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Free Locally Convex Spaces and the
k-space Property

S. S. Gabriyelyan

Abstract. Let L(X) be the free locally convex space over a Tychonoff space X. Then L(X) is a k-space
if and only if X is a countable discrete space. We prove also that L(D) has uncountable tightness for
every uncountable discrete space D.

1 Introduction

The free (resp., abelian) topological group F(X) (resp., A(X)) and the free locally
convex space L(X) over a Tychonoff space X were introduced by Markov [10] and
intensively studied over the last half-century (see [7, 9, 15, 18, 19]).

Recall that the free locally convex space L(X) over a Tychonoff space X is a pair
consisting of a locally convex space L(X) and a continuous mapping i : X → L(X)
such that every continuous mapping f from X to a locally convex space E gives rise
to a unique continuous linear operator f̄ : L(X) → E with f = f̄ ◦ i. The free
locally convex space L(X) always exists and is unique. The set X forms a Hamel
basis for L(X), and the mapping i is a topological embedding [4, 5, 15, 19]. It is
known that the identity map idX : X → X extends to a canonical homomorphism
idA(X) : A(X)→ L(X), which is an embedding of topological groups [18, 20].

One of the most important topological properties is the property to be a k-space.
Recall that a Hausdorff space X is called a k-space if its topology is defined by com-
pact subsets of X; i.e., for each A ⊆ X, the set A is closed in X provided that the
intersection of A with any compact subset K of X is closed in K. In the partial case
when the topology of a k-space X is defined by an increasing sequence of its compact
subsets, the space X is called a kω-space. It is known ([7, 9]) that for any kω-space
X, the groups F(X) and A(X) are also kω-spaces. Arhangel’skii, Okunev, and Pestov
(see [1]) described all metrizable spaces X for which the groups F(X) and A(X) are
k-spaces.

Theorem 1.1 ([1]) Let X be a metrizable space.

(i) F(X) is a k-space if and only if X is locally compact separable or discrete.
(ii) A(X) is a k-space if and only if X is locally compact and the set X′ of all non-

isolated points in X is separable.
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It is natural to ask for which Tychonoff spaces X is the free locally convex space
L(X) a k-space. Consider two simple cases. If X is a finite space of cardinality n, then
L(X) ∼= Rn. If X is a countably infinite discrete space, then L(X) ∼= φ, where φ is the
countable inductive limit of the increasing sequence (Rk)k∈N. It is well known that φ
is even a sequential kω-space. It turns out that except for these two simplest cases the
space L(X) is never a k-space. The following theorem is the main result of the article.

Theorem 1.2 For a Tychonoff space X, L(X) is a k-space if and only if X is a countable
discrete space.

The paper is organized as follows. In Section 2 we study the box, the maximal, and
maximal locally convex vector topologies on direct sums of the reals R. The main the-
orem of this section (see Theorem 2.1) generalizes some of the main results of [13],
and it is essentially used to prove Theorem 1.2. In Section 3 we prove Theorem 1.2.

2 Maximal Vector Topologies on Direct Sums of the Reals R

Let κ be an infinite cardinal, let Vκ =
⊕

i<κ Ri be a vector space of dimension κ
over R, let τττκ be the box topology on Vκ, and let µµµκ and νννκ be the maximal and
maximal locally convex vector topologies on Vκ, respectively. Clearly, τττκ ⊆ νννκ ⊆ µµµκ
and L(D) ∼= (Vκ, νννκ), where D is a discrete space of cardinality κ. It is well known
that τττω = νννω = µµµω (see [8, Proposition 4.1.4]). However, if κ is uncountable the
situation changes [13] (see also Theorem 2.1).

We denote by A
τ

the closure of a subset A of a topological space (X, τ ).
For a topological group (G, τ ) denote by k(τ ) the finest group topology for G

coinciding on compact sets with τ . In particular, τ and k(τ ) have the same family of
compact subsets. Clearly, τ ≤ k(τ ). If τ = k(τ ), the group (G, τ ) is called a k-group
[12]. The group k(G, τ ) := (G, k(τ )) is called the k-modification of X. The class of
all k-groups contains all topological groups whose underlying space is a k-space.

The next theorem generalizes [13, Theorems 1(i), 3(i), and 5] and simplifies their
proofs (we give an independent proof of item (i)).

Theorem 2.1 Let κ be an uncountable cardinal and let τ be a vector topology on Vκ
such that τττκ ⊆ τ ⊆ νννκ.

