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ESSENTIAL COMPLETIONS OF DISTRIBUTIVE LATTICES

GERHARD GIERZ AND ALBERT R. STRALKA

The salient feature of the essential completion process is

that for most common distributive lattices i t will yield a

completely distributive lattice. In this note i t is shown

that for those distributive lattices which have at least one

completely distributive essential extension the essential

completion is minimal among the completions by infinitely

distributive lattices. Thus in i ts setting the essential

completion of a distributive lattice behaves in much the

same way as the one-point compactification of a locally

compact topological space does in i t s setting.

The purpose of this paper is to study a completion process for

distributive lattices suggested by the procedure used by B.Banascheswki

and G. Bruns in [2] to construct injective hulls for distributive

lattices. As will be seen i t is not inappropriate to call this completion

the essential completion.

To construct the injective hull, or, what is the same thing, the

maximal essential extension of a distributive lattice L, Banaschewski

and Bruns first imbed L into an arbitrary Boolean algebra B', next take

B to be the Boolean subalgebra of B' generated by L, and finally take
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B(L) to be the Dedekind — MacNeille completion of B. I t turns out that

B(L) i s uniquely determined by L and the canonical imbedding of L

into B(L) i s essential in the sense that non-trivial congruence

relat ions on B(L) have non-trivial restr ict ions to (the image of) L.

Since complete Boolean algebras do not allow proper essential extensions,

i t follows that B(L) i s the maximal essential extension of L. I t i s

not B(L) i t se l f that directly concerns us but p (L) the smallest

complete sublattice of B(L) containing L. Since p (L) i s an

essent ia l extension of L we call i t the essential completion of L.

A distributive la t t i ce which has at least one completely

dis t r ibut ive essential extension is said to be essentially completely

dis t r ibut ive . This property is closely related to separation properties

of the Zariski topology. I t turns out that the essential completion of

a distr ibutive la t t ice i s completely distributive precisely in those

cases in which the Zariski topoloty i s Hausdorff (see [7] and [6] ) .

Most common distributive la t t i ces have this property (cf [6] ).

Our main result i s that the essential completion functions in i t s

set t ing behaves in much the same way as the one-point compactification

does in the context of locally compact Hausdorff spaces. Specifically,

we prove: Let L an essentially completely distributive l a t t i ce . Then

there i s a completely distr ibutive la t t i ce p(L) and a topologically and

algebraically dense imbedding i : L -*• p(L) such that whenever

f : L -*• M is a dense l a t t i ce imbedding of L into an infinitely

dis t r ibut ive la t t i ce M then there i s a unique complete la t t ice

homomorphism g : M -> -p(L) such that g ° f = i . Moreover, the la t t ice

p(L) i s uniquely determined by these properties.

For chains the essential completion and the Dedekind-MacNeille

completion coincide. However as we saw above the essential completion

remains in the category of distributive la t t ices while i t i s well-known

that the Dedekind-MacNeille completion does not always do so. These

completions also differ in that the Dedekind-MacNeille completion provides

a l a t t i c e which i s only complete whereas the essential completion, at

leas t in most common cases, provides a completely distributive completion.

We conclude the paper by characterizing p(L) in terms of ideals

and f i l t e r s thereby providing a somewhat clearer picture of this difficult

object.
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1. Preliminaries

For the basic facts and terminology on lattices and topological

lattices we refer to [3] and [4].

Recall that the Zariski topology on a distributive lattice has as a

subbase for its closed sets all sets of the form

[a A x .5 i>] = {x e L : a A X - b}

[a v x .2 i>] = {x e L : a v x i i>}

where a and b range over the elements of L (see [6]). When we refer

to a topological property on a distributive lat t ice and indicate no

specific topology, then we are referring to the Zariski topology.

A distributive latt ice L is meet-continuous if for any subset

A <= L and any element b c L the following equality holds:

b A (sup A) = supib A a : a e A).

Join-continuity is defined dually. A distributive lattice which is both

meet-continuous and join-continuous is said to be infinitely distributive.

Ihe sublattice L of the complete lattice M is algebraically

dense in M if M is the smallest complete sublattice of M containing

L.

