ON A PROBLEM RELATED TO THE CONJECTURE OF SENDOV ABOUT THE CRITICAL POINTS OF A POLYNOMIAL

BY

Q. I. RAHMAN AND Q. M. TARIQ

ABSTRACT. Let P be a polynomial of degree n having all its zeros in the closed unit disk. Given that a is a zero (of P) of multiplicity k we seek to determine the radius $\rho(n; k; a)$ of the smallest disk centred at a containing at least k zeros of the derivative P'. In the case k = 1the answer has been conjectured to be 1 and is known to be true for $n \leq 5$. We prove that $\rho(n; k; a) \leq 2k/(k + 1)$ for arbitrary $k \in \mathbb{N}$ and $n \leq k + 4$.

1. Introduction. We denote by $D(z_0; R)$ the open disk $\{z \in \mathbb{C}: |z - z_0| < R\}$ and by $\overline{D}(z_0; R)$ its closure. While counting the zeros of a function we will always take multiplicity into account. Recently, the second named author considered the following problem:

"Let $a \in \overline{D}(0; 1)$ and $k \in \mathbb{N}$. Given an arbitrary polynomial $P(z) := c(z - a)^k \prod_{j=1}^{n-k} (z - z_j)$ of degree n (>k) with $|z_j| \leq 1$ for $j = 1, \ldots, n - k$, determine the radius $\rho(n; k; a)$ of the smallest (closed) disk centred at a containing at least k zeros of the derivative P".

The case k = 1 of this problem has been investigated by several mathematicians under the title of Sendov's (or Iliev's) conjecture according to which " $\rho(n; 1; a) \leq 1$ " (for references see [6]; also see [1]). The example $P(z) := z^n - 1$ shows that $\sup_{0 \leq |a| \leq 1} \rho(n; 1; a) \geq 1$. In general, for any $k \geq 1$ the disk D(a; 2k/(k + 1)) may contain only k - 1 zeros of P', namely the (k - 1)-fold zero at a. For example, if $P(z) := (z + 1)(z - 1)^k$ then P' has a (k - 1)fold zero at 1 and a simple zero at -((k - 1)/(k + 1)). As another example we may consider

$$P(z) := \left(z^2 + 2\frac{(k+1)^2 - 2}{(k+1)^2}z + 1\right)(z-1)^k$$

whose derivative has a double zero at -((k-1)/(k+1)) in addition to a (k-1)-fold zero at 1. The following result which was proved in [10] suggests that " $\rho(n; k; a) \leq 2k/(k+1)$ " may hold for all $k \in \mathbb{N}$ and all $a \in \overline{D}(0; 1)$.

476

Received by the editors August 18, 1986.

AMS Mathematics Subject Classification (1980): 30C15 (Primary).

[©] Canadian Mathematical Society 1986.

THEOREM A. Let |a| = 1. If $P(z) := c(z - a)^k \prod_{j=1}^{n-k} (z - z_j)$ is a polynomial of degree n (>k) such that $|z_j| \leq 1$ for j = 1, ..., n - k, then P' has at least k zeros in

$$\overline{D}\left(\frac{a}{k+1};\frac{k}{k+1}\right)\subset \overline{D}\left(a;\frac{2k}{k+1}\right).$$

Four different proofs of Theorem A are known in the case k = 1 ([3], [8], [4], [7]). In [11] it was shown that $\rho(n; k; a) \leq 2k/(k + 1)$ for all $a \in \overline{D}(0:1)$ and all $k \in \mathbb{N}$ if $k + 1 \leq n \leq (k + 1)^2$ (and so if $k + 1 \leq n \leq k + 3$). The result says in particular that if k = 1 then $\overline{D}(a; 1)$ contains at least one zero of P' for $n \leq 4$. However, more is known in the case k = 1. In fact, it was shown by Meir and Sharma [7] that if k = 1 and n = 5 then $\overline{D}(a; (|a| + \sqrt{2 - |a|^2})/2)$ contains at least one zero of P', i.e.

