Dow's Principle and Q-Sets

Jörg Brendle

Abstract. A Q -set is a set of reals every subset of which is a relative G_{δ}. We investigate the combinatorics of Q-sets and discuss a question of Miller and Zhou on the size q of the smallest set of reals which is not a Q-set. We show in particular that various natural lower bounds for qare consistently strictly smaller than q .

1 Introduction and Statement of the Main Results

This work is devoted to combinatorial aspects of Q-sets. Such sets play a prominent role in general topology. In fact, the existence of an uncountable Q-set is equivalent to the existence of a separable normal non-metrizable M oore space ([He], see [Ta, Section II] for an overview).

The Baire space ω^{ω} is the set of functions from ω to ω with the product topology (where ω carries the discrete topology); similarly, the Cantor space 2^{ω} is the set of functions from ω to 2 ; elements of ω^{ω} and 2^{ω} are called reals. Thus basic open sets of 2^{ω} are of the form $[\sigma]:=\left\{\mathrm{f} \in 2^{\omega} ; \sigma \subseteq \mathrm{f}\right\}$ where $\sigma \in 2^{<\omega}$ is a finite sequence; an analogous remark applies to ω^{ω}. We use \upharpoonright for restriction, and ${ }^{\wedge}$ for concatenation of sequences (e.g. $\sigma \upharpoonright i, \sigma^{\wedge}\langle n\rangle$). A set $\mathrm{B} \subseteq 2^{<\omega}$ is a branch if it's of the form $\mathrm{B}=\{\sigma ; \sigma \subseteq \mathrm{f}\}$ for some $\mathrm{f} \in 2^{\omega}$. We shall occasionally identify $2^{<\omega}$ and ω; the former inherits a linear order \leq from the latter.

A set of reals $X \subseteq \omega^{\omega}$ (or $X \subseteq 2^{\omega}$) is called a Q-set iff every subset of X is a relative G_{δ}-set (that is, it is the intersection of a G_{δ}-subset of ω^{ω} with X). Let qdenote the size of the smallest set of reals which is not a Q - set. Since every countable set of reals is Q, one has $\omega_{1} \leq \mathrm{q} \leq \mathrm{cwhere}$ cdenotes the cardinality of the continuum. A better lower bound can be gotten as follows.

As usual, let $[\mathrm{F}]^{\lambda}$ denote the collection of subsets of F of size λ for $\lambda \leq|\mathrm{F}|$; similarly, $[F]^{<\lambda}$ stands for the subsets of F of size $<\lambda$. For $A, B \subseteq \omega$, say that A is almost contained in B ($A \subseteq^{*} B$ in symbols) iff $A \backslash B$ is finite. A family $\mathcal{F} \subseteq[\omega]^{\omega}$ has the finite intersection property iff $\cap \mathcal{G}$ is infinite for each finite $\mathcal{G} \subseteq \mathcal{F}$. The pseudointersection number p is the cardinality of the least $\mathcal{F} \subseteq[\omega]^{\omega}$ with the finiteintersection property such that no $\mathrm{A} \in[\omega]^{\omega}$ is almost contained in all members of \mathcal{F}. Let $(\mathrm{P}, \leq$) be a notion of forcing, i.e, a poset. $P \subseteq P$ is called centered iff any finitely many members of P have a common lower bound in P . (P, \leq) is σ-centered iff P can be written as a union of countably many centered subsets. By Bell's Theorem [Be], p is the least cardinal for which Martin's axiom for σ-centered posets fails. Since the natural p.o. for making a subset of a given set of reals a relative G_{δ} is σ-centered (see [Mi 3, Section 5]), it is immediate that $\mathrm{p} \leq \mathrm{q}$. Miller and Zhou ([Mi 2, Problem 11.14], [Mi 3, Question 5.2]) asked whether $\mathrm{p}=\mathrm{q}$. This question was answered

[^0]recently, and rather implicitly, in the negative by A. Dow [Do, Theorem 2.9]. We shall briefly outline what he proved and explain the relationship to the present problem.

Given $\mathcal{A}, \mathcal{B} \subseteq[\omega]^{\omega}$, we say \mathcal{A} and \mathcal{B} are orthogonal (and write $\mathcal{A} \perp \mathcal{B}$) iff $A \cap B$ is finite for all $\mathrm{A} \in \mathcal{A}$ and $\mathrm{B} \in \mathcal{B}$. We say the pair $\langle\mathcal{A}, \mathcal{B}\rangle$ can be weakly separated iff there is $\mathrm{D} \subseteq \omega$ such that $D \cap A$ is finite for all $A \in \mathcal{A}$, yet $D \cap B$ is infinite for all $B \in \mathcal{B}$. (Note this is not symmetric.) Dow's principle holds for a cardinal κ iff any orthogonal pair $\langle\mathcal{A}, \mathcal{B}\rangle$ with $|\mathcal{A} \cup \mathcal{B}| \leq \kappa$ can beweakly separated. Let dp be the least cardinal for which Dow's principle fails. Using again Bell's characterization of p, we see easily $p \leq d p$. Call $A, B \in[\omega]^{\omega}$ almost disjoint iff $\mathrm{A} \cap \mathrm{B}$ is finite; $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (a.d.) family iff its members are pairwise almost disjoint. Say the almost disjointness principle holds for κ iff for any a.d. family \mathcal{A} of size $\leq \kappa$ and any $\mathcal{B} \subseteq \mathcal{A}$, the pair $\langle\mathcal{B}, \mathcal{A} \backslash \mathcal{B}\rangle$ can be weakly separated. Let ap denote the smallest cardinal for which the almost disjointness principle fails. Clearly $\mathrm{dp} \leq \mathrm{ap}$. The following is also folklore.

Lemma $1.1 \mathrm{ap} \leq \mathrm{q}$

Proof Let $X \subseteq 2^{\omega}$ be a set of reals of size less than ap, and let $Y \subseteq X$. Given $f \in 2^{\omega}$, let $\mathrm{B}_{\mathrm{f}}=\left\{\sigma \in 2^{<\omega} ; \sigma \subseteq \mathrm{f}\right\}$ be the branch corresponding to f . Apply the almost disjointness principleto find $D \subseteq 2^{<\omega}$ weakly separating thepair $\left\langle\left\{B_{f} ; f \in X \backslash Y\right\}\right.$, $\left.\left\{B_{f} ; f \in Y\right\}\right\rangle$. Let D_{n} be D with the first n elements removed. Put $\mathrm{U}_{\mathrm{n}}=\bigcup\left\{[\sigma] ; \sigma \in \mathrm{D}_{\mathrm{n}}\right\}$, and $\mathrm{G}=\bigcap_{\mathrm{n}} \mathrm{U}_{\mathrm{n}}$. It is immediate that $G \cap X=Y$.

Since Dow [Do, Theorem 2.9] proved the consistency of $p<d p$, the consistency of $p<q$ is now immediate. However, this raises natural questions about the relationship between dp , ap and q . The main portion of this work is devoted to answering them by showing

Theorem A It is consistent to assume that $\mathrm{dp}<\mathrm{ap}$.

Theorem B It is consistent to assume that $\mathrm{ap}<\mathrm{q}$.
Section 2 is devoted to the proofs of these results. In Section 3 we shall make a few comments about related cardinals and about upper bounds for ap and for q.

Our notation is fairly standard. We refer to [Je] and [Ku] for set theory in general and forcing in particular, to [Mi 1, Section 4], [Ta, Section II] and [vD, Section 9] for Q-sets and their relatives, and to [vD, Section 3], [Va] and [BJ] for results on cardinal invariants. For almost all always means for all but $<\kappa$ many where κ is a regular cardinal which is clear from the context. Further notation is introduced when needed.

