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ON A TRANSCENDENCE PROBLEM OF K. MAHLER
K. K. KUBOTA

K. Mabhler [8] has proposed the following problem. Let Q, for » = 1 be a
sequence of # X n non-negative rational integer matrices. Each @, = (w,¢;)
defines a map @, : C* — C* by

n n
z= (21,... %) — Qg = (Hl ijrli, o I_Il zjwrni) .
= J=

Let zo = (201, . .., 20,) be an algebraic point and f,(z) for » = 0 be a sequence
of convergent power series satisfying recursive relations of the form

fr(z) = ar(z)fr+1(Qr+lz) + br(z)

where the «,(z) and b,(z) are rational functions. For certain special classes of
matrices, find conditions on the zo; and f; which imply that fo(z0) is trans-
cendental.

For example, Mahler [6; 7] has shown that for integers p = 2, the trans-
cendental function f(z) = > 5 2** which satisfies

fz) = f(z) + =

(corresponding to the case n = 1, Q, = (p), f» = f, ¢, = 1, and b, = z) takes
on transcendental values at all algebraic points z, in the punctured open unit
disc. To generalize this situation, one might take a sequence p;, ps, ... of 2's
and 3’s and consider the functions

fr(z) — Z ZPr+1---Pk
k=t
which satisfy the functional equations

ff(z) = fr+1(97+12) + 2z

where @, = (p,). Then as a special case of the theorem proved below, it will be
shown that the function

fole) = i’: z,,(k)

where p® = pipy ... p, takes on transcendental values at all algebraic points
in the punctured open unit disc.

Results along these same lines have been obtained independently by Loxton
and van der Poorten. Their very strong Theorem 1 in [4, ITI] amply contains
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most of the examples, including that of the last paragraph, which can be
obtained using the theorem given below. However, the approach given here
has at least the advantage that it generalizes readily to give an algebraic
independence result [2]. Further references and details can be found in the
survey article [5].

1. General functional equations. Let # be a positive integer and z =
(21, ..., 2,) be an n-tuple of indeterminants. The ring C[[z]] of #n-variable
complex formal power series is topologized with its Mt-adic topology [9] where
M is the ideal generated by 21, . . ., 2,.

LEMMA. Let D be a polydisc containing the origin in C*, and f; for i = 0 be a

sequence of power series converging in D, with coefficients in « subfield K of G,
and satisfying

(1) supfi(z) <o, z€D,7=0.

Suppose that there is a subsequence fi; for j = 1 of the f; which is compact and
such that the set of limit points of the subsequence is not a finite set of algebraic
functions. Let p; for 1 = 1 be a sequence of integers all larger than one. Lel zo =
(201, -+« 20n) € C" be a point with 0 < |z0s] < 1 for i =1, ..., n and such
that the |20 are multiplicatively independent. Then, for every p € N+, there is a
polynomial 7 (z, y) € Klzi, ..., 2, ¥] of degree at mosi p in each of its n + 1
variables and such that for infinitely many k € N*, one has the inequality

2) 05 [ (2%, fi(2"))| < exp (—cap'tp®)

where p® = pips ... py 20 = (201P?, ..., 202®), and ¢, > 0 ds a positive
real number independent of both p and k.

Proof. Since F = {f;} is compact, its elements lie in at most finitely many
cosets of C[[z]] modulo M* where M = (21, ..., 2,) and « = [p*"7'] + 1.
Therefore, there is an m € Nt such that the subsequence F M {fymy + M*}
has a set of limit points which is other than a finite set of algebraic functions.