Our work depends upon the realization of B(L) which we developed

in [5] enabling us to keep discussion restricted to congruence lat t ices.

For a distributive lattice L let Q(L) be i t s congruence lattice with

A the identity congruence or diagonal, and V the congruence which

collapses the whole lattice L to a single point. The congruence lattice

of L is a meet-continuous lat t ice. We can identify B(L) with the

subset of all pseudocomplements in Q(L) endowed with the inherited order

from Q(L) but not necessarily the inherited operations. We define the

i m b e d d i n g i : L •*• B(L) b y i(x) = Q#= {(a,b) £ i x L:av x = b v x}.

1 rp

The pseudocomplement of &x is given by $x = 6 = {(a,b) e L x L :

x A a = x A b}. 6X is the complement of B in B(L).

Within B(L) we take p(L), the essential completion of I, to be

the smallest complete sublattice containing i(L). It was shown in [5]

and [6] that i is an essential imbedding into both p(L) and B(L). If

L is an essentially completely distributive lattice, then p(L) is
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completely distributive (see [7] and [6]) . Moreover, in this case i f

both L and p(L) are equipped with that topology, then i i s a

topological imbedding.

2. The Main Result

THEOREM 2.1. Let L be a distributive lattice and assume that L

is an essentially completely distributive lattice. Then there is a

completely distributive lattice p(L) and a (topological and algebraical)

dense imbedding i : L -*• p (L) such that whenever f : L -*• M is a lattice

imbedding into an infinitely distributive lattice M such that f(L) is

algebraically dense in M3 then there is a unique complete lattice

homomorphism g : M -*• p(L) satisfying g ° f = i. Moreover, the lattice

p(L) is uniquely determined by these properties.

Remark. Since the imbedding of L into p (L) i s topological and

since p (L) i s a compact distributive l a t t i ce , the la t t ice p(L) may be

viewed as the minimal compactification of L in the Zariski topology.

The proof of (2.1) will be done in a series of propositions and

lemmas.

Throughout this section we shall assume that L i s a distributive

l a t t i ce which i s essentially completely distributive, that i s , which is

Hausdorff in the Zariski topology.

PROPOSITION 2 .2 . If A and B are subsets of L, then

inf i(A) < sup i(B) if and only if A = n{6 n$ : xeA>yeB).

Proof. We have inf i(A) < sup i(B) if and only if

i(A) n (sup i(B)) = A. Thus, the claim follows from

(sup i(B))L = inf{i(y)L : y e B)

= inf{H>y : y e B)

= inf{Qy : y e. B}

PROPOSITION 2.3. If A and B are subsets of L and if

inf f(A) < sup f(B), then inf i(A) < sup i(B).

Proof. Assume the inequality inf i(A) f sup i(B) is not true.

Then applying Proposition (2.2) we can find a pair of distinct elements
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I2

y e B. Hence we have

iaab) e L which belongs to 8 for a l l x e A and to 8^ for a l l

a v x = b v x i£ x e A,

a A y = b A y if y e. B.

Now let I = inf f(A) and let r = sup f(B). Since / is a lattice

imbedding, f(a) and fib) are distinct. Moreover, since M is

infinitely distributive,

f(a) v I = f(b) v l,
fia) A r = /<7>J A r .

Since by assumption I S r, the second of these two equations implies that

f(a) A i = f(a) A r A I

= fib) A T A Z

= /YW A Z.

Thus both f(a) and /(W are relative complements of I. In a

distributive lattice relative complements are unique, so we may conclude

that f(a) = fib), contradicting the injectivity of /. •

For a distributive lattice T, Spec T will denote the set of all

prime elements of T and Cospea T will be the set of coprime elements

(cf [41). We write x « y to denote that x is way below ys that is

if V is an upward directed set with sup V 2. y, then there is V e V

such that x - V. The statement that x is way above y is denoted by

x » y and is defined dually. Note that x << y and y » x are not

equivalent.

If T is a completely distributive lattice, then from [7] we know:

(*) If p £ Spec T, then the set {q : q » p,q e Spec T] is down

directed and has infimum p.