2 The Main Consistency Proofs

The main technical device for our consistency proofs are rank arguments of the type common in descriptive set theory. The use of such arguments in forcing constructions can be traced back at least to [BD] where they were applied to Hechler forcing. Our approach is quite similar to the one in [BJS, Section 2] where almost disjoint families were combined with rank arguments like in the present work.

Let $\mathcal{A}=\left\{\mathrm{A}_{\alpha} ; \alpha<\kappa\right\}$ be an almost disjoint family of subsets of ω. The forcing notion $\mathrm{Q}(\mathcal{A})$ consists of all triples (σ, ϕ, Γ) such that $\sigma \in \omega^{\uparrow<\omega}, \phi: \omega^{\uparrow<\omega} \rightarrow \omega, \Gamma \in[\kappa]^{<\omega}$ and $\sigma(\mathrm{i})=\phi(\sigma \backslash \mathrm{i})$ for all $\mathrm{i} \in|\sigma|$. Here, $\omega^{\uparrow<\omega}$ denotes the set of strictly increasing finite sequences of natural numbers. The p.o. is given by: $(\tau, \psi, \Delta) \leq(\sigma, \phi, \Gamma)$ iff $\tau \supseteq \sigma, \psi \geq \phi$ everywhere, $\Delta \supseteq \Gamma$ and $\tau(\mathrm{i}) \notin \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha}$ for all $\mathrm{i} \in|\tau| \backslash|\sigma|$. Clearly $\mathrm{Q}(\mathcal{A})$ is σ-centered. It generically adds a dominating real $\mathrm{d}_{\mathcal{A}} \in \omega^{\omega}$-namely $\mathrm{d}_{\mathcal{A}}=\bigcup\{\sigma ;(\sigma, \phi, \Gamma) \in \mathrm{G}$ for some ϕ and $\Gamma\}$ where G is the generic filter-such that range($\left.\mathrm{d}_{\mathcal{A}}\right)$ is almost disjoint from all members of \mathcal{A}. (Recall that a real $d \in \omega^{\omega}$ is said to be dominating over a model V of ZFC iff for all $f \in \omega^{\omega} \cap V$, we have $d(n) \geq f(n)$ for almost all n.) Furthermore, given any $B \in[\omega]^{\omega}$ from the ground model which does not belong to the ideal generated by \mathcal{A}, we have, again by an easy genericity argument, that range $\left(d_{\mathcal{A}}\right) \cap B$ is infinite.

We now introduce a notion of rank for $\mathrm{Q}(\mathcal{A})$. $\mathrm{Fix} \Gamma \in[\kappa]^{<\omega}$ and $\mathrm{Q}(\mathcal{A})$-name D for a subset of ω. Given $\ell \in \omega$, we recursively define the rank $\rho_{\ell}=\rho_{\ell, \Gamma, \dot{D}}$ for all $\tau \in \omega^{\uparrow<\omega}$.

$$
\begin{aligned}
\rho_{\ell}(\tau)=0 & \Longleftrightarrow \mathrm{q} \|- \text { " } \ell \in \dot{\mathrm{D}} \text { " for someq }=\left(\tau, \phi, \Gamma^{\prime}\right) \in \mathrm{Q}(\mathcal{A}) \\
\text { for } \rho>0: \quad \rho_{\ell}(\tau) \leq \rho & \Longleftrightarrow \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{n}\rangle\right)<\rho \text { holds for infinitely many } \mathrm{n} \in \omega \backslash \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha} \\
\rho_{\ell}(\tau)=\infty & \Longleftrightarrow \text { there is no } \rho<\omega_{1} \text { such that } \rho_{\ell}(\tau) \leq \rho .
\end{aligned}
$$

Given $\tau \in \omega^{\uparrow<\omega}$ and $\mathrm{i} \in \omega$, we define the set

$$
\mathrm{D}_{\tau, \mathrm{i}}=\left\{\ell ; \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{n}\rangle\right)<\omega_{1} \text { for somen } \in \omega \backslash \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha} \text { with } \mathrm{n} \geq \mathrm{i}\right\} .
$$

Sets of the form $D_{\tau, i}$ can be thought of as approximations to \dot{D}. They play a crucial role in the independence arguments below.

We first deal with the consistency of $\mathrm{dp}<\mathrm{ap}$. For this, we carry out a finite support iteration $\left\langle\mathbf{P}_{\gamma}, \dot{\mathbf{Q}}_{\gamma} ; \gamma<\lambda\right\rangle$ of ccc p.o.'s over a model for GCH where $\lambda \geq \omega_{2}$ is a regular cardinal and we have

$$
\|-_{\gamma} \text { " } \dot{\mathrm{Q}}_{\gamma} \text { is of the form } \mathrm{Q}(\dot{\mathcal{A}}) \text { for some a.d. family } \dot{\mathcal{A}} \text { of size }<\lambda \text { ". }
$$

Using a standard book-keeping argument as in the consistency proof of Martin's axiom (see [Ku, Chapter VIII, Section 6]), we can guarantee that all small a.d. families are taken care of along the iteration. By the properties of the forcing $\mathrm{Q}(\mathcal{A})$, we then see that $\mathrm{ap}=\mathrm{c}=\lambda$.

To show that $\mathrm{dp}=\omega_{1}$ in the resulting model, we use the following concept. Call a pair $\langle\mathcal{B}, \mathcal{C}\rangle=\left\langle\left\{\mathrm{B}_{\alpha} ; \alpha<\omega_{1}\right\},\left\{\mathrm{C}_{\alpha} ; \alpha<\omega_{1}\right\}\right\rangle$ of subfamilies of $[\omega]^{\omega}$ twisted iff

- $\mathrm{B}_{\alpha} \subset^{*} \mathrm{~B}_{\beta}$ for $\alpha<\beta$,
- \mathcal{C} is an almost disjoint family,
- $\mathrm{B}_{\alpha} \cap \mathrm{C}_{\beta}$ is finite for all α, β, and
- whenever $\mathrm{D} \in[\omega]^{\omega}$ has infinite intersection with uncountably many C_{α} 's, then $\mathrm{D} \cap \mathrm{B}_{\beta}$ is infinite for some(for almost all) β^{\prime} 's.

If there is a twisted family $\langle\mathcal{B}, \mathcal{C}\rangle$, then $\mathrm{dp}=\omega_{1}$ is immediate. Hence it suffices to prove the existence of a twisted family in the forcing extension. This will be done in three steps:
we show there is such a family in the ground model, we prove any twisted family remains twisted after forcing with some $\mathrm{Q}(\mathcal{A})$ - this is the main technical result-, and we show that twistedness is preserved in limit steps of finite support iterations. The first and the last of these steps are standard arguments. However, we include proofs to make our work self-contained.

Lemma 2.1 Assume CH . Then there is a twisted family $\langle\mathcal{B}, \mathcal{C}\rangle=\left\langle\left\{\mathrm{B}_{\alpha} ; \alpha<\omega_{1}\right\},\left\{\mathrm{C}_{\alpha}\right.\right.$: $\left.\left.\alpha<\omega_{1}\right\}\right\rangle$.

Proof Let $\left\{\mathrm{D}_{\alpha} ; \alpha<\omega_{1}\right\}$ enumerate $[\omega]^{\omega}$. \mathcal{B} and \mathfrak{C} will be constructed recursively to satisfy all four requirements of "twistedness". Assume $\left\{\mathrm{B}_{\beta} ; \beta<\alpha\right\}$ and $\left\{\mathrm{C}_{\beta} ; \beta<\alpha\right\}$ have been produced as required.

If D_{α} is almost contained in the union of finitely many C_{β} 's, we choose B_{α} and C_{α} to satisfy the first three requirements of "twistedness". This is easy because α is countable.

If D_{α} is not almost contained in the union of finitely many C_{β} 's, then we can find first $\mathrm{D}^{\prime} \subseteq \mathrm{D}_{\alpha}$ infinite which is almost disjoint from all $\mathrm{C}_{\beta}{ }^{\prime} \mathrm{S}$, and then B_{α} almost containing D^{\prime} and all B_{β} and still almost disjoint from all C_{β} 's. Finally choose C_{α} almost disjoint from all C_{β} 's and from B_{α}.

