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Abstract

Mr. G owes $100 000 to a loan shark, and will be killed at dawn if the loan is not repaid
in full. Mr. G has $20 000, but partial payments are not accepted, and he has no other
source of income or credit. The loan shark owns a primitive casino where one can stake
any amount in one’s possession, gaining r times the stake with probability w and losing
the stake with probability 1 − w (r > 0, 0 < w < 1). Mr. G is permitted to gamble
at the casino, but each time he places a bet, the amount of his debt is increased by a
factor of 1 + α (α ≥ 0). How should Mr. G gamble to maximize his chance of reaching
his (moving) target and thereby surviving? Dubins and Savage showed that an optimal
strategy is to stake boldly if the primitive casino is subfair or fair (i.e. w(1 + r) ≤ 1)

and the inflation rate α is 0. Intuitively, a positive inflation rate would motivate Mr. G to
try to reach his goal as quickly as possible, so it seems plausible that the bold strategy is
optimal. However, Chen, Shepp, and Zame found that, surprisingly, the bold strategy is
no longer optimal for subfair primitive casinos with inflation if both r > 1 and α satisfies
1/r ≤ α < r . They also conjectured that the bold strategy is optimal for subfair primitive
casinos with inflation if r < 1. It is shown in the present paper that this conjecture is
true provided that w ≤ 1

2 . Furthermore, by introducing an interesting notion of sharp
strategy, additional results are obtained on optimality of the bold strategy.
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1. Formulation of the problem

Mr. G owes $100 000 to a loan shark, and will be killed at dawn if the loan is not repaid
in full. Mr. G has $20 000, but partial payments are not accepted, and he has no other source
of income or credit. The loan shark owns a primitive casino where one can stake any amount
in one’s possession, gaining r times the stake with probability w and losing the stake with
probability w̄ = 1 − w (r > 0, 0 < w < 1). Mr. G is permitted to gamble at the primitive
casino, but each time he places a bet, the amount of his debt is increased by a factor of 1 + α
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122 R. W. CHEN ET AL.

(α ≥ 0). How should Mr. G (to be referred to as the gambler) gamble to maximize his chance
of reaching the (moving) target and thereby surviving (i.e. achieve the goal)?

In the absence of inflation (i.e. α = 0), the primitive casino is subfair if w < 1/(1 + r)

and is fair if w = 1/(1 + r). Dubins and Savage [3] showed that in a subfair or fair primitive
casino with zero inflation rate, the gambler should stake boldly since there is no other strategy
that provides him with a higher probability of reaching the goal. Intuitively, a positive inflation
rate would motivate him to try to reach the goal as quickly as possible. Therefore, we would
naturally conjecture that he should again stake boldly. Indeed, Chen [1] proved that the bold
strategy is optimal for subfair primitive casinos with inflation if r = 1 (the so-called red-and-
black casino). However, Chen et al. [2] found that, surprisingly, the bold strategy is not optimal
for subfair primitive casinos with inflation if both r > 1 and α satisfies 1/r ≤ α < r . They
also conjectured that the bold strategy is optimal for subfair primitive casinos if r < 1. We
show, in Section 2, that this conjecture is true provided that w ≤ 1

2 . In Section 3, we introduce
an interesting notion of sharp strategy that facilitates the construction of a subset of the interval
(0, 1) with the property that the bold strategy is optimal if the initial fortune f belongs to
this subset. In Section 4, we present upper and lower approximations for the value function
with approximation errors decaying at a geometric rate. Section 5 contains some concluding
remarks. Related work can be found in [4] and [5], which consider the case in which the future
is discounted.

As in [1], [2], and [3], we formally formulate the above problem as a Dubins–Savage
gambling problem in which the set of fortunes, the utility function, and the set of available
gambles are, respectively, as follows:

F = [0, ∞),

u(f ) =
{

0 if 0 ≤ f < 1,

1 if f ≥ 1,

�(f ) =

⎧⎪⎨
⎪⎩

{
wδ

(
f + rs

1 + α

)
+ w̄δ

(
f − s

1 + α

)
: 0 ≤ s ≤ f

}
if 0 ≤ f < 1,

{δ(f )} if 1 ≤ f < ∞.

Here, for 0 ≤ x < ∞, δ(x) denotes the probability measure that assigns probability 1 to {x}.
The reason that �(f ) consists only of δ(f ) for f ≥ 1 is that, when the gambler has a fortune
f ≥ 1, he has reached the goal already and need not gamble any more. Clearly, if α ≥ r , the
gambler with an initial fortune f < 1 can never reach his goal, so we assume that 0 < α < r

throughout the rest of the paper.