(**) (Interpolation Property) Whenever p3q e Spec T are primes

such that q >> p, then there is a prime element v e Spec T

such that q » r » p.

(***) Every element of T is an infimum of prime elements and a

supremum of coprime elements (that is Spec T order generates

T and Cospec T order generates T* , the opposite, of T) .

Now suppose that M is an infinitely distributive lattice and

f : L -*• M is a dense lattice imbedding. Instead of defining the mapping

g : M -*• p(L) directly, we will construct the upper and lower adjoint

https://doi.org/10.1017/S0004972700002471 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002471


366 Gerhard Gierz and Alber t R. S t r a l k a

of g. We begin by defining a map from Spec p(L) to M by
<po:Spec p(L)->M

p-*inf{sup{f(x):i(x) S p j i e L] :q » p3q e Spec p(L)}.

Then <))Q preserves directed infima: Indeed, let A c p(L) be a

downward directed set of primes and assume that p = inf A. We have to
show that

<t>0(p; = inf 40(A).

Clearly, since <j>0 i s monotone, we have $Q(P) - inf ^Q(A). In order to

verify the other inequality, we will prove

(C) For every q e Spec p (L) with q >> p there is an element
r e A such that sup{f(x) : i(x) 1 q,x e L] > <f>0<"W.

Indeed, pick r e. A such that q » r > py which i s possible
because of the interpolation property for >>. Ihen we have

sup{f(x):i(x) i q,x e L} Z inf{sup{f(x) :i(x) < q'3x e I}:

q' » r,q' e Spec p(L) }

Now from (C) we conclude that
x):i
: r e A}

<f> (p) = inf{siqp{f(x):i(x) f q,x e. L}:q » p,q e Spec p(L)}

= inf <t>Q(A).

In the next step, we define a map
<{> : p (L) •*• M

u «• inf{<t>0(p) : u i p,p e Spec p(L)}.

Obviously, <(i is monotone. To see that § preserves finite infima, let
M and V be two arbitrary elements of p(L). Then the monotoni city of
implies that $(u A v) 1 §(u) A <j>(v). Conversely, l e t p be a prime
element above the infimum of u and V. Then p is actually above
ei ther u or v, yielding {A (p):u A V f p,p e Spec p(L)} = {^^(p) •
u 5 p,p e Spec p(L)} u {$0(p) : v i p,p e. Spec p(L)}. Thus,

A V) >
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Our next claim is that <}> preserves down directed infima. Let A

be a down directed subset of p(L). The inequality <i>(inf A)l inf <fr(A)

is again obvious. Conversely/ let p,q e Specp(L) such that A S p

and q » p. By the interpolation property we may pick a prime element

p' such that q >> p' » p. Since A is down directed and has an

infimum less than or equal to p, there is an element a e A such that

a < p '. We obtain

inf (A) 5

Since q » p was arbitrary, since cf>0 preserves infima of down directed

sets of primes and since {q e Spec p(L) : q » p} i s down directed with

infimum p, we conclude that

inf $(A) < §Q(P).

Finally, since p was an arbitrary prime element such that inf A - p,

we have

inf $(A) £, <\>(inf A)

from the def ini t ion of (J>

We conclude

PROPOSITION 2.4. The mapping 4> : p(L) -> M preserves arbitrary

infima. D

Dually, we define maps i|i : Cospeo p(L) -*• M

c -»• sup{inf{f(x):d < i(x),x e L}:c « d3d e Cospec p(L)}

and

i|> : p(L) -*• M

u -*• sup{§ (c):c 1 UjC e Cospec p(L)}.

PROPOSITION 2.5. The mapping i> ; p(L) •* M preserves arbitrary

suprema. Q

We wi l l now show that the mappings <(> and ty are the upper and

lower adjoint of the mapping g : M -»• p(L).

PROPOSITION 2 .6 . For a,b e p(L), 4>(a) < <j>(b) if and only if

a < b.