This completes the recursive construction. It is immediate that the fourth requirement of "twistedness" is satisfied at the end.

Main Lemma 2.2 If \mathcal{A} is an almost disjoint family, then $\mathrm{Q}(\mathcal{A})$ preserves twisted familiesi.e., whenever $\langle\mathcal{B}, \mathcal{C}\rangle$ is twisted (in the ground model), then

$$
\|-_{Q(\mathcal{A})} "\langle\mathcal{B}, \mathcal{C}\rangle \text { is twisted". }
$$

Proof Let \dot{D} bea $\mathrm{Q}(\mathcal{A})$-name for an infinite subset of ω, and let $p \in \mathrm{Q}(\mathcal{A})$ such that

$$
\mathrm{p} \|- \text { " } \mathrm{D} \cap \mathrm{~B}_{\beta} \text { is finitefor all (uncountably many) } \beta^{\prime} \mathrm{s} \text { ". }
$$

We have to find $\mathrm{q} \leq \mathrm{p}$ such that

$$
\mathrm{q} \|- \text { "D } \cap \mathrm{C}_{\alpha} \text { is finite for almost all } \alpha^{\prime} \mathrm{S}^{\prime} \text {. }
$$

For each $\beta<\omega_{1}$, we can find $\mathrm{q}_{\beta} \leq \mathrm{p}$ and $\mathrm{k}_{\beta} \in \omega$ such that

$$
\mathrm{a}_{\beta} \|-" \mathrm{D}^{\mathrm{D}} \cap \mathrm{~B}_{\beta} \subseteq \mathrm{k}_{\beta} \text { ". }
$$

Using standard pruning arguments (Δ-system lemma), we can assume without loss that, for all β, we have $k=k_{\beta}$ for some $k, q_{\beta}=\left(\sigma, \phi_{\beta}, \Gamma_{\beta}\right)$ for some σ, and $\Gamma_{\beta}=\Gamma \cup \Delta_{\beta}$ for some Γ where the Δ_{β} are pairwise disjoint. Since we must have $(\sigma, \chi, \Gamma) \leq \mathrm{p}$ for some χ with $\phi_{\beta} \geq \chi$ for all β, we may assume $\mathrm{p}=(\sigma, \chi, \Gamma)$.

Given $\tau \supseteq \sigma$ and $\phi^{\prime} \geq \chi$ as well as $\Gamma^{\prime} \supseteq \Gamma$, say that τ is compatiblewith $q^{\prime}=\left(\sigma, \phi^{\prime}, \Gamma^{\prime}\right)$ iff $\tau(\mathrm{i}) \geq \phi^{\prime}(\tau \upharpoonright \mathrm{i})$ and $\tau(\mathrm{i}) \notin \bigcup_{\alpha \in \Gamma^{\prime}}, \mathrm{A}_{\alpha}$ for all $|\sigma| \leq \mathrm{i}<|\tau|$ (this holds of course iff $\left(\tau, \phi^{\prime \prime}, \Gamma^{\prime}\right) \leq\left(\sigma, \phi^{\prime}, \Gamma^{\prime}\right)$ for some $\left.\phi^{\prime \prime}\right)$. In case $\Gamma^{\prime}=\Gamma$, we also say τ is compatible with ϕ^{\prime}.

Note that σ is (trivially) compatible with uncountably many (in fact, with all) $\mathrm{q}_{\beta}{ }^{\prime} \mathrm{s}$. Assume $\tau \supseteq \sigma$ is compatible with uncountably many q_{β} 's. Since the Δ_{β} 's are pairwise disjoint, we can easily find an ℓ such that $\tau^{\wedge}\langle\mathrm{n}\rangle$ is compatible with uncountably many q_{β} 's for all $\mathrm{n} \in \omega \backslash \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha}$ with $\mathrm{n} \geq \ell$.

These remarks allow us to construct recursively $\phi \geq \chi$ such that whenever τ is compatible with ϕ, then it's also compatiblewith uncountably many q_{β} 's. Putq $=(\sigma, \phi, \Gamma) \leq \mathrm{p} .(\dagger)$

For $\ell \in \omega$, let ρ_{ℓ} denote the rank function $\rho_{\ell, \Gamma, \dot{D}}$ as defined at the beginning of this section. The $D_{\tau, i}$ are defined accordingly. Fix τ and ℓ such that $\rho_{\ell}(\tau)<\omega_{1}$. Call $\beta \in \omega_{1}$ (τ, ℓ)-bad iff the set $\left\{\mathrm{n} \in \omega \backslash \bigcup_{\alpha \in \Gamma_{\beta}} \mathrm{A}_{\alpha} ; \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{n}\rangle\right)<\rho_{\ell}(\tau)\right\}$ is finite. At most one β can be (τ, ℓ)-bad. Hence there are at most countably many β^{\prime} 's which are (τ, ℓ)-bad for some τ and ℓ, and we may as well assume, without loss, that no β is (τ, ℓ)-bad for any τ, ℓ. (\ddagger)

We now distinguish two cases the first of which yields a contradiction.
Case 1 There is τ compatible with ϕ such that for uncountably many α 's, the intersection $\mathrm{D}_{\tau, \mathrm{i}} \cap \mathrm{C}_{\alpha}$ is infinite for all i .

Fix such τ. By (\dagger), we can assume, without loss, that τ is compatible with all q_{β} 's. Fix i so large that there are uncountably many pairs β, β^{\prime} such that $\bigcup_{\alpha \in \Delta_{\beta}} \mathrm{A}_{\alpha} \cap \bigcup_{\alpha \in \Delta_{\beta^{\prime}}} \mathrm{A}_{\alpha} \subseteq \mathrm{i}$ and $\phi_{\beta}(\tau), \phi_{\beta^{\prime}}(\tau) \leq \mathrm{i}$. Then use the twistedness of $\langle\mathcal{B}, \mathcal{C}\rangle$ to find β_{0} such that $\mathrm{B}_{\beta_{0}} \cap \mathrm{D}_{\tau, \mathrm{i}}$ is infinite. Next find $\beta, \beta^{\prime} \geq \beta_{0}$ with $\bigcup_{\alpha \in \Delta_{\beta}} \mathrm{A}_{\alpha} \cap \bigcup_{\alpha \in \Delta_{\beta^{\prime}}} \mathrm{A}_{\alpha} \subseteq i$ and $\phi_{\beta}(\tau), \phi_{\beta^{\prime}}(\tau) \leq \mathrm{i}$. Let $\overline{\mathrm{B}}_{\gamma}=\left\{\ell \in \mathrm{B}_{\beta_{0}} ; \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{n}\rangle\right)<\omega_{1}\right.$ for somen $\in \omega \backslash \bigcup_{\alpha \in \Gamma_{\gamma}} \mathrm{A}_{\alpha}$ with $\left.\mathrm{n} \geq \mathrm{i}\right\}$ for $\gamma \geq \beta_{0}$. Then $\overline{\mathrm{B}}_{\beta} \cup \overline{\mathrm{B}}_{\beta^{\prime}-1}=\mathrm{B}_{\beta_{0}} \cap \mathrm{D}_{\tau, \mathrm{i}}$, hence either $\overline{\mathrm{B}}_{\beta}$ or $\overline{\mathrm{B}}_{\beta^{\prime}}$ is infinite. Assume without loss the former. Fix $\ell \in \bar{B}_{\beta} \cap \mathrm{B}_{\beta}$ with $\ell \geq \mathrm{k}$ and $\mathrm{n} \in \omega \backslash \bigcup_{\alpha \in \Gamma_{\beta}} \mathrm{A}_{\alpha}, \mathrm{n} \geq \mathrm{i}$, with $\rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{n}\rangle\right)<\omega_{1}$.

