\mu_{j}{ }^{i}\right)
\end{aligned}
$$

In particular if Y is any graph with m vertices, and $S(\rho Y)=\left\{m, \mu_{2}, \ldots, \mu_{n}\right\}$, we have
6.8 Corollary. The complexity of the lexicographic product $X[Y]$ is

$$
\kappa(X[Y])=m^{n-2} \kappa(X) \prod_{i=1}^{n} \prod_{j=2}^{m}\left(m r_{i}+m-\mu_{j}\right)
$$

Finally we compute the complexity of any Kronecker product of regular graphs. Since the adjacency matrix of a Kronecker product is the tensor product of the adjacency matrices of the graphs involved, we have a well-known result:
6.9 Lemma. For any graphs G_{1} and G_{2},

$$
S\left(G_{1} \wedge G_{2}\right)=\left\{\lambda \mu: \lambda \in S\left(G_{1}\right), \mu \in S\left(G_{2}\right)\right\}
$$

Applying this result, using similar techniques to those in 6.7 , the following result is easily obtained:
6.10 Theorem. Let G_{i} be regular of degree d_{i} with n_{i} vertices $(i=1,2)$. If $S\left(G_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n_{1}}\right\}$ and $S\left(G_{2}\right)=\left\{\mu_{1}, \ldots, \mu_{n_{2}}\right\}$, then

$$
\kappa\left(G_{1} \wedge G_{2}\right)=d_{1}^{n_{2}-1} d_{2}^{n_{1}-1}{ }_{\kappa}\left(G_{1}\right) \kappa\left(G_{2}\right) \prod_{i=2}^{n_{1}} \prod_{j=2}^{n_{2}}\left(d_{1} d_{2}-\lambda_{i} \mu_{j}\right) .
$$

References

1. N. L. Biggs, Algebraic graph theory (Cambridge University Press, 1974).
2. D. M. Cvetkovic, The spectral method for determining the number of trees, Publ. Inst. Math. Beograd. 11 (25) (1971), 135-141.
3. -_Graphs and their spectra, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 354-356 (1971), 1-50.
4. W. Dörfler, Über die X-summe von gerichteten Graphen, Arch. Math. 22 (1971), 24-36.
5. ——Automorphism von X-summen von graphen, Czech. Math. J. 22 (97) (1971), 381-389.
6. -_Zum Kroneckerprodukt von endlichen Graphen, Glasnik Mat. Ser. III 6 (16) (1971), 217-229.
7. M. Farzan, Matrix methods in graph theory, Thesis, University of Wales, Swansea 1974.
8. H.-J. Finck and G. Grohmann, Vollstandiger Produkt, chromatische Zahl und characteriches Polynom regularer Graphen I, Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 1-3.
9. B. Friedman, Eigenvalues of composite matrices, Proc. Camb. Phil. Soc. 57 (1961), 37-49.
10. F. Harary, Graph theory (Addison Wesley, 1969).
11. S. T. Hedetniemi, Homomorphisms of graphs and automata, Univ. of Michigan Technical Report, 03105-44-T, (1966).
12. R. L. Hemminger, The group of an X-join of graphs, J. Comb. Theory 5 (1968), 408-418.
13. H. Herrlich and G. E. Strecker, Category theory (Allyn and Bacon, 1973).
14. D. J. Miller, The categorical product of graphs, Can. J. Math. 20 (1968), 1511-1521.
15. G. Sabidussi, Graph derivatives, Math. Zeitschr. 76 (1961), 385-401.
16. - The lexicographic product of graphs, Duke Math. J. 28 (1961), 573-578.
17. E. Sampathkumar, On tensor product graphs, J. Australian Math. Soc. 20 (Series A) (1975), 268-273.
18. A. J. Schwenk, Computing the characteristic polynomial of a graph, Springer Lecture Notes 406, 153-172.
19. D. P. Sumner, Graphs indecomposable with respect to the X-join, Discrete Math. 6 (1973), 281-298.
20. D. A. Waller, Eigenvalues of graphs and operations, in Combinatorics (eds. V. Mavron and T. McDonough), London Math. Soc. Lecture Notes 13, Cambridge U.P., 177-183.
21. - Regular eigenvalues of graphs and enumeration of spanning trees, Proc. Colloquio Internazionale sulle Teorie Combinatorie, Rome 1973, I, 313-320.
22. -Double covers of graphs, Bull. Australian Math. Soc. 14 (1976), 233-248.
23. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962), 47-52.

University College of Swansea,
Swansea, Great Britain