Proof. Firs t , le t us assume that a l b . We have to show: If c

i s a coprime and if p i s a prime such that c Z a < b 5 p, then
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\j> (a) 1 $Q(p)- This i s the same as showing that if d e Cospea p(L),

d << a < a and if q e Spec p(L), q » p > b then

inf {f(x):d < i(x),x e 1} < sup{f(y):i(y) < q,y e L}.

Note that the set {z e p(L) : d « z and q » z] is a neighbourhood

of the elements a,b e p(L) (this is an consequence of (1.2.5, p. 59),

( I I . 1 . 1 0 , p . 1 0 4 ) , ( I I . 1 . 6 , p . 1 4 4 ) , ( V I I I . 2 . 8 , p . 3 1 8 ) a n d ( V I I . 2 . 9 , p .

318) of [4]). Since i(L) i s dense in p(L), this set contains an

element of the form i(x'), x' e L. Hence there is an element x' e L

such that d 5 i(x') i q. This yields

inf{f(xj:d ^ i(x),x e L} < f(x')

< sup{f(y):i(y) <q,y e L),

as desired.

Now assume that we are given tv/o elements ayb e p (L) such that

a t b. Since primes and coprimes both order generate the latt ice p(L)

(see (***)), we can find primes p,q and coprimes a, d such that

d « c < a,

q » p > b,

d £ q.

If we can show that the inequality

inf{f(x):d < i(x),x e L) < supif(y):i(y) < q,y e L]

cannot hold we would be certain that tyr.(c) i $n(p) and hence

ip(a) i. $(b). Thus, le t us assume that the above inequality is true. Then

Proposition (2.3) would yield

d < inf{i(x):d $ i(x),x e L]

< sup{i(y):i(y) f q,y e L]

contradicting the choice of d and q. Q

PROPOSITION 2.7. For every x e L we have ty(i(x)) < f(x)<

Proof. For every x e L we have

$(i.(x)) =inf{<bQ(p) :i(x) < p,p e Spec p(L)}.

Hence, in order to verify fix) - §(i(x)) we must show that fix) ^

whenever iix) < p,p e Spec p(L). By the definition of ij>Q this is

equivalent to
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fix) < sup if(y):i(y) < q,y e L}

whenever q » p,q e Spec L. But if q » p, then iix) S p i q, hence

fix) e {f(y):i(y) - q,y £ i ) and therefore the above inequality holds

trivially.

Similarly, \\iiiix)) < fix) for every x e L. D

Let g be the lower adjoint of 41, and g^ the uppjr adjoint of

<Ji. Then (2.7) implies

PROPOSITION 2 .8 . gof(x) < iix) < gxfix) . D

PROPOSITION 2.9. The lower adjoint gQ of <j> agrees with the

upper adjoint g^ of ty. Especially, if we define g = gQ = g-^, then g

is a complete lattice homomorphism, and g o f = i.

Proof. For any u e M we have tyg^iu) i u < t$igQ (u) and so

gx(u) < gQ(u) by (2.6) . Moreover, the se t {u e M:gQ(u) < g1iu)} i s a

complete sub la t t i ce of M since gQ preserves suprema and g. preserves

infima. But for x e L, gQf(x) < iix) < g^(x) by (2 .8) , so th i s s e t

contains the image of / and hence i s the whole of M. This proves

gQ = g.. The equali ty g o f = i now follows from (2.8) . •

This l a s t proposit ion finishes the major pa r t of the proof of (2.1) .

Note that the uniqueness of g follows from the fact tha t f(L) i s

algebraical ly dense in M. The fact tha t p(L) i s uniquely determined

by a l l these proper t ies follows from general category theory. •

I t i s now appropriate to l i s t some consequences of Theorem (2.1)

and the fact that in our discussion we needed the map f : L •+ M to be a

l a t t i c e homomorphism only in the proof of Proposit ion (2.3) . Note tha t

(2.3) i s t r i v i a l in the case that L i t s e l f i s completely d i s t r i bu t ive

and hence agrees with p(L):

COROLLARY 2.10. Let L be a completely distributive lattice densely

•Imbedded (as a partially ordered set) into a infinitely distributive M.