We now construct recursively natural numbers $n_{j}, j \in m$, with $n_{0}=n<n_{1}<\cdots<$ $\mathrm{n}_{\mathrm{m}-1}, \rho_{\ell}\left(\tau^{\wedge}\left\langle n_{0}\right\rangle\right)>\rho_{\ell}\left(\tau^{\wedge}\left\langle\mathrm{n}_{0} \mathrm{n}_{1}\right\rangle\right)>\cdots>\rho_{\ell}\left(\tau^{\wedge}\left\langle\mathrm{n}_{0} \cdots \mathrm{n}_{\mathrm{m}-1}\right\rangle\right)=0$ and $\tau^{\wedge}\left\langle\mathrm{n}_{0} \cdots \mathrm{n}_{\mathrm{m}-1}\right\rangle$ compatible with q_{β} : by construction, we know that τ and $\tau^{\wedge}\langle\mathrm{n}\rangle$ are compatible with q_{β}; since β is not $\left(\tau^{\wedge}\left\langle n_{0} \cdots n_{j}\right\rangle, \ell\right)$-bad by (\ddagger), we can find n_{j+1} such that $\rho_{\ell}\left(\tau^{\wedge}\left\langle\mathrm{n}_{0} \cdots \mathrm{n}_{\mathrm{j}}\right\rangle\right)>$ $\rho_{\ell}\left(\tau^{\wedge}\left\langle n_{0} \cdots n_{j+1}\right\rangle\right)$ and $\tau^{\wedge}\left\langle n_{0} \cdots n_{j+1}\right\rangle$ is compatible with q_{β}; thus the construction can be carried out. By definition of ρ_{ℓ}, there is $q^{\prime}=\left(\tau^{\wedge}\left\langle n_{0} \cdots n_{m-1}\right\rangle, \phi^{\prime}, \Gamma^{\prime}\right)$ such that

$$
\mathrm{q}^{\prime} \|-" \ell \in \dot{\mathrm{D}} " .
$$

Now, q^{\prime} is compatible with q_{β}, but, by ($\star \star$), any common extension forces contradictory statements. Hence case 1 fails.

Case 2 For all τ compatible with ϕ and all but countably many α 's, there is $\mathrm{i}=\mathrm{i}_{\tau, \alpha}$ such that the set $\mathrm{D}_{\tau,}$ i is almost disjoint from C_{α}.

For all such τ, let $\Theta_{\tau}=\left\{\alpha ; \mathrm{D}_{\tau, \mathrm{i}} \cap \mathrm{C}_{\alpha}\right.$ is infinite for all i$\}$. Let $\Theta=\bigcup_{\tau} \Theta_{\tau}$. Θ is countable by assumption. We claim that

$$
\mathrm{q} \|-" \dot{\mathrm{D}} \cap \mathrm{C}_{\alpha} \text { is finite for } \alpha \in \omega_{1} \backslash \Theta \text { " }
$$

which shows (*).
To see this, let $\mathrm{r} \leq \mathrm{q}, \mathrm{r}=(\tau, \psi, \Delta)$. Let $\alpha \in \omega_{1} \backslash \Theta$. Put $\mathrm{E}:=\mathrm{D}_{\tau, \mathrm{i}_{7, \alpha}} \cap \mathrm{C}_{\alpha}$ which is finite. We shall construct (recursively) $\psi^{\prime} \geq \psi$ such that $\rho_{\ell}\left(\tau^{\prime}\right)=\infty$ for all $\tau^{\prime} \supseteq \tau$ compatible with ψ^{\prime} and all $\ell \in \mathrm{C}_{\alpha} \backslash \mathrm{E}$. A fortiori, this means that

$$
\mathrm{r}^{\prime} \|- \text { "Dं } \cap \mathrm{C}_{\alpha} \subseteq \mathrm{E}^{\prime}
$$

wherer $r^{\prime}=\left(\tau, \psi^{\prime}, \Delta\right) \leq \mathrm{r}$, as required.
If $\ell \in \mathrm{C}_{\alpha} \backslash \mathrm{E}$, and thus $\ell \notin \mathrm{D}_{\tau, \mathrm{i}_{, \alpha}}$, we have $\rho_{\ell}(\tau)=\infty$ by definition of ρ_{ℓ} and of $\mathrm{D}_{\tau, \mathrm{i}_{\tau},}$. This takes care of the basic step of the recursive construction. To deal with the induction step, assume ψ^{\prime} has been defined for all τ^{\prime} of length $<\mathrm{m}$ (where $\mathrm{m} \geq|\tau|$). Fix $\tau^{\prime} \supseteq \tau$ of length m compatible with ψ^{\prime}; then by inductive assumption $\rho_{\ell}\left(\tau^{\prime}\right)=\infty$ for all $\ell \in \mathrm{C}_{\alpha} \backslash \mathrm{E}$. We know $\rho_{\ell}\left(\tau^{\prime}\langle\mathrm{n}\rangle\right)=\infty$ for all $\ell \notin \mathrm{D}_{\tau^{\prime}, \mathrm{i}_{\tau^{\prime}, \alpha}}$ and all $\mathrm{n} \geq \mathrm{i}_{\tau^{\prime}, \alpha}$. Also $\mathrm{D}_{\tau^{\prime}, \mathrm{i}_{\tau^{\prime}, \alpha}} \cap \mathrm{C}_{\alpha}$ is finite. Let $\ell \in\left(\mathrm{D}_{\tau^{\prime}, \mathrm{i}_{\tau^{\prime}, \alpha}} \cap \mathrm{C}_{\alpha}\right) \backslash \mathrm{E}$; then $\rho_{\ell}\left(\tau^{\prime}\right) \stackrel{\mathrm{I}^{\prime}, \alpha}{=}$; thus there are only finitely many n with $\rho_{\ell}\left(\tau^{\prime \wedge}\langle\mathrm{n}\rangle\right)<\omega_{1}$; hence we can find $\mathrm{i} \geq \mathrm{i}_{\tau^{\prime}, \alpha}$ such that for all $\mathrm{n} \geq \mathrm{i}$ and all $\ell \in \mathrm{C}_{\alpha} \backslash \mathrm{E}$, we have $\rho_{\ell}\left(\tau^{\prime \prime}\langle\mathrm{n}\rangle\right)=\infty$. Let $\psi^{\prime}\left(\tau^{\prime}\right)=\mathrm{i}$; then ψ^{\prime} is as required. This completes the construction of ψ^{\prime}, and the proof of the main lemma.

Iteration Lemma 2.3 Twisted families are preserved in limit steps of finite support iterations of cccp.o.'s- i.e., whenever $\left\langle\mathbf{P}_{\gamma}, \dot{\mathbf{Q}}_{\gamma} ; \gamma<\delta\right\rangle, \delta$ a limit ordinal, is such an iteration and $\langle\mathcal{B}, \mathcal{C}\rangle$ satisfies

$$
\|-_{\gamma}{ }^{"}\langle\mathcal{B}, \mathrm{C}\rangle \text { is twisted" }
$$

for all $\gamma<\delta$, then

$$
\|-_{\delta} "\langle\mathcal{B}, \mathcal{C}\rangle \text { is twisted". }
$$

Proof Since new countable subsets of ω can appear only in limit steps of countable cofinality in such iterations, we may assume without loss that $\delta=\omega$.