(1)
$$\rho(5:1:a) \leq (|a| + \sqrt{2 - |a|^2})/2 \leq 1.$$

The purpose of this paper is to prove the following extension of (1).

THEOREM 1. Let $a \in \overline{D}(0; 1)$ and k an integer ≥ 2 . If

$$P(z) := c(z - a)^k \prod_{\nu=1}^4 (z - z_{\nu})$$

is a polynomial of degree k + 4 such that $|z_{\nu}| \leq 1$ for $\nu = 1, ..., 4$, then P' has at least k zeros in $\overline{D}(a; \frac{2}{3}(|a| + \sqrt{2 - |a|^2}))$ if k = 2 and in $\overline{D}(a; (\sqrt{(k+1)^2 - |a|^2(2k+1)} + |a|k)/(k+1))$ if $k \geq 3$.

REMARK 1. Theorem 1 in conjunction with (1) implies that $\rho(k + 4; k; a) \leq \frac{2k}{(k + 1)}$ for all $k \in \mathbb{N}$.

2. Auxiliary results. For the proof of our theorem we require two lemmas (Lemmas 2 and 3) in addition to Theorem A. Lemma 1 which is a weak version of the well-known Cohn rule [2, p. 7] is needed for the proof of Lemma 3.

LEMMA 1. If $|\lambda_0| > |\lambda_n|$, then the polynomial

$$\Lambda(z) := \lambda_0 + \lambda_1 z + \ldots + \lambda_n z^n$$

(of degree $\leq n$) can have a zero in $\overline{D}(0; 1)$ only if the polynomial

$$\Lambda_1(z) := \sum_{\nu=0}^{n-1} (\bar{\lambda}_0 \lambda_{\nu} - \lambda_n \bar{\lambda}_{n-\nu}) z^{\nu}$$

(of degree $\leq n - 1$) has one also.

Here is a short proof which we do not claim to be new.

Let $\Lambda_1(z) \neq 0$ in $\overline{D}(0; 1)$. Then Λ cannot have a zero on |z| = 1. For if $\Lambda(e^{i\alpha}) = 0$, then

[December

$$\Lambda_1(e^{i\alpha}) = \overline{\lambda}_0 \Lambda(e^{i\alpha}) - \lambda_n e^{in\alpha} \overline{\Lambda(e^{i\alpha})} = 0.$$

Hence if $\Lambda^*(z) := z^n \Lambda(1/\overline{z})$ then for |z| = 1 we have $|\Lambda(z)| = |\Lambda^*(z)| > 0$ and so $|\overline{\lambda}_0 \Lambda(z)| > |\lambda_n \Lambda^*(z)|$. By Rouché's theorem Λ has the same number of zeros in D(0; 1) as the function $\Lambda_1(z) = \overline{\lambda}_0 \Lambda(z) - \lambda_n \Lambda^*(z)$ and so none. Thus Λ has zeros neither on |z| = 1 nor in D(0; 1).

LEMMA 2. From the given polynomials

$$A(z) := \sum_{\mu=0}^{m} {m \choose \mu} a_{\mu} z^{\mu}, B(z) := \sum_{\mu=0}^{m} {m \choose \mu} b_{\mu} z^{\mu}$$

let us form the third polynomial

$$(A * B)(z) := \sum_{\mu=0}^{m} {m \choose \mu} a_{\mu} b_{\mu} z^{\mu}.$$

If all the zeros of A lie in a circular region G, then every zero γ of A * B has the form $\gamma = -\alpha\beta$ where α is a suitably chosen point in G and β is a zero of B.

Lemma 2 is known as the "composition theorem of Szegö"; for a proof see [9] or [5, Chapter IV].