There is a non-zero polynomial .27 (z, y) € K|z, y] of degree at most p in
each of the n + 1 variables and such that for every % € C[[z]] with & =
fiemy (mod M*), one has o (z, h(z)) € M~ In fact, comparing coefficients in

M(Z, h(z)) = Z ail.._in21i1 e Znin,
ile..in

one can express the a;, . ., as linear forms in the (p 4 1)"*! coefficients of
&/ (z,v). Further, if 0 < 4, + .. .14, £ p™7, then the coefficients of the form
describing ay,...;, do not depend on the choice of % in the coset fimy + M~
Now there are at most (p""* + 1)* such n-tuples of indices, and

B+ 1 < (o + DML

Therefore the existence of &7 (z, ¥) amounts to the existence of a non-trivial
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solution of a homogeneous system of linear equations with more variables than
equations.

By the choice of m, there is a subsequence {f;u} of F M {fim + M*} which
converges M-adically to a formal power series g which is not a root of 27 (z, y) =
0. The g;(z) = .97 (2, fi(z)) are defined for z € D and are bounded above in
absolute value uniformly in D and independently of 7 by Equation (1). By
Cauchy's inequality, there exist positive real numbers Ry, R, ..., R, with

!gihl-..hn| =< Rothl P Rnh"

for all &y, ..., h, = 0 where gu,...», denotes the coefficient of z,"1. ..z, in
g4(2).

Let S be the set of non-zero monomials of g partially ordered via Az, ... z,™
< Byt...zgm e hy < jifori=1,...,n Theset T of minimal elements of
S is finite [1, Lemma 3]. Since the |zq1], . . ., |20,] are multiplicatively indepen-
dent, one can order T via

n
h h j —
Az . g < Ba g e [ a2 1
=1

Let Az™t ... 3™ denote the largest element of T.

If one defines zo" = (201}, . . ., %0,"), then
t
3) lim———SwE)
( ) k—)ooA (2.'01m1 Ce Zo,,m")t
-y

In fact, there is a positive integer ko such that for all & = ko, one has f;x) = ¢
(mod M) where 7 is some fixed integer larger than the total degrees of all
the elements of 7". Letting

=l Lo
Hyon@) = 2 o0 2 ReRy' .. Rz g,

j1=1in Jn=1in

one has the obvious majorization

n
H IZO l(ir—mr)t
T

2500 (20°) =1
Moo .z~ 1| 5 2 S Al
n z t
+ Z} ‘ITZIFHmlmg...mf-}-l...ﬂm(lzoit)
—
for & = ko where |2o| = (|201], - . ., |202]) and the first summation is over all
Bzt ...z, in T except for Az™! ... z,™. Since the zo; are in the open unit

disc, the Hy. . 1,(|20]") and the Hyy. mpt1...ma(|20]?) are bounded for ¢ large,
and |zo,|* — 0 as t — 0. By the choice of the m;, we also have (HLI[ZO,[ ir—mr)t
— 0 as t — o which proves Equation (3).
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By the construction of the auxiliary polynomial & (z, ¥), one knows that
my+ ...+ m, = k> pt**, Therefore

. ) i} )
'Al I:Il [Zoilmip(J(k :2— lAl *Xp (“"C2Pl+n lp(l(k))) g exp (_262p1+n lp(j(k)))

where ¢; > 0 is independent of $ and k, and where the second inequality is
claimed only for k larger than some function of p. Combining this last in-
equality with Equation (3) gives the assertion of the lemma.

THEOREM. Let D, K, f;, p; and 2o be as in the statement of the lemma and
suppose in addition that K 1is a number field and the zo; are algebraic numbers.
For 1 21, let T;: A X P" — A" X P™ be a rational map of the product of
affine n-space A™ and projective m-space P™. Assume that T ; is defined by

(zlv ey By Woy e . ywm) g (zlpiy e 1znp‘: tiﬂ(zi w)y v )tim(zy w))
where the t;;(z, w) € K|z, w] are of total degree at most b in the variables z1, . . . , z,,
have algebraic integer coefficients in K, and are forms in the variables wy, . . . , wy,

of degree d;. Suppose, in addition, that the maximum B, of the absolute values of
the conjugates of the coefficients of the t;;(w) satisfies

4) log B;<K p®

where p® = pipy . .. py, and that thereisa N > 1 with

B) pi/dizZ N> 1.