Let \dot{D} bea P_{ω}-name for an infinite subset of ω, and let $p \in P_{\omega}$ such that

$$
\mathrm{p} \|-_{\omega} \text { " } \mathrm{D} \cap \mathrm{~B}_{\beta} \text { is finite for all } \beta^{\prime} \mathrm{s}^{\prime} \text {. }
$$

For each $\beta<\omega_{1}$ find $\mathrm{p}_{\beta} \leq \mathrm{p}$ and $\mathrm{k}_{\beta} \in \omega$ such that

$$
\mathrm{p}_{\beta} \|\left.\right|_{\omega} \text { " } \dot{\mathrm{D}}^{\circ} \cap \mathrm{B}_{\beta} \subseteq \mathrm{k}_{\beta} \text { ". }
$$

Without loss thereisn such that $p_{\beta} \in P_{n}$ for all β. Since P_{n} is ccc, there is a P_{n}-generic filter G_{n} such that $\left\{\beta ; \mathrm{p}_{\beta} \in \mathrm{G}_{n}\right\}$ is uncountable. Step into $V\left[\mathrm{G}_{n}\right]$, and let $\mathrm{D}=$ $\left\{\ell ; \mathrm{q} \|-\right.$ " $\ell \in \mathrm{D}^{\dot{\prime}}$ " for some $\mathrm{q} \in \mathrm{P}_{\omega}$ with $\left.\mathrm{q} \upharpoonright \mathrm{n} \in \mathrm{G}_{n}\right\}$. For any β with $\mathrm{p}_{\beta} \in \mathrm{G}_{\mathrm{n}}$, we have $\mathrm{D} \cap \mathrm{B}_{\beta} \subseteq \mathrm{k}_{\beta}$. Thus $\left|\mathrm{D} \cap \mathrm{C}_{\alpha}\right|<\omega$ for all but countably many α 's. This means that
$\|_{[\mathrm{n}, \omega)}$ " $\dot{D} \cap \mathrm{C}_{\alpha}$ is infinite for at most countably many $\alpha^{\prime} \mathrm{s}^{\prime}$,
as required.
Putting together the three preceding lemmata, we can prove Theorem A.
Theorem 2.4 Let $\lambda>\omega_{1}$ be regular. It is consistent that $\mathrm{dp}=\omega_{1}<\lambda=\mathrm{ap}=\mathrm{c}$
We now proceed to show the consistency of $\mathrm{ap}<\mathrm{q}$. We perform again a finite support iteration of length $\lambda \geq \omega_{2}$ of p.o.'s of the form Q (\mathcal{A}) over a model for GCH. However we only deal with $\mathcal{A} \subseteq\left[2^{<\omega}\right]^{\omega}$ of size $<\lambda$ which consist of branches, and we take care of all such \mathcal{A} 's by a book-keeping argument. By arguments like those at the beginning of our work (Lemma 1.1), this will guarantee that $\mathrm{q}=\mathrm{c}=\lambda$.

To see that ap $=\omega_{1}$ after theiteration, we need thefollowing device. Call a pair $\langle\mathcal{B}, \mathcal{C}\rangle=$ $\left\langle\left\{\mathrm{B}_{\alpha} ; \alpha<\omega_{1}\right\},\left\{\mathrm{C}_{\alpha} ; \alpha<\omega_{1}\right\}\right\rangle$ of infinite subsets of ω intertwined iff

- $\mathcal{B} \cup \mathcal{C}$ is an almost disjoint family, and
- whenever $\mathrm{D} \in[\omega]^{\omega}$ has infinite intersection with uncountably many C_{α} 's, then $\mathrm{D} \cap \mathrm{B}_{\beta}$ is infinite for almost all β^{\prime} s.

If there is an intertwined family, then obviously $\mathrm{ap}=\omega_{1}$. Therefore we proceed to show the existence of such a family in the forcing extension. The proof of the following lemma is tedious, but straightforward, and therefore left to the reader (cf. Lemma 2.1 which is similar).

Lemma 2.5 Assume CH . Then there is an intertwined family $\langle\mathcal{B}, \mathcal{C}\rangle$.
Main Lemma 2.6 If $\mathcal{A} \subseteq\left[2^{<\omega}\right]^{\omega}$ is a family of branches, then $\mathrm{Q}(\mathcal{A})$ preserves intertwined families- i.e., whenever $\langle\mathcal{B}, \mathcal{C}\rangle$ is intertwined (in the ground model), then

$$
\|-_{Q(\mathcal{A})} \text { " }\langle\mathcal{B}, \mathcal{C}\rangle \text { is intertwined". }
$$

Proof We approach this lemma in a fashion very similar to the proof of Lemma 2.2, and therefore try to be as brief as possible. The five first paragraphs of the former proof can be taken over almost verbatim. We refrain from giving them again, and leave the rare differences to the reader. The treatment of case 2 is also the same, hence we restrict ourselves to dealing with

Case 1 There is τ compatible with ϕ such that for uncountably many $\alpha^{\prime} \mathrm{S}, \mathrm{D}_{\tau, \mathrm{i}} \cap \mathrm{C}_{\alpha}$ is infinite for all i.

Fix such τ compatible with all $\mathrm{g}_{\beta}{ }^{\prime} \mathrm{s}$ (without loss). Let $\Theta=\left\{\alpha\right.$; all $\mathrm{D}_{\tau, \mathrm{i}} \cap \mathrm{C}_{\alpha}$ are infinite $\} \in\left[\omega_{1}\right]^{\omega_{1}}$. For $u \in 2^{<\omega}$ and $i \in \omega$ define

$$
D_{i}^{u}=\left\{\ell ; \rho_{\ell}\left(\tau^{\wedge}\langle t\rangle\right)<\omega_{1} \text { for somet } \in \omega \backslash \bigcup_{\alpha \in \Gamma} A_{\alpha} \text { with } u \subseteq t \text { and } t \geq i\right\} .
$$

(Recall here that we identify $2^{<\omega}$ and ω. Thus " $u \subseteq t$ " refers to the p.o. on $2^{<\omega}$, and " $\mathrm{t} \geq \mathrm{i}$ " refers to the l.o. on ω.) Build a tree $\mathrm{T} \subseteq 2^{<\omega}$ as follows: $\mathrm{u} \in \mathrm{T}$ iff for uncountably many $\alpha \in \Theta$ we have that $\mathrm{D}_{\mathrm{i}}^{\mathrm{u}} \cap \mathrm{C}_{\alpha}$ is infinite for all i . Note that, by assumption, $\rangle \in \mathrm{T}$, and if $\mathrm{t} \in \mathrm{T}$ then either $\mathrm{t}^{\wedge}\langle 0\rangle \in \mathrm{T}$ or $\mathrm{t}^{\wedge}\langle 1\rangle \in \mathrm{T}$. Hence T has an infinite branch, call it $\mathrm{f} \in 2^{\omega}$. Now let, for $\mathrm{n} \in \omega$,

$$
\begin{gathered}
\mathrm{D}_{\mathrm{n}, 0}=\left\{\ell ; \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{t}\rangle\right)<\omega_{1} \text { for somet } \in \omega \backslash \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha} \text { with } \mathrm{f} \upharpoonright \mathrm{n} \subseteq \mathrm{t} \subseteq \mathrm{f}\right\} \text { and } \\
\mathrm{D}_{\mathrm{n}, 1}=\left\{\ell ; \rho_{\ell}\left(\tau^{\wedge}\langle\mathrm{t}\rangle\right)<\omega_{1} \text { for somet } \in \omega \backslash \bigcup_{\alpha \in \Gamma} \mathrm{A}_{\alpha} \text { with } \mathrm{f} \mid \mathrm{n} \subseteq \mathrm{t} \nsubseteq \mathrm{f}\right\} .
\end{gathered}
$$

Again, for all n , we either have $\left|\mathrm{D}_{\mathrm{n}, 0} \cap \mathrm{C}_{\alpha}\right|=\omega$ for uncountably many α or $\left|\mathrm{D}_{\mathrm{n}, 1} \cap \mathrm{C}_{\alpha}\right|=\omega$ for uncountably many α. Note that if $\{\mathrm{f} \mid \mathrm{n} ; \mathrm{n} \in \omega\}=\mathrm{A}_{\alpha}$ for some $\alpha \in \Gamma$, then the second case must hold, for then $D_{n, 1}=D_{0}^{f \dagger n}$. We distinguish the two cases.