2. Optimality of the bold strategy for r ≤ 1 and w ≤ 1
2

For each integer n ≥ 1, let fn−1 be the gambler’s fortune before the nth play (with f0
denoting the initial fortune). A strategy σ = {y1, y2, . . . } is a sequence of stakes, where
0 ≤ yn ≤ fn−1 is the gambler’s stake on the nth play. Given the gambler’s fortune fn−1 < 1
before the nth play and the stake yn on the nth play, his fortune fn (after the nth play and before
the (n+1)th play) will be (fn−1+ryn)/(1+α) with probability w and (fn−1−yn)/(1+α) with
probability w̄. The value of the strategy σ is Vσ (f ) = P{fn ≥ 1 for some n ≥ 0 | f0 = f }
for f ≥ 0. The value of the game is defined as V ∗(f ) = sup{Vσ (f )}, where the supremum is
taken over all possible strategies σ .
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The bold stake at the fortune f is defined by b(f ) = min{f, (1 + α − f )/r} if 0 ≤ f < 1
and b(f ) = 0 if f ≥ 1. The gambler is said to use the bold strategy if he stakes the bold stake
b(f ) whenever he has a fortune f (and stops playing as soon as he is either ‘broke’, i.e. his
fortune equals 0, or reaches his goal). Let ‘B’ denote the bold strategy and VB(f ) the value of
the bold strategy. It is obvious that VB(0) = 0 and VB(f ) = 1 for f ≥ 1. For 0 < f < 1, we
have, by considering one play,

VB(f ) = w̄VB

(
f − b(f )

1 + α

)
+ wVB

(
f + rb(f )

1 + α

)
.

Therefore,

VB(f ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wVB

(
f

β

)
for 0 ≤ f ≤ β,

w + w̄VB

(
f − β

rβ

)
for β ≤ f < 1,

1 for f ≥ 1,

(1)

where β = (1 + α)/(1 + r) < 1 since α < r , as noted earlier.

Theorem 1. Assume that 0 ≤ α < r ≤ 1 and 0 < w ≤ 1
2 . Then, VB is excessive; that is, for

0 ≤ y ≤ f < 1,

VB(f ) ≥ wVB

(
f − y

1 + α

)
+ wVB

(
f + ry

1 + α

)
.

Remark 1. By Theorem 2.12.1 of [3], Theorem 1 implies that the bold strategy is optimal if
0 ≤ α < r ≤ 1 and 0 < w ≤ 1

2 . In particular, Theorem 1 includes, as special cases, Theorem 2
of [1] and the case of the taxed coin with inflation (cf. Section 5.6 of [3]).

We first state two simple lemmas (without proof) that are needed in proving the theorem.
Also, the simple fact that VB is a nondecreasing function will be used (implicitly) several times
in the proof of the theorem.

Lemma 1. Suppose that f and y satisfy 0 < y < f < 1 and

f − y

β(1 + α)
≥ (f + ry)/(1 + α) − β

rβ
> 0.

Define f ′ = f ′(f, y) and y′ = y′(f, y), respectively, by

f ′ = 2f − (1 − r)y

1 + α
− β and y′ = β(1 + α) − (1 − r)f − 2ry

r(1 + α)
.

Then,
f ′ + ry′

1 + α
= f − y

β(1 + α)
≥ f ′ − y′

1 + α
= (f + ry)/(1 + α) − β

rβ
> 0

and 0 ≤ y′ < f ′.

Lemma 2. Suppose that f and y satisfy 0 < y < f < 1 and

(f + ry)/(1 + α) − β

rβ
≥ f − y

β(1 + α)
> 0.
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Define f ′ = f ′(f, y) and y′ = y′(f, y), respectively, by

f ′ = (r2 + 1)f + r(1 − r)y − β(1 + α)

r(1 + α)
and y′ = (1 − r)f + 2ry − β(1 + α)

r(1 + α)
.

Then,
f ′ + ry′

1 + α
= (f + ry)/(1 + α) − β

rβ
≥ f ′ − y′

1 + α
= f − y

β(1 + α)
> 0

and 0 ≤ y′ < f ′.

Proof of Theorem 1. For notational simplicity, we write V for VB throughout the proof.
Define, for 0 ≤ y ≤ f < 1,

H(f, y) = wV

(
f − y

1 + α

)
+ wV

(
f + ry

1 + α

)
− V (f ) (2)

and
S = {(f, y) : 0 ≤ y ≤ f < 1, H(f, y) > 0}.

We need to prove that S = ∅. Note that H(f, y) ≤ 0 for 0 ≤ y ≤ (α/r)f , since

0 ≤ f − y

1 + α
≤ f + ry

1 + α
≤ f,

and that
H(f, y) ≤ H(f, b(f )) = 0 for b(f ) ≤ y ≤ f < 1.

So, for (f, y) ∈ S, we have

0 <
α

r
f < y < b(f ), (3)

which implies that

0 <
f − y

1 + α
< f <

f + ry

1 + α
< 1. (4)

We now show that if (f, y) ∈ S, then there exists some (f ′, y′) ∈ S such that H(f ′, y′) ≥
H(f, y)/w (which implies that S = ∅, since H is bounded). In what follows, assume that
(f, y) ∈ S. In view of (4), we treat the following four cases separately.

Case (i): (f − y)/(1 + α) < f < (f + ry)/(1 + α) ≤ β. By (1) and (2),

V (f ) = wV

(
f

β

)
= w

{
wV

(
f/β − y/β

1 + α

)
+ wV

(
f/β + ry/β

1 + α

)
− H

(
f

β
,
y

β

)}

= wV

(
f − y

1 + α

)
+ wV

(
f + ry

1 + α

)
− wH

(
f

β
,
y

β

)
,

so that

H

(
f

β
,
y

β

)
= H(f, y)

w
≥ H(f, y)

w
.
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Case (ii): β ≤ (f − y)/(1 + α) < f < (f + ry)/(1 + α). Let f ′ = (f − β)/rβ and
y′ = (y + αβ)/rβ, which satisfy 0 < y′ ≤ f ′ < 1. By (1) and (2),

V (f ) = w + wV (f ′)

= w + w

{
wV

(
f ′ − y′

1 + α

)
+ wV

(
f ′ + ry′

1 + α

)
− H(f ′, y′)

}

≥ w

{
w + wV

(
f ′ − y′

1 + α

)}
+w

{
w + wV

(
(f + ry)/(1 + α) − β

rβ

)}
− wH(f ′, y′)

= wV

(
f − y

1 + α

)
+ wV

(
f + ry

1 + α

)
− wH(f ′, y′)

= V (f ) + H(f, y) − wH(f ′, y′),

where the inequality follows from the fact that

f ′ + ry′

1 + α
≥ (f + ry)/(1 + α) − β

rβ
.