(i) τττκ ( νννκ ( µµµκ (see [13]).
(ii) (Vκ, τ ) has uncountable tightness.
(iii) (Vκ, τ ) is not a k-group and hence not a k-space.

Proof We shall use the following simple description of the topologyµµµκ given in the
proof of [13, Theorem 1]. For each i ∈ κ, choose some λi ∈ R+

i , λi > 0, and denote
by Sκ the family of all subsets of Vκ of the form

⋃
i<κ

(
[−λi , λi]×

∏
j<κ, j 6=i

{0}
)
.
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For every sequence {Sk}k∈ω in Sκ, we put∑
k∈ω

Sk :=
⋃

k∈ω
(S0 + S1 + · · · + Sk)

and denote by Nκ the family of all subsets of Vκ of the form
∑

k∈ω Sk. It is easy to

check that Nκ is a base at 0 for µµµκ and the family N̂κ := {conv(V ) : V ∈ Nκ} is a
base at 0 for νννκ (see [13]). For (xi) ∈ Vκ, we denote supp(xi) := {i ∈ κ : xi 6= 0}.

We prove the theorem in four steps.

Step 1. For every natural number n, set

En :=
{

(xi) ∈ Vκ : |supp(xi)| ≥ n, and xi ≥
1

n2
for every i ∈ supp(xi)

}
.

Set E :=
⋃

n∈N En. Clearly, 0 6∈ E. We show that

(a) 0 ∈ E
νννκ ;

(b) 0 6∈ B
τττκ for any countable subset B of E;

(c) 0 6∈ E
µµµκ .

Take arbitrarily an open convex neighborhood W of 0 in νννκ. Choose a neighbor-
hood

∑
k∈ω Sk of 0 in µµµκ such that

∑
k∈ω Sk ⊆W . Since κ is uncountable, there is a

positive number c > 0 and an uncountable set J of indices such that λ0
j > c for all

j ∈ J, where the positive numbers λ0
j define S0. Take n ∈ N with 1/n < c and a finite

subset J0 = { j1, . . . , jn} of J. For every 1 ≤ l ≤ n we set xl = (xl
i)i<κ, where xl

i = 1
n

if i = jl, and xl
i = 0. So xl ∈ S0 ⊂

∑
n∈ω Sn ⊆ W for every 1 ≤ l ≤ n. Since W is

convex, the element

x :=
1

n
(x1 + · · · + xn)

belongs to W . By construction, x ∈ En. Thus 0 ∈ E
νννκ and (a) holds.

To prove (b) let B = {(xn
i )i<κ}n∈N be a countable subset of E. Denote by I the set

of all indices i, i < κ, such that xn
i 6= 0 for some n ∈ N. We can assume that I is

countably infinite and hence I = {ik}k∈N. Set

U :=
{

(xi)i<κ ∈ Vκ : xik ∈
(
− 1

22k
,

1

22k

)
,∀k ∈ N

}
.

Clearly, U is an open neighborhood of 0 in τττκ. For each (xi)i<κ ∈ U and every n ∈ N,
if xik ≥ 1

n2 , then 1
22k ≥ 1

n2 and hence k ≤ log2 n < n. This means that the size of the
set of indices ik for which xik ≥ 1

n2 is strictly less than n. So (xi)i<κ 6∈ En ∩ B for each
(xi)i<κ ∈ U and every n ∈ N. Thus U ∩ B = ∅ and (b) is proved.

Now we prove (c). For every k ∈ ω and each i < κ, set

λk
i =

1

(k + 4)34k+1
and Sk :=

⋃
i<κ

(
[−λk

i , λ
k
i ]×

∏
j<κ, j 6=i

{0}
)
.

We show that E ∩
∑

k∈ω Sk = ∅. Clearly, S0 ∩ E = ∅. Taking into account that for
n > 0,

(2.1)
∞∑

k=n−1

1

(k + 4)34k+1
<

1

(n + 3)3

∞∑
k=n−1

1

4k+1
<

1

(n + 3)3
<

1

n2
,
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we obtain that any element x ∈
∑

k∈ω Sk has at most n−1 coordinates that are greater
than or equal to 1

n2 . So En ∩
∑

k∈ω Sk = ∅ for every n ∈ N. Thus E ∩
∑

k∈ω Sk = ∅
and (c) holds.

