ON A PROBLEM RELATED TO THE CONJECTURE OF SENDOV ABOUT THE CRITICAL POINTS OF A POLYNOMIAL

BY
Q. I. RAHMAN AND Q. M. TARIQ

Abstract

Let P be a polynomial of degree n having all its zeros in the closed unit disk. Given that a is a zero (of P) of multiplicity k we seek to determine the radius $\rho(n ; k ; a)$ of the smallest disk centred at a containing at least k zeros of the derivative P^{\prime}. In the case $k=1$ the answer has been conjectured to be 1 and is known to be true for $n \leqq 5$. We prove that $\rho(n ; k ; a) \leqq 2 k /(k+1)$ for arbitrary $k \in \mathbf{N}$ and $n \leqq k+4$.

1. Introduction. We denote by $D\left(z_{0} ; R\right)$ the open disk $\left\{z \in \mathbf{C}:\left|z-z_{0}\right|<R\right\}$ and by $\bar{D}\left(z_{0} ; R\right)$ its closure. While counting the zeros of a function we will always take multiplicity into account. Recently, the second named author considered the following problem:
"Let $a \in \bar{D}(0 ; 1)$ and $k \in \mathbf{N}$. Given an arbitrary polynomial $P(z):=$ $c(z-a)^{k} \Pi_{j=1}^{n-k}\left(z-z_{j}\right)$ of degree $n(>k)$ with $\left|z_{j}\right| \leqq 1$ for $j=1, \ldots$, $n-k$, determine the radius $\rho(n ; k ; a)$ of the smallest (closed) disk centred at a containing at least k zeros of the derivative $P^{\prime \prime \prime}$.
The case $k=1$ of this problem has been investigated by several mathematicians under the title of Sendov's (or Iliev's) conjecture according to which " $\rho(n ; 1 ; a) \leqq 1$ " (for references see [6]; also see [1]). The example $P(z):=$ $z^{n}-1$ shows that $\sup _{0 \leqq|a| \leqq 1} \rho(n ; 1 ; a) \geqq 1$. In general, for any $k \geqq 1$ the disk $D(a ; 2 k /(k+1))$ may contain only $k-1$ zeros of P^{\prime}, namely the $(k-1)$-fold zero at a. For example, if $P(z):=(z+1)(z-1)^{k}$ then P^{\prime} has a $(k-1)$ fold zero at 1 and a simple zero at $-((k-1) /(k+1))$. As another example we may consider

$$
P(z):=\left(z^{2}+2 \frac{(k+1)^{2}-2}{(k+1)^{2}} z+1\right)(z-1)^{k}
$$

whose derivative has a double zero at $-((k-1) /(k+1))$ in addition to a ($k-1$)-fold zero at 1 . The following result which was proved in [10] suggests that " $\rho(n ; k ; a) \leqq 2 k /(k+1)$ " may hold for all $k \in \mathbf{N}$ and all $a \in \bar{D}(0 ; 1)$.

[^0]Theorem A. Let $|a|=1$. If $P(z):=c(z-a)^{k} \prod_{j=1}^{n-k}\left(z-z_{j}\right)$ is a polynomial of degree $n(>k)$ such that $\left|z_{j}\right| \leqq 1$ for $j=1, \ldots, n-k$, then P^{\prime} has at least k zeros in

$$
\bar{D}\left(\frac{a}{k+1} ; \frac{k}{k+1}\right) \subset \bar{D}\left(a ; \frac{2 k}{k+1}\right) .
$$

Four different proofs of Theorem A are known in the case $k=1$ ([3], [8], [4], [7]). In [11] it was shown that $\rho(n ; k ; a) \leqq 2 k /(k+1)$ for all $a \in \bar{D}(0: 1)$ and all $k \in \mathbf{N}$ if $k+1 \leqq n \leqq(k+1)^{2}$ (and so if $k+1 \leqq n \leqq k+3$). The result says in particular that if $k=1$ then $\bar{D}(a ; 1)$ contains at least one zero of P^{\prime} for $n \leqq 4$. However, more is known in the case $k=1$. In fact, it was shown by Meir and Sharma [7] that if $k=1$ and $n=5$ then $\bar{D}\left(a ;\left(|a|+\sqrt{2-|a|^{2}}\right) / 2\right)$ contains at least one zero of P^{\prime}, i.e.