Hence, H(f ′, y′) ≥ H(f, y)/w.

Case (iii): (f − y)/(1 + α) < f < β < (f + ry)/(1 + α). Since y < b(f ) = f (by (3)), we
have

β < (f + ry)/(1 + α) < {(1 + r)f }/(1 + α) = f/β < 1,

so that

V (f ) = wV

(
f

β

)
= w

{
w + wV

(
f/β − β

rβ

)}

= w2 + wwV

(
f/β − β

rβ

)
= w2 + wV

(
f/β − β

r

)
,

V

(
f − y

1 + α

)
= wV

(
f − y

β(1 + α)

)
,

V

(
f + ry

1 + α

)
= w + wV

(
(f + ry)/(1 + α) − β

rβ

)
.

(Note that (f/β − β)/r < β.) It follows that

H(f, y)

w
= wV

(
f − y

β(1 + α)

)
+ wV

(
(f + ry)/(1 + α) − β

rβ

)
− V

(
f/β − β

r

)
. (5)

If
f/β − β

r
≥ max

{
f − y

β(1 + α)
,
(f + ry)/(1 + α) − β

rβ

}
,

then the right-hand side of (5) is less than or equal to 0 (since w ≤ 1
2 ), contradicting the

assumption that (f, y) ∈ S. It now suffices to consider the following two subcases.

(iii.1) In this case,

f/β − β

r
<

f − y

β(1 + α)
= max

{
f − y

β(1 + α)
,

1

rβ

(
f + ry

1 + α
− β

)}
.
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Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in Lemma 1, so that 0 ≤ y′ < f ′.
Then,

f/β − β

r
− f ′ = (1 + r)f/(1 + α) − β

r
− 2f − (1 − r)y

1 + α
+ β

= (1 − r)(f + ry − β(1 + α))

r(1 + α)
≥ 0,

since r ≤ 1 and β < (f + ry)/(1+α). Thus, we have 0 ≤ y′ ≤ f ′ < 1. Since w ≤ 1
2 ,

V

(
f/β − β

r

)
≥ V (f ′)

= wV

(
f ′ − y′

1 + α

)
+ wV

(
f ′ + ry′

1 + α

)
− H(f ′, y′)

≥ wV

(
(f + ry)/(1 + α) − β

rβ

)
+ wV

(
f − y

β(1 + α)

)
− H(f ′, y′).

By (5), H(f ′, y′) ≥ H(f, y)/w.

(iii.2) In this case,

f/β − β

r
<

1

rβ

(
f + ry

1 + α
− β

)
= max

{
f − y

β(1 + α)
,

1

rβ

(
f + ry

1 + α
− β

)}
.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in Lemma 2, so that 0 ≤ y′ < f ′.
Then,

f/β − β

r
− f ′ = r(1 − r)(f − y)

r(1 + α)
≥ 0.

Thus, we have 0 ≤ y′ ≤ f ′ < 1. Since w ≤ 1
2 ,

V

(
f/β − β

r

)
≥ V (f ′)

= wV

(
f ′ − y′

1 + α

)
+ wV

(
f ′ + ry′

1 + α

)
− H(f ′, y′)

≥ wV

(
f − y

β(1 + α)

)
+ wV

(
(f + ry)/(1 + α) − β

rβ

)
− H(f ′, y′).

By (5), H(f ′, y′) ≥ H(f, y)/w.

Case (iv): (f − y)/(1 + α) < β ≤ f < (f + ry)/(1 + α). Since y < b(f ) = (1 + α − f )/r

(by (3)), we have

β >
f − y

1 + α
>

f − (1 + α − f )/r

1 + α
= f − β

rβ
,

so that

V (f ) = w + wV

(
f − β

rβ

)
= w + wwV

(
f − β

rβ2

)
,

V

(
f − y

1 + α

)
= wV

(
f − y

β(1 + α)

)
,

V

(
f + ry

1 + α

)
= w + wV

(
(f + ry)/(1 + α) − β

rβ

)
.

https://doi.org/10.1239/jap/1110381375 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381375


Optimality of bold play for primitive casinos 127

It follows that

H(f, y)

w
= w

{
V

(
f − y

β(1 + α)

)
+ V

(
(f + ry)/(1 + α) − β

rβ

)
− V

(
f − β

rβ2

)
− 1

}
. (6)

If

f − β

rβ2 ≥ f − y

β(1 + α)
or

f − β

rβ2 ≥ (f + ry)/(1 + α) − β

rβ
, i.e.

y ≥ 1 + α − f

r
or y ≤ f − β

(
1 − α

r

)
,

then the right-hand side of (6) is less than or equal to 0, contradicting the assumption that
(f, y) ∈ S. Hence, we must have

1 + α − f

r
> f − β

(
1 − α

r

)
(i.e. f < 2β − β2)

and
α

r
f ≤ f − β

(
1 − α

r

)
< y <

1 + α − f

r
= b(f ).