Then L is a retract of M under a complete lattice homomorphism. Q

COROLLARY 2.11. Let M be a compact distributive lattice. If M

contains a dense essentially completely distributive subtattice, then

M admits non-trivial continuous lattice homomorphisms into the unit

interval. D
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COROLLARY 2.12. Let M be a compact distributive lattice. If M
contains an order isomorphic copy of a completely distributive lattice
which is dense in M, then M admits non-trivial continuous lattice
homomorphism into the unit interval. Q

It turns out that completely distributive lattices and essentially
completely distributive lattices are also characterized by all those
properties listed in the corollaries:

THEOREM 2.13. If L is a lattice such that for every infinitely
distributive lattice M and every dense imbedding i : L •*• M there is
a complete lattice homomorphism f : M •* L such that f o i = idT, then

Lj

L is completely distributive.
The proof of this theorem follows from the fact that every

distributive lattice admits a dense imbedding into a completely

distributive lattice and that every quotient of a completely distributive

lat t ice under a complete lattice homomorphism is again completely

distributive. Q

We will now show that (2.1) is best possible in the sense that we

cannot weaken the assumption that L be essentially completely

distrivutive: Assume that we are given a lattice L together with a

dense embedding e : L -*• L'', where L' is an infinitely distributive

lat t ice such that for every other dense imbedding f : L -»• M into a

infinitely distributive lattice there is a complete lattice homomorphism

g : M -*- L' satisfying g ° f = e. Since f is a dense imbedding, the

mapping g must be uniquely determined. Let p(L) be the "closure"

of L in the maximal essential extension B(L) of L (that is p CL) is

again the smallest complete sublattice of B(L) containing the image of

i(D). Then L is densely imbedded in p(L), and, although p(L) need

not be completely distributive, i t will s t i l l be infinitely distributive.

(Recall that every complete Boolean algebra and hence every complete

sublattice of a complete Boolean algebra is infinitely distributive). I t

follows that there is a complete lattice homomorphism g : Q(L) -*• L' .

This mapping g has to be surjective; i t is also injective since the

composition with the essential imbedding i : L •*• p(L) yields the

imbedding e. This argument shows that p(L) is the only possible choice

for proving a result like Theorem (2.1). A similar argument to the one

used in the proof of Theorem (2.13) yields
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THEOREM 2.14. Let L be a distributive lattice and suppose that
L admits a dense imbedding e rL -»• L' into an infinitely distributive
lattice L* such that whenever f : L -*• M is a second such dense
imbedding into an infinitely distributive lattice M, then there is a
(uniquely determined) complete lattice homomorphism g : M •* L' such
~that g ° f = e. Then, up to a canonical isomorphism, L' = p (L) and
e = i. Moreover, in this case p(L) is completely distributive and
therefore L is essentially completely distributive.

3. A Characterization of p(L) by Means of Closed Filters and Ideals.

In this section we give a description of p(L) based upon the
Zariski topology of L. Recall that the imbedding of L into p(L) i s
a topological imbedding for the Zariski topology. This fact will play a
prominent role in our discussion.

The next result follows from Propositions (4.2), (4.3), and [6,4.4].

PROPOSITION 3.1. Let L be a distributive lattice and let I c L
be an ideal of L. Then the following statements are equivalent:

(1) I is closed.
(2) If Del is a directed subset and if D converges to an

element x e L in the Zariski topology, then x e I.

(3) If D c J is a directed subset such that sup D exists in
L and such that a A sup D = sup , Jld A a) for every

a e L, then sup Del.
(4) If x e L has the property that x A a = sup (In + ("x A a))

for every a c L, then x e I. D

From now on, we will identify L with the sublattice i(L) of

p(L).

PROPOSITION 3.2. If I and J are two different closed ideals of

L, then I and J have different suprema in p(L).

Proof. Assume that sup I = sup J. Take j to be an arbitrary

element of J. Then sup ,j->I is an upper bound of j in p(L). Since

p(L) is infinitely distributive, we conclude that j = sup ,,,W n+ j).