Subcasea For all n , we have $\left|\mathrm{D}_{\mathrm{n}, 0} \cap \mathrm{C}_{\alpha}\right|=\omega$ for uncountably many α.

By the preceding remark, there is at most one β_{0} such that $\{\mathrm{f} \upharpoonright \mathrm{n} ; \mathrm{n} \in \omega\}=\mathrm{A}_{\alpha}$ for some $\alpha \in \Gamma_{\beta_{0}}$. Hence we can fix n such that for uncountably many β, we have $\phi_{\beta}(\tau) \leq \mathrm{f} / \mathrm{m}$ and $\mathrm{f} \upharpoonright \mathrm{m} \notin \bigcup_{\alpha \in \Gamma_{\beta}} \mathrm{A}_{\alpha}$ for all $\mathrm{m} \geq \mathrm{n}$; without loss this is true for all β. By intertwinedness of $\langle\mathcal{B}, \mathcal{C}\rangle$ we find β such that $\left|D_{n, 0} \cap B_{\beta}\right|=\omega$. Fix $\ell \in D_{n, 0} \cap B_{\beta}$ with $\ell>k$ and $m \geq n$ with $\rho_{\ell}\left(\tau^{\wedge}\langle f / m\rangle\right)<\omega_{1}$. Then $\tau^{\wedge}\langle f / m\rangle$ is compatible with q_{β}, and we can recursively construct a condition q^{\prime} compatible with q_{β} such that

$$
q^{\prime} \|-" \ell \in \dot{D^{\prime}} ",
$$

a contradiction (see the corresponding argument in the proof of Lemma 2.2 for details).
Subcase b For all n, we have $\left|D_{n, 1} \cap C_{\alpha}\right|=\omega$ for uncountably many α.
Fix n such that for uncountably many β, we have $\phi_{\beta}(\tau) \leq u$ and $u \notin \bigcup_{\alpha \in \Gamma_{\beta}} \mathrm{A}_{\alpha}$ for all $\mathrm{u} \supseteq \mathrm{f} \mid \mathrm{n}$ with $\mathrm{u} \nsubseteq \mathrm{f}$. This is possible sinceeach A_{α} is a branch. Without lossthis is true for all β, and we can again use the intertwinedness of $\langle\mathcal{B}, \mathcal{C}\rangle$ to proceed as before in Subcase a.

This completes the proof of the M ain Lemma.

As before a standard argument shows:

Iteration Lemma 2.7 Intertwined families are preserved in limit steps of finite support iterations of ccc p.o's- i.e., whenever $\left\langle\mathrm{P}_{\gamma}, \dot{\mathrm{Q}}_{\gamma} ; \gamma<\delta\right\rangle, \delta$ a limit ordinal, is such an iteration and $\langle\mathcal{B}, \mathcal{C}\rangle$ satisfies

$$
\|-_{\gamma} "\langle\mathcal{B}, \mathcal{C}\rangle \text { is intertwined" }
$$

for all $\gamma<\delta$, then

$$
\|-_{\delta} "\langle\mathcal{B}, \mathcal{C}\rangle \text { is intertwined". }
$$

We conclude with Theorem B which is the consequence of the three preceding lemmata.
Theorem 2.8 Let $\lambda>\omega_{1}$ be regular. It is consistent that $\mathrm{ap}=\omega_{1}<\lambda=\mathrm{q}=\mathrm{c}$

Remark 2.9 Note that, by generalizing thenotions of "twistedness" and "intertwinedness" appropriately, we can get the consistency of $\kappa=\mathrm{dp}<\mathrm{ap}=\lambda$ and of $\kappa=\mathrm{ap}<\mathrm{q}=\lambda$ for arbitrary regular $\kappa<\lambda$. (In fact, it suffices to use \mathcal{B} of size κ (instead of ω_{1}). Apart from forcings of type $\mathrm{Q}(\mathcal{A})$, the iteration also involves forcings of size $<\kappa$ to guarantee $\mathrm{dp} \geq \kappa$ (ap $\geq \kappa$, respectively). A standard argument shows such forcings do not destroy twistedness (intertwinedness, resp.).) In the same vein, we can even show the consistency of $\kappa=\mathrm{dp}<\lambda=\mathrm{ap}<\mu=$ qfor arbitrary regular $\kappa<\lambda<\mu$.

3 Comments and Q uestions

We shall briefly discuss a few variants of the main cardinal coefficients considered in this work, and then touch upon their relationship to some of the classical cardinal invariants of the continuum. Consider the following restricted ("countable") versions of the cardinals. Let dp_{1} be the size of the minimal $\mathcal{A} \subseteq[\omega]^{\omega}$ such that there is some countable $\mathcal{B} \subseteq[\omega]^{\omega}$ such that $\mathcal{A} \perp \mathcal{B}$ and $\langle\mathcal{A}, \mathcal{B}\rangle$ cannot be weakly separated. Similarly, ap_{1} is the cardinality of
the least $\mathcal{A} \subseteq[\omega]^{\omega}$ such that there is some countable $\mathcal{B} \subseteq[\omega]^{\omega}$ such that $\mathcal{A} \cup \mathcal{B}$ is a.d. and $\langle\mathcal{A}, \mathcal{B}\rangle$ is not weakly separated. Recall that a set of reals $X \subseteq \omega^{\omega}$ is said to bea σ-set iff every F_{σ}-subset of X is a G_{δ}-set; X is called a λ-set iff every countable subset of X is a relative G_{δ}. Given a family of sets of reals $\mathcal{F} \subseteq \mathcal{P}\left(\omega^{\omega}\right)$, let non (\mathcal{F}), the uniformity of \mathcal{F}, denote the size of the smallest set of reals which does not belong to \mathcal{F}. Notice that non $(\lambda$-set) can be considered as a "countable" version of q.

Given $f, g \in \omega^{\omega}$, we say $f \leq^{*} g$ (g eventually dominates f) iff $f(n) \leq g(n)$ for all but finitely many n. Let b, the unbounding number, be the size of the smallest subfamily \mathcal{F} of ω^{ω} such that no $\mathrm{g} \in \omega^{\omega}$ eventually dominates all members of \mathcal{F}. The dominating number d is the size of the smallest subfamily \mathcal{F} of ω^{ω} such that every $g \in \omega^{\omega}$ is eventually dominated by some member of \mathcal{F}. Clearly $\mathrm{b} \leq \mathrm{d}$.

With these conventions one has the following well-known result.
Theorem 3.1 $\mathrm{b}=\mathrm{dp}_{1}=\mathrm{ap}_{1}=\operatorname{non}(\sigma-$ set $)=\operatorname{non}(\lambda$-set $)$.

Proof See[vD, Sections 3 and 9].
This shows that the behaviour of the countable versions substantially differs from the behaviour of the unrestricted versions. The former simply coincide, while the latter are consistently different. This sheds new light on the interest of the results of Section 2.

Corollary $3.2 \mathrm{q} \leq \mathrm{b}$.
Next consider the following restricted versions of the cardinals. dp_{2} is the cardinality of the least $\mathcal{B} \subseteq[\omega]^{\omega}$ such that there is some countable $\mathcal{A} \subseteq[\omega]^{\omega}$ such that $\mathcal{A} \perp \mathcal{B}$ and $\langle\mathcal{A}, \mathcal{B}\rangle$ cannot be weakly separated. Similarly, ap_{2} is the size of the smallest $\mathcal{B} \subseteq[\omega]^{\omega}$ such that for some countable $\mathcal{A} \subseteq[\omega]^{\omega}, \mathcal{A} \cup \mathcal{B}$ is a.d. and $\langle\mathcal{A}, \mathcal{B}\rangle$ is not weakly separated. There is no corresponding version of q because every countable subset of a set of reals is a (relative) F_{σ}. We prove again that these cardinals give us nothing new.