(Note that f − β(1 − α/r) ≥ f − f (1 − α/r) = (α/r)f .) Since β ≤ f/β − 1 + β < 1,

V

(
f

β
− 1 + β

)
= w + wV

(
f/β − 1 + β − β

rβ

)
= w + wV

(
f − β

rβ2

)
,

so that, by (6),

H(f, y)

w
= wV

(
f − y

β(1 + α)

)
+wV

(
(f + ry)/(1 + α) − β

rβ

)
−V

(
f

β
−1+β

)
+w−w. (7)

If
f

β
− 1 + β ≥ max

{
f − y

β(1 + α)
,
(f + ry)/(1 + α) − β

rβ

}
,

then the right-hand side of (7) is less than or equal to 0, contradicting the assumption that
(f, y) ∈ S. It suffices to consider the following two subcases. (Note that f/β − 1 + β < 1.)

(iv.1) In this case,

f

β
− 1 + β <

f − y

β(1 + α)
= max

{
f − y

β(1 + α)
,

1

rβ

(
f + ry

1 + α
− β

)}
.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in Lemma 1, so that 0 ≤ y′ < f ′.
Then, (

f

β
− 1 + β

)
− f ′ = (r − 1)f + (1 − r)y

1 + α
− 1 + 2β

= −(1 − r)

(
f − y

1 + α

)
− 1 + 2β

≥ −(1 − r)β − 1 + 2β

= α ≥ 0.
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Thus, we have 0 ≤ y′ ≤ f ′ < 1. Therefore,

V

(
f

β
− 1 + β

)
≥ V (f ′) = wV

(
f ′ − y′

1 + α

)
+ wV

(
f ′ + ry′

1 + α

)
− H(f ′, y′)

= wV

(
(f + ry)/(1 + α) − β

rβ

)
+ wV

(
f − y

β(1 + α)

)
− H(f ′, y′)

and, by (7),

H(f, y)

w
≤ H(f, y)

w

≤ H(f ′, y′) + (w − w)

(
V

(
f − y

β(1 + α)

)
− 1

)
≤ H(f ′, y′).

(iv.2) In this case,

f

β
− 1 + β <

1

rβ

(
f + ry

1 + α
− β

)
= max

{
f − y

β(1 + α)
,

1

rβ

(
f + ry

1 + α
− β

)}
.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in Lemma 2, so that 0 ≤ y′ < f ′.
Then, (

f

β
− 1 + β

)
− f ′ = (r − 1)f − r(1 − r)y

r(1 + α)
− 1 + β

(
1 + 1

r

)

= −
(

1 − r

r

)(
f + ry

1 + α

)
− 1 + 1 + α

r

≥ −
(

1 − r

r

)
− 1 + 1 + α

r
= α

r
≥ 0,

since y < b(f ) = (1 + α − f )/r . Thus, we have 0 ≤ y′ ≤ f ′ < 1. Therefore,

V

(
f

β
− 1 + β

)
≥ V (f ′) = wV

(
f ′ − y′

1 + α

)
+ wV

(
f ′ + ry′

1 + α

)
− H(f ′, y′)

= wV

(
f − y

β(1 + α)

)
+ wV

(
(f + ry)/(1 + α) − β

rβ

)
− H(f ′, y′)

and, by (7),

H(f, y)

w
≤ H(f, y)

w

≤ H(f ′, y′) + (w − w)

(
V

(
(f + ry)/(1 + α) − β

rβ

)
− 1

)
≤ H(f ′, y′).

This completes the proof of Theorem 1.

3. Sharp strategy and further optimality results on the bold strategy

Let B = {f : 0 < f < 1, VB(f ) = V ∗(f )}, the subset of the interval (0, 1) with the
property that the bold strategy is optimal if and only if the initial fortune is in this subset. For
0 < f < β, observe that

V ∗(f ) ≥ wV ∗
(

f

β

)
≥ wVB

(
f

β

)
= VB(f ).
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So, for 0 < f < β, f ∈ B implies that f/β ∈ B, since V ∗(f ) = VB(f ) implies that
V ∗(f/β) = VB(f/β). For β < f < 1, we have

V ∗(f ) ≥ w̄V ∗
(

f − b(f )

1 + α

)
+ w ≥ w̄VB

(
f − b(f )

1 + α

)
+ w = VB(f ),

from which it follows that, for β < f < 1,

f ∈ B ⇒ f − b(f )

1 + α
= f − β

rβ
∈ B.

The following lemma shows that βn ∈ B, n = 1, 2, . . . , if w < β.

Lemma 3. Let p = (log w)/(log β), i.e. w = βp. Suppose that w < β, i.e. p > 1. Then,
V ∗(f ) ≤ f p for 0 ≤ f ≤ 1 and V ∗(βn) = VB(βn) = wn, n = 1, 2, . . . .