Now (a) and (b) prove (ii), and (a) and (c) show that νννκ ( µµµκ.

Step 2. We claim that τττκ ( νννκ. Indeed, set

A :=
{

(xi)i<κ ∈ Vκ : xi ≥ 0,∀i < κ, and
∑
i<κ

xi > 1
}
.

Clearly, 0 6∈ A. To prove the claim it is enough to show the following:

(d) 0 ∈ A
τττκ ;

(e) 0 6∈ A
νννκ .

We first show (d). Take an arbitrary neighborhood U of 0 in the box topology τττκ
of the form Vκ ∩

∏
i<κ(−λi , λi). Since κ is uncountable, there is a positive number

c > 0 and an uncountable set J of indices such that λ j > c for all j ∈ J. Pick a finite
subset F of J such that c|F| > 1 and set yi = c if i ∈ F, and yi = 0 otherwise. Clearly,
(yi)i<κ ∈ A ∩U . Thus 0 ∈ A

τττκ .
Now we prove (v). Take λk

i as in the proof of (iii), and note that each element x of
conv(

∑
k∈ω Sk) has the form

x = c1(x1
i ) + · · · + cm(xm

i ),

where c1, . . . , cm > 0, c1 + · · ·+cm ≤ 1 and (x1
i ), . . . , (xm

i ) ∈
∑

k∈ω Sk. The inequality
(2.1) for n = 1 implies∑

i<κ
(c1x1

i + · · · + cmxm
i ) < c1

1

43
+ · · · + cm

1

43
≤ 1

43
< 1.

So x 6∈ A. Thus conv(
∑

k∈ω Sk) ∩ A = ∅ and (v) is proved.

Step 3. For the convenience of the reader we prove the following well-known fact:
compact subsets of (Vκ, τττκ), and hence compact subsets of (Vκ,µµµκ) and (Vκ, τ ), are
finite-dimensional. Indeed, suppose for a contradiction that (Vκ, τττκ) has an infinite-
dimensional compact subset K. Then the intersection of K with some countably
infinite-dimensional subspace is also infinite-dimensional. So the space (Vω, τττω) =
(Vω,µµµω) has an infinite-dimensional compact subset. But this contradicts [17, Lem-
ma 9.3].

Step 4. Now we prove (iii). By Step 3 the k-modifications k(τ ) and k(µµµκ) of τ andµµµκ
respectively coincide. Since µµµκ ⊆ k(µµµκ), (i) implies that

τ ( µµµκ ⊆ k(τ ) = k(τττκ).

Thus (Vκ, τ ) is not a k-group and hence not a k-space.

Remark 2.2 Theorem 5 of [13] states that (Vω, τττω) = φ is not sequential, because
the zero vector 0 belongs to the closure of the set X defined in the proof of this theo-
rem. However, 0 6∈ X, since X ∩ V = ∅ for V =

∏
n∈N

(
− 1

2n ,
1

2n

)
. So the proof of

[13, Theorem 5] is wrong.
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We end this section with the following question in which t(X) denotes the tight-
ness of a space X.

Question 2.3 For a cardinal κ > ℵ0, is t(Vκ,µµµκ) = t(Vκ, νννκ) = t(Vκ, τττκ) = κ?

3 Proof of Theorem 1.2

Let s = { 1
n}n∈N ∪ {0} be the convergent sequence with the usual topology induced

from R. It is well known that A(s) is a sequential non-Fréchet–Urysohn space.
Recall (see [2]) that a topological space Y has countable cs∗-character if for each

y ∈ Y , there exists a countable family D of subsets of Y such that for each nontrivial
sequence in Y converging to y and each neighbourhood U of y, there is D ∈ D such
that D ⊆ U and D contains infinitely many elements of that sequence. Note that
the free locally convex space L(s) has countable cs∗-character by [6, Proposition 5].
Recall also that a topological group G is an MKω-group if its topology is defined by
an increasing sequence of compact metrizable subsets.

In the next proposition we consider an important partial case of Theorem 1.2.

Proposition 3.1 The space L(s) is not a k-space.

Proof We note first that L(s) is not Fréchet–Urysohn, because it contains A(s) as a
closed subgroup. Further, L(s) has countable cs∗-character [6].

Suppose for a contradiction that L(s) is a k-space. Define the following embedding
p of s into the classical Banach space c0:

p(0) = 0 and p
( 1

n

)
:=
(

0, . . . , 0,
1

n
, 0, . . .