Letwy = (wor, . .., Won) be such that for allk = 0,
TP (29, wy) = Ty 0...0 T1(z0, wo)

&) ()
= (ZOIP y o ey ZOnF ) wﬂl(k)y ceey wOm(k))
is defined and

() ()
(6) fk(zﬂlp Y sty zOnP - ) = wOl(k)/wOO(k)-
Then wg 1s a transcendental point.

Proof. If not, then by extending K if necessary, it may be assumed that K
contains the coordinates of zo and wy. By multiplying through by a common
denominator, it may be assumed that the wy; are algebraic integers. For each
positive integer p, apply the lemma to obtain an auxiliary polynomial &7 (z, y).
Clearly by multiplying &/ (z, ¥) by a common denominator of its coefficients,
it may be assumed that.2/ (z, y) has algebraic integer coefficients.

The idea of the proof being to use the Liouville inequality to obtain a
contradiction with Equation (2), we make a slight digression to review the
properties of size. Recall [3] that the size s(a) of @« € K is defined by

s(e) = max (log den o, log [a)

where den « is the denominator of & and [a] is the maximum of the absolute
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values of the conjugates of a. If @1, ..., @, € K, then clearly
0 (Ia) =¥ .

If, in addition, there is a set of P = 1 primes containing every prime divisor
of Il’_, den a;, then it is easy to verify that

T

®) S(Z ai) =< Pm?x s(e;) + log 7.

i=1

Finally, the fact that the norm of a non-zero algebraic integer is no smaller
than 1 implies the Liouville inequality [3]

9) loglaf 2 —2[K:Q]s(a)
for @ € K\(0).

If € Q[Xy, ..., X, Jand £ € R[Xy,...,X,] are polynomials with alge-
braic and real coefficients respectively, then we write & < k to indicate that
the maximum of absolute values of the conjugates of each coefficient of #(X)
is no larger than the corresponding coefficient of k(X ). The ¢; appearing below
are assumed to be appropriately chosen positive real numbers not depending

on the integer parameters p and k.
By composing the T';'s, one obtains

T(k) (Z, w) = (zlp(k)v LI Vznp(k)y tO(k) (z; w)y LRI} tm(k) (Z1 w))

IfB/=@m+1)B;and L(z) = 1+ 2: + ... + 3, then

(2, w) K _:—_IB JL(2) (wo + ...+ wp)”
fori 2 1andj = 0,...,m. By induction on &, it follows that
(k) 1 ( : ird d = N ag...a ’
t LK — Bi"k k—1... i+1){ L prt koo i+1}
G w) <o (11 11 26"
) X (wo+ ... w,)

where 229 = (212, 2,29).
Note that Equation (5) implies that

kg

Z H (P'l/di) k 13 )

=Lt =2 H @i/po) = Z N
I_ (ps/dy) =t =

ST IST oo
is bounded independently of k. Therefore, since clearly

L(zY) < L(z)?,
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one has

k=1 ,
H L(Zp(]))dk.-.dj+1 <<L(Z)q
j=0

where

o= (di...dy) Z H (pi/ds) < csp®.

Similarly, using Equation (4), one obtains

k k ¢ )-1 di
H B_Idlc...di+1 é H Bi’ d1...di)™
i=1 : i=1

IIA

exp ((dl coody) ,Z:; {cs p?/(dy .. .di)})

< exp (csca p™).

Substituting these estimates into the result of the last paragraph gives

exp (c3cap ®YL (3 )csbp(k) @Wo —+ . . . + 1,

tj(k) (z,w) < + 1

In particular, one has
(10)  [£,® (20, wo)| < exp (¢5 p®)

fork=z0andj=0,1,...,m.