Proof. Let C(α, r, w) denote the primitive casino under consideration, in which the gam-
bler’s fortune becomes (f +ry)/(1+α) with probability w and (f −y)/(1+α) with probability
w̄ if he stakes an amount y of the initial fortune f . Since

f + ry

1 + α
≤ f +

(
1 − β

β

)
y and

f − y

1 + α
≤ f − y,

the casino C(α, r, w) is less favorable to the gambler than C(0, (1 − β)/β, w). For the latter
casino, by Theorem 6.8.1 of [3], the value function at f is bounded by f p. (Note that ‘r’ in [3]
(which is always between 0 and 1) has the following meaning: if the gambler stakes an amount
y and wins, then he receives y/r = y + (1/r − 1)y, where (1/r − 1)y is the gain. Thus the
‘r’ in [3] corresponds to ‘1/(1 + r)’ in our notation.) It follows that V ∗(f ) ≤ f p. Next, we
have, by (1),

VB(βn) = wn = (βn)p ≥ V ∗(βn),

implying that VB(βn) = V ∗(βn) = wn. This completes the proof.

We now introduce the notion of sharp strategy, which helps us to find additional points in
B. The sharp stake at the fortune f is defined by

s(f ) =
⎧⎨
⎩

{(1 + α)βn − f }
r

if βn+1 ≤ f < βn,

0 if f ≥ 1,

where n is a nonnegative integer. The gambler is said to use the sharp strategy if he makes the
sharp stake s(f ) whenever he has a fortune f (and stops playing as soon as he is either broke
or reaches his goal). Let ‘S’ denote the sharp strategy and VS(f ) the value of the sharp strategy.
The next lemma shows that VB and VS are identical. We note in passing that the sharp stake is
related to the notion of conserving stake introduced in [3].

Lemma 4. VB(f ) = VS(f ) for all f ≥ 0.

Proof. For each k = 1, 2, . . . , let ‘kSB’ denote the strategy that the gambler makes the
sharp stake for the first k plays and then makes the bold stake for the remaining plays (and
stops playing as soon as he is either broke or reaches his goal). The value of the strategy kSB
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is denoted VkSB. We first show that VB(f ) = V1SB(f ) for all f ≥ 0. It suffices to consider
0 < f < 1. Let n ≥ 0 be the unique integer satisfying βn+1 ≤ f < βn. Then, by (1),

V1SB(f ) = wVB(βn) + w̄VB

(
f − s(f )

1 + α

)

= wn+1 + w̄wnVB

(
f − s(f )

βn(1 + α)

)
,

VB(f ) = wnVB(β−nf )

= wn+1 + wnw̄VB

(
β−nf − β

rβ

)
.

It follows that VB(f ) = V1SB(f ) since

f − s(f )

βn(1 + α)
= β−nf − β

rβ
,

by the definition of s(f ). We now show that

VkSB(f ) = V(k+1)SB(f ) for 0 < f < 1 and k = 1, 2, . . . .

Noting that the two strategies kSB and (k +1)SB are identical for the first k plays, let X denote
the gambler’s fortune after k plays using either strategy. Here, we use the convenient convention
that X is defined to be 0 or 1 if the gambler is broke or reaches his goal, respectively, before
the kth play. Then,

V(k+1)SB(f ) = E V1SB(X) = E VB(X) = VkSB(f ).

We have shown that VB(f ) = VkSB(f ) for all f ≥ 0 and k = 1, 2, . . . . Since, if he uses the
sharp strategy, the gambler is either broke or reaches his goal in a finite number of plays with
probability 1, it follows that VkSB(f ) → VS(f ) as k → ∞, implying that VB(f ) = VS(f ).
This completes the proof of Lemma 4.

We now assume that 0 < α < r and w < β, so that β = (1 + α)/(1 + r) < 1 and
p = (log w)/(log β) > 1. Define

H(x) = βp + (1 − βp)xp −
(

1 + rx

1 + r

)p

, 0 ≤ x ≤ 1.

Noting that H(0) = βp − (1/(1 + r))p > 0 and H(1) = 0, let x0 = inf{x ≤ 1 : H(x) = 0}
with 0 < x0 ≤ 1. Also, let

k0 = inf{k ∈ Z : βk < x0, β + rβk+1 < 1} (8)

and
a0 = min{1, β + rβx0}, (9)

so that β < a0 ≤ 1. For n = 1, 2, . . . , let Dn = {βn + rβn+k : k = k0, k0 + 1, . . . }, which is
contained in (βn, βn−1). We will show that Dn ⊂ B.
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Remark 2. It can be readily checked that H ′(x) = dH(x)/dx has exactly one zero, or none,
in (0, 1) if w(1 + r) < 1 or w(1 + r) ≥ 1, respectively. As a result, we have x0 = 1 for
w(1 + r) ≥ 1. On the other hand, for w(1 + r) < 1 and with x1 denoting the unique zero of
H ′(x) in (0, 1), the facts that H ′(x) < 0 for x < x1, H ′(x) > 0 for x > x1, H(0) > 0, and
H(1) = 0 show that x0 is the only zero of H(x) in (0, 1), and that 0 < x0 < x1 < 1.

Lemma 5. Assume that 0 < α < r and w < β, and let V0(f ) = f p for f ≥ 0. Define the
following functions recursively. For n = 0, 1, . . . , let

Un(y; f ) = w̄Vn

(
f − y

1 + α

)
+ wVn

(
f + ry

1 + α

)
for 0 ≤ y ≤ b(f ) and 0 ≤ f < βna0, (10)

Vn+1(f ) =
{

sup{Un(y; f ) : 0 ≤ y ≤ b(f )} for βn+1 ≤ f < βna0,

V0(f ) for 0 ≤ f < βn+1.
(11)

Then,
V ∗(f ) ≤ Vn+1(f ) ≤ V0(f ) for 0 ≤ f < βna0 and n = 0, 1, . . . .