)
,

where 1/n is placed in position n. So there is a continuous linear monomorphism
p̃ : L(s) → c0 such that p̃(x) = p(x) on s. Hence any compact subset of the k-space
L(s) is metrizable. Thus L(s) is a sequential space.

Since L(s) is a sequential non-metrizable space with countable cs∗-character, [2,
Theorem 1] implies that L(s) has an open MKω-subgroup. So L(s) is an MKω-group
as it is (arcwise) connected. Thus L(s) is complete [14, 4.1.6]. However L(s) is not
complete by a corollary of [19, Theorem 5]. This contradiction shows that L(s) is not
a k-space.

The next two lemmas help us to reduce the proof of Theorem 1.2 for simpler cases.

Lemma 3.2 For every infinite compact space K there is a quotient mapping f of K
onto an infinite metrizable compact space C.

Proof We show first that there is a continuous function f : K → [0, 1]N such that
f (K) is infinite. Indeed, the compact space K can be considered as an infinite sub-
space of a Tychonoff cube [3, 3.2.5]. Now take for f the projection to an appropriate
countable face.

Now we set C := f (K). By construction, C is an infinite metrizable compact
space. Since K is compact, f is a quotient map by [3, 2.4.8 and 3.1.12].
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Lemma 3.3 If Y is a compact subspace of a Tychonoff space X, then L(Y ) can be
identified with the closed subspace L(Y,X) of L(X) generated by Y .

Proof Note that the topology of the free lcs L(Z) over a Tychonoff space Z is deter-
mined by continuous seminorms arising from pseudometrics on Z (see [18, 20]). As
Y is compact, each continuous pseudometric on Y can be extended to a continuous
pseudometric on X (see [3, 8.5.6]). These two facts imply that L(Y ) can be identi-
fied with L(Y,X). Since Y is closed in X we can repeat word for word the proof of
[16, Proposition 3.8] to show that L(Y,X) is closed in L(X).

We need also the following standard fact.

Lemma 3.4 Let X and Y be Tychonoff spaces, let f : X → Y be a quotient mapping,
and let Φ : L(X) → L(Y ) be a continuous linear operator such that Φ(x) = f (x) for
each x ∈ X. Then Φ is a quotient map.

Proof Let H be the kernel of Φ, let q : L(X) → L(X)/H be the quotient map and
i : L(X)/H → L(Y ) be the induced linear operator. So Φ = i◦q, and i is a continuous
linear isomorphism. Since f = i ◦ q|X , the restriction j := i|q(X) is a quotient
map by [3, 2.4.5]. As j : q(X) → Y is a continuous isomorphism, we obtain that
j is a topological isomorphism of q(X) onto Y (see [3, 2.4.7]). Consider the locally
convex topology τi on the underlying linear space La(Y ) of L(Y ) induced by i from
the quotient space L(X)/H. Then τi is finer than the topology τ of L(Y ) and τi |Y =
τ |Y . By the definition of τ we obtain that τi = τ . Thus L(Y ) is a quotient space of
L(X).

Proposition 3.5 For each infinite compact space K, the space L(K) is not a k-space.

Proof By Lemma 3.2, there is a quotient mapping f of K onto an infinite metrizable
compact space C . Since C contains a subspace that is homeomorphic to s, Proposi-
tion 3.1 and Lemma 3.3 imply that L(C) is not a k-space. Also taking into account
that a quotient space of a k-space is a k-space, Lemma 3.4 implies that the space L(K)
is not a k-space.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Assume that L(X) is a k-space. We show first that each com-
pact subset K of X is finite. Indeed, suppose for a contradiction that X has an infinite
compact subset K. Then, by Lemma 3.3 and Proposition 3.5, the k-space L(X) has a
closed subspace L(K) that is not a k-space, a contradiction.

As L(X) is a k-space we obtain that X is a k-space as well. Since each compact
subset of X is finite we deduce that X is a discrete space. Now Theorem 2.1(iii) implies
that X is countable.

The converse assertion is clear.

Recall that a topological space X is called a kR-space if it is Tychonoff and every
f : X → R, whose restriction to each compact subset K ⊂ X is continuous, is con-
tinuous on X. Clearly, all Tychonoff k-spaces are kR-spaces; the converse is false.
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Question 3.6 Let X be a Tychonoff space that is not a discrete countable space. Is
L(X) a non-kR-space? What about L(s) and L(κ) for uncountable κ?
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