Theorem 3.3 $\mathrm{d}=\mathrm{dp}_{2}=\mathrm{ap}_{2}$.

Proof $\mathrm{dp}_{2} \leq \mathrm{ap}_{2}$ is trivial.
To see $\mathrm{d} \leq \mathrm{dp}_{2}$, take $\kappa<\mathrm{d}, \mathcal{B}=\left\{\mathrm{B}_{\alpha} ; \alpha<\kappa\right\}$ and $\mathcal{A}=\left\{\mathrm{A}_{\mathrm{n}} ; \mathrm{n} \in \omega\right\}$ orthogonal. Given $\alpha<\kappa$, define $\mathrm{f}_{\alpha} \in \omega^{\omega}$ by $\mathrm{f}_{\alpha}(\mathrm{n})=$ the least $\ell>\mathrm{n}$ such that $\left(\bigcup_{\mathrm{n} \leq \mathrm{j}<\ell} \mathrm{A}_{\mathrm{j}} \backslash\right.$ $\left.\bigcup_{i<n} A_{i}\right) \cap B_{\alpha}$ contains an element $<\ell$. (This always exists because we may increase the A_{n}, if necessary, by finitely many points so that they exhaust all of ω.)

Now find $\mathrm{g} \in \omega^{\omega}$ strictly increasing which is not eventually dominated by any member of the family of functions gotten from the f_{α} by taking finite maxima. Let $I_{0}=[0, g(0))$, and, in general, $I_{n}=\left[g^{n}(0), g^{n+1}(0)\right)$, where we put $g^{n+1}(0)=g\left(g^{n}(0)\right)$. Let E be the even and O theodd numbers. Then either for all $\alpha<\kappa$ there areinfinitely many $n \in E$ such that there is $k \in I_{n}$ with $f_{\alpha}(k)<g(k)$, or there are infinitely many $n \in 0$ with this property. (Otherwise we could find α_{0} such that only finitely many $\mathrm{n} \in \mathrm{E}$ have this property and α_{1} such that only finitely many $\mathrm{n} \in 0$ have this property. Then the maximum of $\mathrm{f}_{\alpha 0}$ and $f_{\alpha_{1}}$ would eventually dominate g which contradicts the choice of the latter.) Without loss
assume the former. Put

$$
\left.X=\bigcup_{n \in \omega}\left[\left(\bigcup_{g^{2 n}(0) \leq j<g^{2 n+2}(0)} A_{j}\right\rangle \bigcup_{i<g^{2 n}(0)} A_{i}\right) \cap g^{2 n+2}(0)\right] .
$$

It's obvious that $X \cap A_{n}$ is finite for all $n \in \omega$.
To see $X \cap B_{\alpha}$ is infinite for all $\alpha<\kappa$, find $2 n \in E$ and $k \in I_{2 n}=\left[g^{2 n}(0), g^{2 n+1}(0)\right)$ such that $f_{\alpha}(k)<g(k)$. Then $g^{2 n}(0) \leq k<f_{\alpha}(k)<g(k)<g^{2 n+2}(0)$. Hence $\left(\bigcup_{g^{2 n}(0) \leq j<g^{2 n+2}(0)} A_{j} \backslash \bigcup_{i<g^{2 n}(0)} A_{i}\right) \cap B_{\alpha}$ contains an element less than $g^{2 n+2}(0)$. This must belong to X.

Finally, we show $\mathrm{ap}_{2} \leq \mathrm{d}$. Let $\kappa<\mathrm{ap}_{2}$, and choose $\left\{\mathrm{g}_{\alpha} ; \alpha<\kappa\right\} \subseteq \omega^{\omega}$. We have to find $\mathrm{g} \in \omega^{\omega}$ such that for all $\alpha<\kappa$, we have $\mathrm{g}(\mathrm{n}) \geq \mathrm{g}_{\alpha}(\mathrm{n})$ for infinitely many n . For this let $\mathrm{A}_{\mathrm{n}}=\{\mathrm{n}\} \times \omega$, choose $\mathrm{C}_{\alpha} \subseteq \omega$ a.d. and let $\mathrm{B}_{\alpha}=\left\{\langle\mathrm{i}, \mathrm{j}\rangle ; \mathrm{i} \in \mathrm{C}_{\alpha}\right.$ and $\left.\mathrm{j}=\mathrm{g}_{\alpha}(\mathrm{i})\right\}$. Clearly the A_{n} and the B_{α} are pairwise almost disjoint. Since $\kappa<\operatorname{ap}_{2}$, there is $D \in[\omega \times \omega]^{\omega}$ such that $\mathrm{D} \cap \mathrm{B}_{\alpha}$ is infinitefor all α and $\mathrm{D} \cap \mathrm{A}_{\mathrm{n}}$ is finitefor all n . Let $\mathrm{g}(\mathrm{n})=\max \{\mathrm{j} ;\langle\mathrm{n}, \mathrm{j}\rangle \in \mathrm{D}\}$. Clearly for all α there are infinitely many $\mathrm{n} \in \mathrm{C}_{\alpha}$ with $\mathrm{g}_{\alpha}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})$.

Note that the different characterizations of dp_{1} and dp_{2} (ap_{1} and ap_{2}, resp.) shed new light on the asymmetry in the definition of Dow's principle (of the almost disjointness principle, resp.).

We saw already in Section 1 that Q-sets are closely related to families of branches in $2<\omega$. This makes the following characterization of qplausible.

Proposition $3.4 \mathrm{q}=\min \left\{|\mathcal{A}| ; \mathcal{A} \subseteq\left[2^{<\omega}\right]^{\omega}\right.$ is a family of branches and there is $\mathcal{B} \subseteq \mathcal{A}$ such that $\langle\mathcal{B}, \mathcal{A} \backslash \mathcal{B}\rangle$ is not weakly separated $\}$.

Proof Let ap^{\prime} denote the cardinal on the right-hand side. $\mathrm{ap}^{\prime} \leq \mathrm{q}$ was proved in Lemma 1.1. To see $\mathrm{q} \leq \mathrm{ap}^{\prime}$, fix $\kappa<\mathrm{q}$ and $\mathcal{A}=\left\{\mathrm{A}_{\alpha} ; \alpha<\kappa\right\}$ a family of branches in $2^{<\omega}$; i.e., $\mathrm{A}_{\alpha}=\left\{\mathrm{f}_{\alpha} \upharpoonright \mathrm{n} ; \mathrm{n} \in \omega\right\}$ for some $\mathrm{f}_{\alpha} \in 2^{\omega}$. Given any $\Gamma \subseteq \kappa$, find open sets $\mathrm{U}_{\mathrm{n}} \subseteq 2^{\omega}, \mathrm{n} \in \omega$, with $\mathrm{U}_{\mathrm{n}+1} \subseteq \mathrm{U}_{\mathrm{n}}$ such that $\left\{\mathrm{f}_{\alpha} ; \alpha<\kappa\right\} \cap \bigcap_{\mathrm{n}} \mathrm{U}_{\mathrm{n}}=\left\{\mathrm{f}_{\alpha} ; \alpha \in \Gamma\right\}$. Suppose $U_{\mathrm{n}}=\bigcup_{\mathrm{i}}\left[\sigma_{\mathrm{n}, \mathrm{i}}\right], \sigma_{\mathrm{n}, \mathrm{i}} \in 2^{<\omega}$; we can assume that $\sigma_{\mathrm{n}, \mathrm{i}}$ and $\sigma_{\mathrm{n}, \mathrm{j}}$ are incomparable for $\mathrm{i} \neq \mathrm{j}$ (otherwise throw out the superfluous $\sigma_{\mathrm{n}, \mathrm{i}}$); we can also assume that $\left|\sigma_{\mathrm{n}, \mathrm{i}}\right| \geq \mathrm{n}$ for all i and all n (otherwise split shorter $\sigma_{\mathrm{n}, \mathrm{i}}$ into longer ones). Now let $\mathrm{B}=\left\{\sigma_{\mathrm{n}, \mathrm{i}} ; \mathrm{n}, \mathrm{i} \in \omega\right\}$. It is easily checked that $\left|\mathrm{B} \cap \mathrm{A}_{\alpha}\right|=\omega$ for $\alpha \in \Gamma$ and $\left|\mathrm{B} \cap \mathrm{A}_{\alpha}\right|<\omega$ for $\alpha \in \kappa \backslash \Gamma$.