Proof. For 0 ≤ f < a0,

V ∗(f ) = sup

{
w̄V ∗

(
f − y

1 + α

)
+ wV ∗

(
f + ry

1 + α

)
: 0 ≤ y ≤ f

}

= sup

{
w̄V ∗

(
f − y

1 + α

)
+ wV ∗

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}

≤ sup

{
w̄V0

(
f − y

1 + α

)
+ wV0

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}
= sup{U0(y; f ) : 0 ≤ y ≤ b(f )}, (12)

where the first equality is due to the optimality of V ∗; the second equality follows from V ∗ being
nondecreasing and the fact that V ∗(x) = 1 for x ≥ 1; and the inequality follows from V ∗ ≤ V0
(cf. Lemma 3). By (11) (with n = 0) and (12), we have V ∗(f ) ≤ V1(f ) for 0 ≤ f < a0. A
similar argument, along with induction on n, yields

V ∗(f ) ≤ Vn+1(f ) for 0 ≤ f < βna0 and n = 0, 1, . . . .

Next, we show that

Vn+1(f ) ≤ V0(f ) for 0 ≤ f < βna0 and n = 0, 1, . . . . (13)

For β ≤ f < a0,

V1(f ) = sup{U0(y; f ) : 0 ≤ y ≤ b(f )}
= sup

{
w̄V0

(
f − y

1 + α

)
+ wV0

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}

≤ sup

{
w̄V0

(
f − y

1 + α

)
+ wV0

(
f + ry

1 + α

)
: 0 ≤ y ≤ f

}

= max

{
V0

(
f

1 + α

)
, wV0

(
f

β

)}
= f p = V0(f ),
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where we have used the fact that w̄V0((f − y)/(1 + α)) + wV0((f + ry)/(1 + α)) is convex
in y ∈ [0, f ], so that its maximum is attained at either y = 0 or y = f . This establishes (13)
for n = 0. A similar argument, along with induction on n, yields (13) for all n. This completes
the proof of Lemma 5.

Remark 3. It follows from (11) and (13) that Vn+1(f ) ≤ Vn(f ) for 0 ≤ f < βna0.

Theorem 2. Assume that 0 < α < r and w < β. Then Dn ⊂ B; that is,

VB(βn + rβn+k) = V ∗(βn + rβn+k) for k = k0, k0 + 1, . . . and n = 1, 2, . . . .

Proof. By Lemmas 3 and 5, we have, for n = 0, 1, . . . ,

V0(β
n+1) = wn+1 = V ∗(βn+1) ≤ Vn+1(β

n+1) ≤ V0(β
n+1) (since βn+1 < βna0),

implying that

Vn+1(β
n+1) = wn+1.

It follows that Vn+1(f ) is continuous at f = βn+1. Standard arguments show that Vn+1(f ) is
also continuous at all other points in [0, βna0). So, for a fixed 0 ≤ f < βna0 (n = 0, 1, . . . ),
Un(y; f ) is continuous in y ∈ [0, b(f )]. Define, for 0 ≤ f < βna0, n = 0, 1, . . . ,

yn(f ) = arg max{Un(y; f ) : 0 ≤ y ≤ b(f )},

so that Vn+1(f ) = Un(yn(f ); f ) for βn+1 ≤ f < βna0. (Here, yn(f ) is taken to be the
smallest value of y at which the maximum is attained, if more than one exists.) We first
establish the following facts: for n = 0, 1, . . . ,

yn(f ) = s(f ) = (1 + α)βn − f

r
for βn+1 ≤ f < βna0, (14)

Vn+1(f ) = wnV1

(
f

βn

)
for 0 ≤ f < βna0. (15)

We proceed by induction on n. First consider (14) with n = 0. Since U0(y; f ) is strictly convex
in y, sup{U0(y; f ) : 0 ≤ f ≤ b(f )} is attained at either y = 0 or y = b(f ). For β ≤ f < a0,

U0(b(f ); f ) − U0(0; f ) = w + w̄

(
f − β

rβ

)p

−
(

f

1 + α

)p

= H

(
f − β

rβ

)
> 0

since (f − β)/rβ < (a0 − β)/rβ ≤ x0, by (9). It follows that y0(f ) = b(f ) = s(f ) for β ≤
f < a0. This proves (14) for n = 0. The case n = 0 in (15) is trivial. Incidentally, later we
will need the fact that

V1(f ) = U0(b(f ); f ) = w + w̄

(
f − β

rβ

)p

, β ≤ f < a0, is strictly convex. (16)

https://doi.org/10.1239/jap/1110381375 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381375


Optimality of bold play for primitive casinos 133

Suppose that (14) and (15) hold for n = m − 1 (m ≥ 1). We now prove that (14) and (15) hold
for n = m.

To prove (14) with n = m, fix an f such that βm+1 ≤ f < βma0. For y < s(f ) =
{(1 + α)βm − f }/r ,

Um(y; f ) = w̄Vm

(
f − y

1 + α

)
+ wVm

(
f + ry

1 + α

)

= w̄

(
f − y

1 + α

)p

+ w

(
f + ry

1 + α

)p

is strictly convex in y, where the second equality follows from (11) (with n = m − 1) since

f − y

1 + α
≤ f + ry

1 + α
<

f + rs(f )

1 + α
= βm.