$$
\begin{equation*}
\rho(5: 1: a) \leqq\left(|a|+\sqrt{2-|a|^{2}}\right) / 2 \leqq 1 \tag{1}
\end{equation*}
$$

The purpose of this paper is to prove the following extension of (1).
Theorem 1. Let $a \in \bar{D}(0 ; 1)$ and k an integer $\geqq 2$. If

$$
P(z):=c(z-a)^{k} \prod_{\nu=1}^{4}\left(z-z_{\nu}\right)
$$

is a polynomial of degree $k+4$ such that $\left|z_{\nu}\right| \leqq 1$ for $\nu=1, \ldots, 4$, then P^{\prime} has at least k zeros in $\bar{D}\left(a ; \frac{2}{3}\left(|a|+\sqrt{2-|a|^{2}}\right)\right.$ if $k=2$ and in $\bar{D}\left(a ;\left(\sqrt{(k+1)^{2}-|a|^{2}(2 k+1)}+|a| k\right) /(k+1)\right)$ if $k \geqq 3$.

Remark 1. Theorem 1 in conjunction with (1) implies that $\rho(k+4 ; k ; a) \leqq$ $2 k /(k+1)$ for all $k \in \mathbf{N}$.
2. Auxiliary results. For the proof of our theorem we require two lemmas (Lemmas 2 and 3) in addition to Theorem A. Lemma 1 which is a weak version of the well-known Cohn rule [2, p. 7] is needed for the proof of Lemma 3.

Lemma 1. If $\left|\lambda_{0}\right|>\left|\lambda_{n}\right|$, then the polynomial

$$
\Lambda(z):=\lambda_{0}+\lambda_{1} z+\ldots+\lambda_{n} z^{n}
$$

(of degree $\leqq n$) can have a zero in $\bar{D}(0 ; 1)$ only if the polynomial

$$
\Lambda_{1}(z):=\sum_{\nu=0}^{n-1}\left(\bar{\lambda}_{0} \lambda_{\nu}-\lambda_{n} \bar{\lambda}_{n-\nu}\right) z^{\nu}
$$

(of degree $\leqq n-1$) has one also.
Here is a short proof which we do not claim to be new.
Let $\Lambda_{1}(z) \neq 0$ in $\bar{D}(0 ; 1)$. Then Λ cannot have a zero on $|z|=1$. For if $\Lambda\left(e^{i \alpha}\right)=0$, then

$$
\Lambda_{1}\left(e^{i \alpha}\right)=\bar{\lambda}_{0} \Lambda\left(e^{i \alpha}\right)-\lambda_{n} e^{i n \alpha} \overline{\Lambda\left(e^{i \alpha}\right)}=0
$$

Hence if $\left.\Lambda^{*}(z):=z^{n} \overline{\Lambda(1 / \bar{z}}\right)$ then for $|z|=1$ we have $|\Lambda(z)|=\left|\Lambda^{*}(z)\right|>0$ and so $\left|\bar{\lambda}_{0} \Lambda(z)\right|>\left|\lambda_{n} \Lambda^{*}(z)\right|$. By Rouché's theorem Λ has the same number of zeros in $D(0 ; 1)$ as the function $\Lambda_{1}(z)=\bar{\lambda}_{0} \Lambda(z)-\lambda_{n} \Lambda^{*}(z)$ and so none. Thus Λ has zeros neither on $|z|=1$ nor in $D(0 ; 1)$.

Lemma 2. From the given polynomials

$$
A(z):=\sum_{\mu=0}^{m}\binom{m}{\mu} a_{\mu} z^{\mu}, B(z):=\sum_{\mu=0}^{m}\binom{m}{\mu} b_{\mu} z^{\mu}
$$

let us form the third polynomial

$$
(A * B)(z):=\sum_{\mu=0}^{m}\binom{m}{\mu} a_{\mu} b_{\mu} z^{\mu} .
$$

If all the zeros of A lie in a circular region G, then every zero γ of $A * B$ has the form $\gamma=-\alpha \beta$ where α is a suitably chosen point in G and β is a zero of B.

Lemma 2 is known as the "composition theorem of Szegö"; for a proof see [9] or [5, Chapter IV].