The | prime factors of the denominators of the ¢;% (2q, wo) are amongst those
of the denominators of the z¢; and so are contained in a set of, say, P = 1
primes. Tracing through the argument of the last paragraph to estimate the
exponents of these primes in the denominators of the ¢, (3, w,), one easily
obtains

log den ¢,® (zq, wg) K p®,
and hence
(11)  s(;® (20, wo)) = c6 p®.
Let the polynomials 4 ;(z) be defined by
A @y) = 3 A"
Then the A ;(z) are of degree at most p in each variable z; and have algebraic

integer coefficients lying in K. If S denotes the maximum of the sizes of the
coefficients of the A ;(z), then the majorization

n n oK)
At(zp(k)) < es II a+ Zip(k))p < es{ III a1+ Zi)}
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implies that

|4,(z0™)] < exp (S + c1pp®)
and
log den 4 (202®) K pp®,

Therefore,
(12) s(A4(z206™)) £ S + cs pp®

where S depends on p but not k.
Define the quantity E,(k) by

(13) By(k) = £6® (20, o) (2", £ (2™))

Y4
i=

(k) i —
4 1(209 )tl(k) (Zo, ‘w(\) zto(k) (ZOy 'Z,Uo)p 1
0

where we have used Equation (6). By Equations (7, 8, 11, 12), one has the
estimate

S(E,(R)) = P{S + ¢s pp® + cs pp®} + log (p + 1).
Therefore, for all & larger than some function of p, one has
(14)  s(E,(k)) = co pp™.

Finally the Liouville inequality (9) together with Equations (10, 14) imply
that for all & larger than some function of p and satisfying Equation (2),
one has

log I-Q{(Zo”(k),fk(zop(k)))' = log |E, (k)| — p log |tc® (z0, wo)|

= —2[K : Qles pp® — ¢s5 pp® = —c10 pp®,
and so

l%(zo”w,fk(zo"(k)))l 2 exp (—cio pp").

But if p is chosen sufficiently large, this contradicts Equation (2), and so
the theorem is proved.

2. Linear functional equations. The most interesting applications of the
theorem occur when the functional equations are linear. To fix the notation,
let fo, f1, fe, - . . be an infinite sequence of power series converging in a neigh-
borhood D of the origin in C", having coefficients in a number field K, and
satisfying Equation (1). Assume further that the f; satisfy functional equations
of the form

(15)  fi(z) = ai(2)fi31(Qip12) + b4(2)

where Q11 = pyil is a scalar matrix with p, = 2 an integer, Q43 is the

map defined in the introduction, and the «;(z) and b,(z) are rational functions
with coefficients in K and a;(0) # 0. Note that Equation (15) is a substitute
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for the map T';y; of the theorem; more precisely, the corresponding map
Ti1: A" X P1— A" X Plis defined by

(2'1, sy By Wo, wl) = (lei‘Hy sy znpi+1v Ct<z)w0y
ci(2)as(z)™ (wr — bi(z)wo))

where ¢;(z) is a common denominator for a;(z)~! and a(z)~1;(z).
The functional equations (15) can be composed to obtain relations

(16) fi(z) = A4 (2)f 4 (Q7"2) + Bir(2)

where

\,
|
-

(17) A (2) = @45 (24 72)

.
Il
- o

(18) B.,(2) = Ti_o A4(2)b o, (@ 0z)

7—1
19) %"z = Qi1 Qupra. .. Q= (I—IO Pi+]’) = o 1.
=

Since the f; and @, are holomorphic at the origin, Equation (15) shows that
the b; satisfy the same condition, and hence so do the 4;,(z) and the B;,(z).
Now Equations (16, 19) shows that

(20) £:(z) = A (2)fisr(0) + Bi(z)  (mod M),

This last congruence allows one to construct transcendental numbers by
judicious repetition of the a;(z), b;(z) and Q, in the functional equation (15).
For example, let

fue) = ﬁ 1 =" )

where the n; << 27 and the p; = 2 are rational integers. The f;(z) are defined
in the open unit disc, are dominated in absolute value by

3

II a+)=@a-2"

=0

and satisfy the functional equations

fi2) = (1 — 2741/ mypy) fopr (22540).