Therefore,

sup{Um(y; f ) : 0 ≤ y < s(f )} = max{Um(0; f ), Um(s(f )−; f )}
= max{Um(0; f ), Um(s(f ); f )}
= Um(s(f ); f )

since

Um(s(f ); f ) − Um(0; f ) = w(βm)p + w̄

(
f − βm+1

rβ

)p

−
(

f

1 + α

)p

= βmp

{
w + w̄

(
f/βm − β

rβ

)p

−
(

1 + r((f/βm − β)/rβ)

1 + r

)p}

= βmpH

(
f/βm − β

rβ

)
> 0,

where (f/βm − β)/rβ < (a0 − β)/rβ ≤ x0.
For s(f ) ≤ y ≤ b(f ) = f ,

Um(y; f ) = w̄Vm

(
f − y

1 + α

)
+ wVm

(
f + ry

1 + α

)
.

Since
f − y

1 + α
≤ f − s(f )

1 + α
= f − βm+1

rβ
<

βma0 − βm+1

rβ
≤ βm (by (9)),

we have, by (11) (with n = m − 1),

Vm

(
f − y

1 + α

)
=

(
f − y

1 + α

)p

,

which is strictly convex in y. Moreover, since

βm−1a0 >
f

β
= f + rf

1 + α
≥ f + ry

1 + α
≥ f + rs(f )

1 + α
= βm,
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we have, by the induction hypothesis,

Vm

(
f + ry

1 + α

)
= wm−1V1

(
f + ry

(1 + α)βm−1

)
,

which is strictly convex in y, by (16). Therefore, Um(y; f ) is strictly convex in y ∈ [s(f ), f ],
implying that

sup{Um(y; f ) : s(f ) ≤ y ≤ f } = max{Um(s(f ); f ), Um(f ; f )}.
Verifying that Um(s(f ); f ) = Um(f ; f ), we have

sup{Um(y; f ) : 0 ≤ y ≤ f } = Um(s(f ); f )

and ym(f ) = s(f ), proving (14) with n = m.
We now prove (15) with n = m. For 0 ≤ f < βm+1, by (11),

wmV1

(
f

βm

)
= wm

(
f

βm

)p

= f p = Vm+1(f )

and, for βm+1 ≤ f < βma0,

Vm+1(f ) = Um(ym(f ); f ) = Um(s(f ); f ) (by (14) with n = m)

= w̄Vm

(
f − βm+1

rβ

)
+ wVm(βm)

= w̄wm−1V1

(
f − βm+1

rβm

)
+ wwm−1V1(β)

(by the induction hypothesis (15) with n = m − 1)

= w̄wm−1
(

f − βm+1

rβm

)p

+ wmβp (since V1(x) = xp for x ≤ β)

= wm

{
w̄

(
f − βm+1

rβm+1

)p

+ w

}

= wmU0

(
s

(
f

βm

)
; f

βm

)
= wmU0

(
y0

(
f

βm

)
; f

βm

)

= wmV1

(
f

βm

)
,

proving (15) with n = m.
Finally, we are ready to show that VB(f ) = V ∗(f ) for f = βn + rβn+k (k ≥ k0, n ≥ 1).

Since, by (8) and (9),

f = βn + rβn+k ≤ βn−1(β + rβk0+1)

< βn−1 min{1, β + rβx0}
= βn−1a0,
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it follows that

V ∗(f ) ≤ Vn(f ) (by Lemma 5)

= wn−1V1

(
f

βn−1

)
(by (15))

= wn−1U0

(
y0

(
f

βn−1

)
; f

βn−1

)
(by (11))

= wn−1U0

(
s

(
f

βn−1

)
; f

βn−1

)
(by (14))

= wn−1{w̄V0(β
k) + wV0(1)} (by (10))

= wn−1{w̄(βk)p + w}
= wn + w̄wn+k−1.

However, by (1),

VB(f ) = wn−1VB(β + rβk+1)

= wn−1(w + w̄VB(βk))

= wn−1(w + w̄wk)

= Vn(f ),

implying that V ∗(f ) = VB(f ) = Vn(f ). This completes the proof of Theorem 2.

4. Upper and lower approximations for the value function V ∗

While it is difficult to compute the value function V ∗, the following recursive procedure
provides upper and lower approximations for V ∗, with approximation errors decaying at a
geometric rate. Again, we assume that 0 < α < r and w < β. Let p = (log w)/(log β) > 1
and R0(f ) = f p, f ≥ 0. Define, for n = 0, 1, . . . ,

Rn+1(f ) =
⎧⎨
⎩sup

{
w̄Rn

(
f − y

1 + α

)
+ wRn

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}
for 0 ≤ f < 1,

1 for f = 1.

(17)
For 0 ≤ f < 1, let bn+1(f ) denote the (smallest) value of y that maximizes

w̄Rn

(
f − y

1 + α

)
+ wRn

(
f + ry

1 + α

)
, 0 ≤ y ≤ b(f ).

Next, recursively define Ln, as in (17), with the initial condition R0 replaced by L0(f ) =
1{1}(f ), 0 ≤ f ≤ 1, where 1A denotes the indicator function of the set A. (Note that the Rn

are related to the Vn defined in Lemma 5, whereas the Ln are, in fact, the Un introduced in a
more general context in Section 2.15 of [3].)

Lemma 6. L0 ≤ L1 ≤ · · · ≤ V ∗ ≤ · · · ≤ R1 ≤ R0.