LEMMA 3. Let $p_4(k; z) := \sum_{\nu=0}^{4} {4 \choose \nu} (1/(k + \nu)) z^{\nu}$. Then for each $k \in \mathbb{N}$ there exists a number $R_k > 1$ such that $p_4(k; z) \neq 0$ for $z \in D(0; R_k)$. In fact, $p_4(1; z) \neq 0$ for $|z| < 2 \sin \pi/5$ and $p_4(2; z) \neq 0$ for $|z| \leq 3/(2\sqrt{2})$.

PROOF. The statement about $p_4(1; z)$ is well-known; it follows from the observation that

$$p_4(1; z) = \frac{1}{5z} \{ (z + 1)^5 - 1 \}.$$

Applying Lemma 1 to $\Lambda(z) := 2p_4(2; (3/(2\sqrt{2}))z)$ we see that $p_4(2; z)$ cannot vanish in $\overline{D}(0; 3/(2\sqrt{2}))$ if

$$\Lambda_1(z) := \frac{1}{32} \left(\frac{3367}{128} + \frac{1831}{40} \sqrt{2}z + \frac{999}{16} z^2 + \frac{81}{5} \sqrt{2}z^3 \right)$$

does not vanish in $\overline{D}(0; 1)$. Again, by Lemma 1, Λ_1 cannot vanish in $\overline{D}(0; 1)$ if

$$\Lambda_2(z) := 68426377 + 78892880\sqrt{2}z + 65244744z^2$$

does not. But it can be easily checked that Λ_2 does not vanish in $\overline{D}(0:1)$. Hence the same can be said about Λ_1 and $p_4(2; (3/(2\sqrt{2}))z)$. Thus $p_4(2; z) \neq 0$ for $|z| \leq 3/(2\sqrt{2})$.

478

By Lemma 1, $p_4(k; z)$ cannot vanish in $\overline{D}(0; 1)$ if

$$\frac{1}{k+4} + \frac{3k}{(k+1)(k+3)}z + \frac{3k}{(k+2)^2}z^2 + \frac{k}{(k+1)(k+3)}z^3$$

does not. Again, by Lemma 1 it is enough to check that

$$\frac{2k^2+8k+3}{(k+1)(k+3)(k+4)}+\frac{4k}{(k+2)^2}z+\frac{k(2k^2+8k+9)}{(k+1)(k+2)^2(k+3)}z^2$$

does not vanish in $\overline{D}(0; 1)$. This can be done either directly or by yet another application of Lemma 1.

REMARK 2. We must caution the reader against thinking that $p_n(k; z) := \sum_{\nu=0}^n {n \choose \nu} (1/(k + \nu)) z^{\nu} \neq 0$ in $\overline{D}(0; 1)$ for all $n \in \mathbb{N}$ and all $k \in \mathbb{N}$. In fact, $p_5(1; z)$ has two zeros on |z| = 1 and for each $k \ge 2$ the polynomial $p_5(k; z)$ has zeros both inside the (open) unit disk and outside the (closed) unit disk.

3. **Proof of Theorem 1.** Without loss of generality we may assume 0 < a < 1. Let $P(z) = (z - a)^k q(z)$. Then $P'(z) = (z - a)^{k-1} \{ kq(z) + (z - a)q'(z) \}$. Now let us suppose that the disk $\overline{D}(a; \eta)$ where $\eta > 1 - a$ contains only k-1 zeros of P'. Then

$$A(z) := kq(z + a) + zq'(z + a) = \sum_{\nu=0}^{4} {4 \choose \nu} \frac{k + \nu}{\nu!} \frac{q^{(\nu)}(a)}{{4 \choose \nu}} z^{\nu}$$

must have all its zeros in the circular region $G := \hat{C} \setminus \overline{D}(0; \eta)$. Hence if $B(z) := \sum_{\nu=0}^{4} {4 \choose \nu} (1/(k + \nu)) z^{\nu}$ then Lemma 2 in conjunction with Lemma 3 implies that q(z) := (A * B)(z - a) has all its zeros in

$$|z - a| > \begin{cases} \frac{3}{2\sqrt{2}}\eta & \text{if } k = 2\\ \eta & \text{if } k \ge 3. \end{cases}$$

(i) The case k = 2.