Now the function £(z) = II%, (1 — 2#) is transcendental [6] for every fixed
integer p = 2. Therefore, if we suppose that there is an integer p = 2 such
that the sequence of (n,, p;) for j = 1 contains arbitrarily long segments of
repetitions of the term (1, p), then the sequence f;(z) has k(z) as an M-adic
limit point by Equation (20). By the theorem, it follows that if 2, is an alge-
braic point of the punctured open unit disc satisfying z,°'"" # n, for all j,
then f(zo) is a transcendental number.
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Suppose in addition to the hypotheses of the first paragraph of this section
that the set

{ai(z)y bi(2), Qi+1’fi+1(0)]7: 2 0}

is finite. Then for each fixed » = 0, the set

is also finite and hence {f;(z)} is compact in the M-adic topology. Suppose
that the set of M-adic limit points of {f,(z)} consists of finitely many power
series, say g1, . . - , Zn. Let {fi(»} be a subsequence of {f;} converging M-adically
to g1. By induction on N, one can choose a sequence {k(s)|s = 1} of non-
negative integers such thas for each N = 1, there are infinitely many j with

((lim—sy bigjy—s Qi(]‘)+l—s) = (ars) bics)r Deor+1)

fors =1,2,..., N. By Equation (16), one has for these j,
fin-n(@) = Aip-nn (@)1 QDN Nz) + Biy_w.n(2)

where 4 (- .5y Biy-n.n, and QUO=V-M are independent of j. It follows that
these fi(;)—~(2) converge M-adically to

hy(2) = Ay—nn () (QUD=NNg) + Bij-n.v(2),

and so there is a {(V) with ky(2) = g, (2). If v is an index occurring more
than once in the sequence {{(N)}, then

€o(2) = A:(2)g,(2772) + By (2)

where 4, By, Q47 are obtained from a sequence of (a;, b;, 2,11) of length r
whose corresponding functional equation sequence occurs infinitely often in
(15). The above discussion together with the theorem implies the following
result.

COROLLARY. Let f;, ay, by, D, Q4 Ay, By, and Q0 be as in the first two
paragraphs of this section. Assume that the set

{Gi(z), bl(z)v Q1+.7‘vfi(0)|7: = 0}

s finite and that there are no algebraic solutions of any of the functional equations
(21) f(z) = A(2) f(22) + B(2)

where (A, B, Q) ranges through the triples occurring infinitely often in the doubly
indexed sequence of (A, By, QD). Let 29 = (201, ..., 20,) be an algebraic
point with each zo; lying in the punctured open unit disc and with |z¢], . . .,
|20,| multiplicatively independent. Suppose that for every b = 0, the point zo*® =
(0™, . .., 20,2™) is mot a root of the mumerator nor of the denominator of any
a;(z) and 1s not a root of the denominator of any b;(z). Then the f;(z0) are trans-
cendental numbers.
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For example, suppose that # = 1, the a;(z) are non-zero constants, and the
b:(z) are non-constant polynomials of degree less than p;1. By replacing the
fi(z) and b;(z) by fi(z) — f:(0) and b;(z) — b;(0) respectively, we may sup-
pose that f;(0) = 0,(0) = 0 for all 7+ =2 0. By Equations (17, 18), we know
that the 4;,(z) are non-zero constant polynomials and the B, (z) are non-
zero polynomials of degree less then p¢*'”. In fact, the degree condition on
b.y; implies that each term of b, ;(Q¢7z) in Equation (18) has degree in the
range [p(¢9, ptt3+D) and so By, (z) # 0. By [1, Proposition 3], the functional
equation (21) therefore can have an algebraic solution only if one (and hence
all) its solutions are rational. Counting poles in each member of Equation (21)
shows that rational solutions are polynomial, and degree considerations rule
out polynomial solutions. Thus we conclude that the functional equations
(21) have no algebraic solutions, and so the corollary may be applied. As a
special case, one obtains the assertion made in the introduction.
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