Proof. Note that V ∗ satisfies, for 0 ≤ f < 1,

V ∗(f ) = sup

{
w̄V ∗

(
f − y

1 + α

)
+ wV ∗

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}
.
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Since L0(f ) ≤ V ∗(f ) ≤ R0(f ) by Lemma 3, it follows by induction that Ln(f ) ≤ V ∗(f ) ≤
Rn(f ) for all n. The monotonicity of the Ln follows, by induction along with the simple fact
that L1(f ) ≥ L0(f ) = 1{1}(f ). The monotonicity of the Rn will also follow by induction if
we can establish that R1(f ) ≤ R0(f ). By definition, for 0 ≤ f < 1,

R1(f ) = sup

{
w̄R0

(
f − y

1 + α

)
+ wR0

(
f + ry

1 + α

)
: 0 ≤ y ≤ b(f )

}

≤ sup

{
w̄R0

(
f − y

1 + α

)
+ wR0

(
f + ry

1 + α

)
: 0 ≤ y ≤ f

}

= max

{
R0

(
f

1 + α

)
, wR0

(
f

β

)}
= f p = R0(f ),

where the second equality follows from the convexity of both R0((f − y)/(1 + α)) and
R0((f + ry)/(1 + α)) in y. This completes the proof of Lemma 6.

Theorem 3. Let ρ = max{1/(1 + α), w/β} < 1. Then

Rn(f ) − Ln(f ) ≤ ρnf, 0 ≤ f < 1. (18)

Proof. The functions Rn and Ln may be interpreted as the value functions for the following
gambling system. In each game, the gambler with fortune f (0 ≤ f < 1) can stake any amount
y ≤ b(f ), resulting in fortune (f −y)/(1+α) or (f +ry)/(1+α) with respective probabilities
w̄ and w. If f = 1, the gambler’s fortune remains equal to 1 with probability 1 at the end of
the game. The gambler is required to play exactly n (independent) games. Then Rn or Ln is
the optimal value if the gambler’s utility function is R0 or L0, respectively. To show (18), let
Xi, i = 0, . . . , n − 1, denote the fortune at the end of the (n − i)th game, when the gambler
(with initial fortune Xn = f ) plays optimally with respect to the utility function R0. (Here,
the subscript i in Xi indicates the number of remaining games.) Recall that bn+1(f ) denotes
the smallest value of y that maximizes w̄Rn((f − y)/(1 + α)) + wRn((f + ry)/(1 + α)) over
0 ≤ y ≤ b(f ). Then the Xi are (backwards) Markov, and

P(Xi−1 = 1 | Xi) = 1 if Xi = 1,

P

(
Xi−1 = Xi − bi(Xi)

1 + α

∣∣∣∣ Xi

)
= w̄ if Xi < 1,

P

(
Xi−1 = Xi + rbi(Xi)

1 + α

∣∣∣∣ Xi

)
= w if Xi < 1.

Clearly,

Rn(f ) = E X
p
0 ,

Ln(f ) ≥ E 1{X0=1} = P(X0 = 1),

meaning that
Rn(f ) − Ln(f ) ≤ E X

p
0 1{X0<1} ≤ E X0 1{X0<1}.

We now prove that
E(Xi−1 1{Xi−1<1} | Xi) ≤ ρXi 1{Xi<1}, (19)
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from which (18) follows immediately. Given Xi = x < 1, the conditional expectation of Xi−1
equals

w̄
x − bi(x)

1 + α
+ w

x + rbi(x)

1 + α
= x

1 + α
+ bi(x)

(1 + r)w − 1

1 + α
,

which is bounded by x/(1 + α) if (1 + r)w ≤ 1, or by x(1 + r)w/(1 + α) = xw/β if
(1 + r)w > 1 (the latter bound being due to the fact that bi(x) ≤ x). This proves (19) and,
hence, (18).

Remark 4. Similar results on the geometric convergence of algorithms for finite gambling
problems can be found in [6].

5. Concluding remarks

It was conjectured in [2] that the bold strategy is optimal for 0 < α < r < 1 and w ≤
1/(1 + r). In view of Theorem 1, the conjecture remains unproven for 0 < α < r < 1 and
1
2 < w ≤ 1/(1 + r). We have made an attempt to find a counterexample but have not been
successful. Thus, we conjecture that the bold strategy is optimal for 0 < α < r < 1 and
1
2 < w ≤ 1/(1 + r).

In the absence of inflation (α = 0), the primitive casino is superfair if w > 1/(1 + r),
in which case the bold strategy is not optimal since making small (infinitesimal) bets would
enable the gambler to reach his goal with certainty. (See [7] for interesting related results.)
In the presence of inflation (α > 0), the primitive casino may be referred to as subfair, fair,
or superfair if w < β, w = β, or w > β, respectively, since the (discounted) expected gain
w(1 + r)y/(1 + α) − y for stake y (taking inflation into account) is negative, zero, or positive,
respectively. However, if the gambler stakes only a part of the total fortune, then the remaining
part is to be discounted due to inflation, so that his ‘overall’ discounted expected gain may be
negative even when w > β. Thus, it is not wise to make small bets in the presence of inflation.
Our Theorem 2 shows, for the case in which w < β, that the bold strategy is optimal if the
initial fortune equals βn or βn + rβn+k for n = 1, 2, . . . and k = k0, k0 + 1, . . . , where k0 is
given in (8). To the best of the authors’ knowledge, the issue of optimality of the bold strategy
has not been studied for the case w ≥ β in the literature.
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