If $\eta := \frac{2}{3}(a + \sqrt{2} - a^2)$ then the circle $|z - a| = (3/(2\sqrt{2}))\eta$ cuts the unit circle |z| = 1 in the points $((a - \sqrt{2 - a^2})/2) \pm i((a + \sqrt{2 - a^2})/2))$. Hence the zeros of q lie in the disk $D((a - \sqrt{2 - a^2})/2; (a + \sqrt{2 - a^2})/2)$ whose boundary passes through the point a. We may now apply Theorem A to conclude that P' has at least k zeros in $|z - a| \leq \frac{4}{3}((a + \sqrt{2 - a^2})/2) = \eta$ which contradicts the assumption that " $\overline{D}(a; \eta)$ contains only k - 1 zeros of P".

(ii) The case $k \ge 3$.

479

1987]

For (1 - a)/2 < b < 1, the circle |z + b| = a + b intersects the unit circle |z| = 1 in the points $(a^2 + 2ab - 1)/2b \pm i\sqrt{1 - ((a^2 + 2ab - 1)/2b)^2})$ whose distance from the point a is $\sqrt{((1 - a^2)(a + b))/b}$ which is equal to $(\sqrt{(k + 1)^2 - a^2(2k + 1)} + ak)/(k + 1)$ if

$$b = (\sqrt{(k+1)^2 - a^2(2k+1)} - ak)/2k.$$

Hence if P' has only k - 1 zeros in

$$|z - a| \le (\sqrt{(k + 1)^2 - a^2(2k + 1)} + ak)/(k + 1)$$

then from the observation made above about the zeros of q it follows that they all lie inside the disk $D(-(\sqrt{(k + 1)^2 - a^2(2k + 1)} - ak)/2k;$ $(\sqrt{(k + 1)^2 - a^2(2k + 1)} + ak)/2k)$ whose boundary passes through the point a. Now Theorem A implies that P' has at least k zeros in $\overline{D}(a; (\sqrt{(k + 1)^2 - a^2(2k + 1)} + ak)/(k + 1)).$

4. Conclusion. Putting together the result proved in [11] and Theorem 1 we now know that $\rho(n; k; a) \leq \frac{2k}{k+1}$ for all $a \in \overline{D}(0; 1)$ and $k+1 \leq n \leq k+4$.

References

1. B. D. Bojanov, Q. I. Rahman and J. Szynal, On a conjecture of Sendov about the critical points of a polynomial, Math. Z. 190 (1985), pp. 281-285.

2. J. Dieudonné, La théorie analytique des polynômes d'une variable, Mémor. Sci. Math. No. 93 (1938).

3. A. W. Goodman, Q. I. Rahman and J. S. Ratti, On the zeros of a polynomial and its derivative, Proc. Amer. Math. Soc. 21 (1969), pp. 273-274.

4. A. Joyal, On the zeros of a polynomial and its derivative, J. Math. Anal. Appl. 26 (1969), pp. 315-317.

5. M. Marden, Geometry of polynomials, Math. Surveys no. 3, American Mathematical Society, 1966.

6. —, Conjectures on the critical points of a polynomial, Amer. Math. Monthly 90 (1983), pp. 267-276.

7. A. Meir and A. Sharma, On Ilveff's conjecture, Pacific J. Math. 31 (1969), pp. 459-467.

8. G. Schmeisser, Bemerkungen zu einer Vermutung von Ilieff, Math. Z. 111 (1969), pp. 121-125.

9. G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), pp. 28-55.

10. Q. M. Tariq, On the zeros of a polynomial and its derivative, J. Univ. Kuwait (Sci.) 13 (1986), pp. 17-19.

11. ——, On the zeros of a polynomial and its derivative. II, J. Univ. Kuwait (Sci.) 13 (1986), pp. 151-155.

Département de Mathématiques et de Statistique Université de Montréal Montréal, PO H3C 3J7

480