Lemma 3. Let $p_{4}(k ; z):=\sum_{\nu=0}^{4}\binom{4}{\nu}(1 /(k+\nu)) z^{\nu}$. Then for each $k \in \mathbf{N}$ there exists a number $R_{k}>1$ such that $p_{4}(k ; z) \neq 0$ for $z \in D\left(0 ; R_{k}\right)$. In fact, $p_{4}(1 ; z) \neq 0$ for $|z|<2 \sin \pi / 5$ and $p_{4}(2 ; z) \neq 0$ for $|z| \leqq 3 /(2 \sqrt{2})$.

Proof. The statement about $p_{4}(1 ; z)$ is well-known; it follows from the observation that

$$
p_{4}(1 ; z)=\frac{1}{5 z}\left\{(z+1)^{5}-1\right\}
$$

Applying Lemma 1 to $\Lambda(z):=2 p_{4}(2 ;(3 /(2 \sqrt{2})) z)$ we see that $p_{4}(2 ; z)$ cannot vanish in $\bar{D}(0 ; 3 /(2 \sqrt{2}))$ if

$$
\Lambda_{1}(z):=\frac{1}{32}\left(\frac{3367}{128}+\frac{1831}{40} \sqrt{2} z+\frac{999}{16} z^{2}+\frac{81}{5} \sqrt{2} z^{3}\right)
$$

does not vanish in $\bar{D}(0 ; 1)$. Again, by Lemma $1, \Lambda_{1}$ cannot vanish in $\bar{D}(0 ; 1)$ if

$$
\Lambda_{2}(z):=68426377+78892880 \sqrt{2} z+65244744 z^{2}
$$

does not. But it can be easily checked that Λ_{2} does not vanish in $\bar{D}(0: 1)$. Hence the same can be said about Λ_{1} and $p_{4}(2 ;(3 /(2 \sqrt{2})) z)$. Thus $p_{4}(2 ; z) \neq 0$ for $|z| \leqq 3 /(2 \sqrt{2})$.

By Lemma $1, p_{4}(k ; z)$ cannot vanish in $\bar{D}(0 ; 1)$ if

$$
\frac{1}{k+4}+\frac{3 k}{(k+1)(k+3)} z+\frac{3 k}{(k+2)^{2}} z^{2}+\frac{k}{(k+1)(k+3)} z^{3}
$$

does not. Again, by Lemma 1 it is enough to check that

$$
\frac{2 k^{2}+8 k+3}{(k+1)(k+3)(k+4)}+\frac{4 k}{(k+2)^{2}} z+\frac{k\left(2 k^{2}+8 k+9\right)}{(k+1)(k+2)^{2}(k+3)} z^{2}
$$

does not vanish in $\bar{D}(0 ; 1)$. This can be done either directly or by yet another application of Lemma 1 .

Remark 2. We must caution the reader against thinking that $p_{n}(k ; z):=$ $\sum_{\nu=0}^{n}\binom{n}{\nu}(1 /(k+\nu)) z^{\nu} \neq 0$ in $\bar{D}(0 ; 1)$ for all $n \in \mathbf{N}$ and all $k \in \mathbf{N}$. In fact, $p_{5}(1 ; z)$ has two zeros on $|z|=1$ and for each $k \geqq 2$ the polynomial $p_{5}(k ; z)$ has zeros both inside the (open) unit disk and outside the (closed) unit disk.
3. Proof of Theorem 1. Without loss of generality we may assume $0<a<1$. Let $P(z)=(z-a)^{k} q(z)$. Then $P^{\prime}(z)=(z-a)^{k-1}\left\{k q(z)+(z-a) q^{\prime}(z)\right\}$. Now let us suppose that the disk $\bar{D}(a ; \eta)$ where $\eta>1-$ a contains only $k-1$ zeros of P^{\prime}. Then

$$
A(z):=k q(z+a)+z q^{\prime}(z+a)=\sum_{\nu=0}^{4}\binom{4}{\nu} \frac{k+\nu}{\nu!} \frac{q^{(\nu)}(a)}{\binom{4}{\nu}} z^{\nu}
$$

must have all its zeros in the circular region $G:=\hat{\mathbf{C}} \backslash \bar{D}(0 ; \eta)$. Hence if $B(z):=\sum_{\nu=0}^{4}\binom{4}{\nu}(1 /(k+\nu)) z^{\nu}$ then Lemma 2 in conjunction with Lemma 3 implies that $q(z):=(A * B)(z-a)$ has all its zeros in

$$
|z-a|> \begin{cases}\frac{3}{2 \sqrt{2}} \eta & \text { if } k=2 \\ \eta & \text { if } k \geqq 3\end{cases}
$$

(i) The case $k=2$.