To get a better upper bound for ap we need the following two cardinals. Let \mathcal{N} denote the ideal of meager subsets of either 2^{ω} or $\omega^{\omega} \cdot \operatorname{cov}(\mathcal{M})$, the covering number of \mathcal{M}, stands for the cardinality of the smallest covering of the real line by meager sets, and add (\mathcal{M}), the additivity of \mathcal{M}, denotes the size of the smallest collection of meager sets whose union is not meager. It's well-known that $\operatorname{add}(\mathcal{M})=\min \{b, \operatorname{cov}(\mathcal{M})\}$; that $\operatorname{cov}(\mathcal{M}) \leq d$; and that $\mathrm{p} \leq \operatorname{add}(\mathcal{M})$ (see [B], Chapter 2] for details).

Proposition $3.5 \mathrm{ap} \leq \operatorname{cov}(\mathcal{M})$.

Proof We use Bartoszyński's characterization of the cardinal $\operatorname{cov}(\mathcal{M})$; that is, $\operatorname{cov}(\mathcal{M})$ is the size of the smallest $\mathcal{F} \subseteq \omega^{\omega}$ such that for each $g \in \omega^{\omega}$ there is $f \in \mathcal{F}$ such that the set $\{n \in \omega ; f(n)=g(n)\}$ is finite. See [B], Theorem 2.4.1].

Diagram 1

Let us take $\kappa<$ ap and $\left\{\mathrm{f}_{\alpha} ; \alpha<\kappa\right\} \subseteq \omega^{\omega}$. Choose $\left\{\mathrm{C}_{\alpha} ; \alpha<\kappa\right\}$ an almost disjoint family of subsets of ω of size κ. Work in $\omega \times \omega$. For $\alpha<\kappa$, let $\mathrm{B}_{\alpha}=\left\{\langle\mathrm{n}, \mathrm{m}\rangle ; \mathrm{n} \in \mathrm{C}_{\alpha}\right.$ and $\left.\mathrm{m}=\mathrm{f}_{\alpha}(\mathrm{n})\right\}$. Also define $\mathrm{A}_{\alpha}=\left\{\langle\mathrm{n}, \mathrm{m}\rangle ; \mathrm{n} \in \mathrm{C}_{\alpha}\right.$ and $\left.\mathrm{m}<\mathrm{f}_{\alpha}(\mathrm{n})\right\}$ for $\alpha<\kappa$. Since $\kappa<\mathrm{ap}$, there is $\mathrm{D} \in[\omega \times \omega]^{\omega}$ which meets all A_{α} only finitely often but intersects all B_{α} infinitely often. Define $g \in \omega^{\omega}$ by $g(n)=\min \{m ;\langle n, m\rangle \in D\}$ if the latter set is non-empty, and arbitrary otherwise. We leave it to the reader to verify that $\left\{n \in C_{\alpha} ; f_{\alpha}(n)=g(n)\right\}$ is infinite for all $\alpha<\kappa$, as required.

Corollary 3.6 ap $\leq \operatorname{add}(\mathcal{M})$.
Whether similar results can be proved about q is open. This problem was first investigated by A. M iller.

Question 3.7 (Miller) $\operatorname{Isq} \leq \operatorname{cov}(\mathcal{M})$?
Given $A, B \in[\omega]^{\omega}$, we say A splits B iff both $A \cap B$ and $B \backslash A$ are infinite. $\mathcal{S} \subseteq[\omega]^{\omega}$ is a splitting family iff for all $B \in[\omega]^{\omega}$ there is $A \in \mathcal{S}$ which splits B. Let s be the size of
the smallest splitting family (the splitting number). It is well-known that $\mathrm{p} \leq \mathrm{s} \leq \mathrm{d}[\mathrm{VD}$, Section 3]. The relationship between the cardinals discussed in this work is illustrated in Diagram 1. There, cardinalsgrow larger as one movesupwardsalong the lines. Let us notice that Dow [Do] proved (implicitly) the consistency of dp > s (simply apply the techniques of [BD] to Dow's forcing). On the other hand, the consistency of $q<\min \{s, \operatorname{add}(\mathcal{M})\}$ is well-known (note that if X is an infinite Q-set, then $2^{|X|}=\mathrm{C}$, hence one can first blow up $2^{\omega_{1}}$ with countable conditions, and then iterate ccc forcing to increase s and $\operatorname{add}(\mathcal{M})$; if $\mathrm{c}<2^{\omega_{1}}$, we will have $\mathrm{q}=\omega_{1}$).

References

[BJ] T. Bartoszyński and H. Judah, Set Theory, On the structure of the real line. A. K. Peters, Wellesley, 1995.
[BD] J. Baumgartner and P. Dordal, Adjoining dominating functions. J. Symbolic Logic 50(1985), 94-101.
[Be] M. G. Bell, On the combinatorial principle P(c). Fund. M ath. 114(1981), 149-157.
[BJS] J. Brendle, H. Judah and S. Shelah, Combinatorial properties of Hechler forcing. Ann. Pure Appl. Logic 58(1992), 185-199.
[Do] A. Dow, On compact separable radial spaces. Preprint, 1996.
[He] R. W. Heath, Screenability, pointwise paracompactness and metrization of M oore spaces. Canad. J. M ath. 16(1964), 763-770.
[Je] T. Jech, Set theory. Academic Press, San Diego, 1978.
[Ku] K. Kunen, Set theory. North-H olland, Amsterdam, 1980.
[Mi1] A. Miller, Special subsets of the real line. Handbook of set-theoretic topology (Eds. K. Kunen and J. E. Vaughan), North-H olland, Amsterdam, 1984, 201-233.
[Mi 2] , Arnie Miller's problem list. In: Set Theory of the Reals (Ed. H. Judah), Israel M athematical Conference Proceedings 6, 1993, 645-654.
[Mi3] , Descriptive Set Theory and Forcing. Springer Lecture Notes in Logic 4, Berlin, Heidelberg, New York, 1995.
[Ta] F. Tall, N ormality versus collectionwise normality. H andbook of set-theoretic topology (Eds. K. Kunen and J. E. Vaughan), North-H olland, Amsterdam, 1984, 685-732.
[vD] E. K. van Douwen, The integers and topology. Handbook of set-theoretic topology (Eds. K. Kunen and J. E. Vaughan), N orth-H olland, Amsterdam, 1984, 111-167.
[Va] J. Vaughan, Small uncountable cardinals and topology. Open problems in topology (Eds. J. van Mill and G. Reed), N orth-H olland, 1990, 195-218.

Department of M athematics
Bradley Hall
Dartmouth College
Hanover, New Hampshire 03755
U.S.A.

The Graduate School of Science and Technology
KobeUniversity
Rokko-dai 1-1,
Nada, Kobe 657-8501
Japan
email:
jobr@michelangelo.mathematik.uni-tuebingen.de email: brendle@pascal.seg.kobe u.ac.jp

[^0]: Received by the editors June 13, 1997; revised M ay 16, 1998.
 AM S subject classification: 03E05, 03E35, 54A 35.
 Keywords: Q-set, cardinal invariants of the continuum, pseudointersection number, M A (σ-centered), Dow's principle, almost disjoint family, almost disjointness principle, iterated forcing.
 ©Canadian M athematical Society 1999.