Moreover, since the Zariski topology on p(L) is the interval topology.
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the directed set I n + j converges to J in the Zariski topology on
p(LJ. The imbedding of L into p(L) i s topological, therefore

J n + j also converges to j in the Zariski topology of L. Hence, by
property (2) of Proposition (3.1), j belongs to I. This yields
J c I. By symmetry, I = J. Q

Let A be a subset of a complete la t t ice . We define

A = {sup D : D is a up-directed subset of A},

A = {sup F : F is a down-directed subset of A}.
Further, if L is an arbitrary distributive lattice, we let

I (L) = {I c L : I is a closed ideal of L}}

G

F (L) = {F c L : F is a closed filter of L).
c

When ordered by inclusion, I (L) and F (L) are complete lattices.

c c

The infimum in these lattices agrees with set theoretical intersection.

However, it is not in general true that the supremum of two closed ideals

taken in the lattice I (L) is the same as the supremum of those two
G

ideals taken in the lattice of all ideals (see the following example).

Therefore, i t i s not obvious that the lattice of al l closed ideals

(filters) i s again distributive (see Theorem (3.4)).

EXAMPLE 3.3. Let L be the open unit square enriched by appending
the point (1.1). Then the Zariski topology on L is the topology
induced by the Euclidean topology of the plane. Let

I = {(x,y) e L : y < j } ,

J = l(x3y) e L : x < j } .

Then the supremum of J and J in the ideal lattice of L contains

all the elements of L except the point (1.1) and hence is not closed.

In the following result, L will again be identified with a subset

of p (L). Hence L+ must be evaluated in the lattice p (L) and not in

L. Even when L is a complete lattice, L+ does not have to agree with

L. Note that the meet-continuity of p (L) implies that L+ is a

sublattice of p(L). Therefore, L+ will always be a distributive lattice.
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THEOREM 3.4. The lattice L+ is isomorphic with lc(L); an

isomorphism between I (L) and L+ is given by the map-ping

I ** sup I.
Its inverse is the mapping

x «• {y £ L : y < x}.

Thus, I (L) is a distributive lattice,c

Proof. By Proposition (3.2), the mapping I ** sup I i s in ject ive .

If x e L+, then x i s a directed supremum (and hence the supremum of

an ideal) of elements of L. Thus, x has to be the supremum of the

closed ideal {y e L : y 5 x] = -\rx n L. Since there i s no more than one

closed ideal with supremum x, the mapping x+*{yeL:y<x] i s the

inverse of J •*• sup I. D

When L i s a complete meet-continuous l a t t i c e , an ideal of L i s

closed i f and only i f i t i s a lower se t of a point . In th is case L and

\AIJ) wi l l be isomorphic and therefore T-~(I>) wi l l be meet-continuousc c

too. This last property remains true in general:

PROPOSITION 3.7. If L is any distrivutive lattice, then I (L)

is meet-continuous.

Proof. This follows easily from the fact that T-JL) i s isomorphic
c

with L+ and that L+ i s closed under f inite infima and arbitrary
suprema in the complete Boolean algebra B(L). 0

Now le t us examine the join-continuity of T (L). Unfortunately,
c

the imbedding I ** sup I does not preserve arbitrary infima and in
general, I (L) need not be join-continuous. (Consult the open unit

G
square for examples: If L is the open unit square, then I (L) = L+ =

c
{(x,y) € (ft .• 0 < x,y 5 1} and this la t t ice i s not join-continuous.)
However, what happens if L i s a complete join-continuous lat t ice to
begin with? Is i t then true that T-JL) i s meet-continuous and join-continuous? If the answer to this quention were positive, then p(L)
would always be of the form p (L) = L+ = L . we will leave the gei
case as an open problem and only discuss a special case:
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If L i s essentially completely distributive, then p(L) i s

completely distributive. Since L i s order dense in p(L), we conclude

from the infinite distributive law that L = L = p(L). We may

reformulate this in the following way:

THEOREM 3.7. If L is an essentially completely distributive
lattice, then p(L) is isomorphic with the dual of the lattice
FaJa(L). The canonical imbedding of L into this lattice is given by

i : L ** c 0(L)

x +* {I e lo(L) : xel} . Q

This.last theorem easily yields the result that when L is the

open unit square, p(L) is the closed unit square.
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