If $\eta:=\frac{2}{3}\left(a+\sqrt{2-a^{2}}\right)$ then the circle $|z-a|=(3 /(2 \sqrt{2})) \eta$ cuts the unit circle $|z|=1$ in the points $\left(\left(a-\sqrt{\left.2-a^{2}\right)} / 2\right) \pm i\left(\left(a+\sqrt{2-a^{2}}\right) / 2\right)\right)$. Hence the zeros of q lie in the disk $D\left(\left(a-\sqrt{2-a^{2}}\right) / 2 ;\left(a+\sqrt{2-a^{2}}\right) / 2\right)$ whose boundary passes through the point a. We may now apply Theorem A to conclude that P^{\prime} has at least k zeros in $|z-a| \leqq \frac{4}{3}\left(\left(a+\sqrt{2-a^{2}}\right) / 2\right)=\eta$ which contradicts the assumption that " $\bar{D}(a ; \eta)$ contains only $k-1$ zeros of $P^{\prime \prime}$.
(ii) The case $k \geqq 3$.

For $(1-a) / 2<b<1$, the circle $|z+b|=a+b$ intersects the unit circle $|z|=1$ in the points $\left(a^{2}+2 a b-1\right) / 2 b \pm i \sqrt{1-\left(\left(a^{2}+2 a b-1\right) / 2 b\right)^{2}}$ whose distance from the point a is $\sqrt{\left(\left(1-a^{2}\right)(a+b)\right) / b}$ which is equal to $\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}+a k\right) /(k+1)$ if

$$
b=\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}-a k\right) / 2 k
$$

Hence if P^{\prime} has only $k-1$ zeros in

$$
|z-a| \leqq\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}+a k\right) /(k+1)
$$

then from the observation made above about the zeros of q it follows that they all lie inside the disk $D\left(-\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}-a k\right) / 2 k\right.$; $\left.\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}+a k\right) / 2 k\right)$ whose boundary passes through the point a. Now Theorem A implies that P^{\prime} has at least k zeros in $\bar{D}\left(a ;\left(\sqrt{(k+1)^{2}-a^{2}(2 k+1)}+a k\right) /(k+1)\right)$.
4. Conclusion. Putting together the result proved in [11] and Theorem 1 we now know that $\rho(n ; k ; a) \leqq 2 k /(k+1)$ for all $a \in \bar{D}(0 ; 1)$ and $k+1 \leqq n \leqq$ $k+4$.

References

1. B. D. Bojanov, Q. I. Rahman and J. Szynal, On a conjecture of Sendov about the critical points of a polynomial, Math. Z. 190 (1985), pp. 281-285.
2. J. Dieudonné, La théorie analytique des polynômes d'une variable, Mémor. Sci. Math. No. 93 (1938).
3. A. W. Goodman, Q. I. Rahman and J. S. Ratti, On the zeros of a polynomial and its derivative, Proc. Amer. Math. Soc. 21 (1969), pp. 273-274.
4. A. Joyal, On the zeros of a polynomial and its derivative, J. Math. Anal. Appl. 26 (1969), pp. 315-317.
5. M. Marden, Geometry of polynomials, Math. Surveys no. 3, American Mathematical Society, 1966.
6. - Conjectures on the critical points of a polynomial, Amer. Math. Monthly 90 (1983), pp. 267-276.
7. A. Meir and A. Sharma, On Ilyeff's conjecture, Pacific J. Math. 31 (1969), pp. 459-467.
8. G. Schmeisser, Bemerkungen $z u$ einer Vermutung von Ilieff, Math. Z. 111 (1969), pp. 121-125.
9. G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), pp. 28-55.
10. Q. M. Tariq, On the zeros of a polynomial and its derivative, J. Univ. Kuwait (Sci.) 13 (1986), pp. 17-19.
11. - On the zeros of a polynomial and its derivative. II, J. Univ. Kuwait (Sci.) 13 (1986), pp. 151-155.
[^1]
[^0]: Received by the editors August 18, 1986.
 AMS Mathematics Subject Classification (1980): 30C15 (Primary).
 © Canadian Mathematical Society 1986.

[^1]: Département de Mathématiques et de Statistique Université de Montréal
 Montreal, PQ H3C 3J7

