Canad. Math. Bull. Vol. **57** (4), 2014 pp. 803–809 http://dx.doi.org/10.4153/CMB-2014-019-7 © Canadian Mathematical Society 2014

Free Locally Convex Spaces and the *k*-space Property

S. S. Gabriyelyan

Abstract. Let L(X) be the free locally convex space over a Tychonoff space X. Then L(X) is a k-space if and only if X is a countable discrete space. We prove also that L(D) has uncountable tightness for every uncountable discrete space D.

1 Introduction

The free (resp., abelian) topological group F(X) (resp., A(X)) and the free locally convex space L(X) over a Tychonoff space X were introduced by Markov [10] and intensively studied over the last half-century (see [7,9,15,18,19]).

Recall that the *free locally convex space* L(X) over a Tychonoff space X is a pair consisting of a locally convex space L(X) and a continuous mapping $i: X \to L(X)$ such that every continuous mapping f from X to a locally convex space E gives rise to a unique continuous linear operator $\overline{f}: L(X) \to E$ with $f = \overline{f} \circ i$. The free locally convex space L(X) always exists and is unique. The set X forms a Hamel basis for L(X), and the mapping i is a topological embedding [4, 5, 15, 19]. It is known that the identity map $id_X: X \to X$ extends to a canonical homomorphism $id_{A(X)}: A(X) \to L(X)$, which is an embedding of topological groups [18, 20].

One of the most important topological properties is the property to be a k-space. Recall that a Hausdorff space X is called a k-space if its topology is defined by compact subsets of X; *i.e.*, for each $A \subseteq X$, the set A is closed in X provided that the intersection of A with any compact subset K of X is closed in K. In the partial case when the topology of a k-space X is defined by an increasing sequence of its compact subsets, the space X is called a k_{ω} -space. It is known ([7, 9]) that for any k_{ω} -space X, the groups F(X) and A(X) are also k_{ω} -spaces. Arhangel'skii, Okunev, and Pestov (see [1]) described all metrizable spaces X for which the groups F(X) and A(X) are k-spaces.

Theorem 1.1 ([1]) Let X be a metrizable space.

- (i) F(X) is a k-space if and only if X is locally compact separable or discrete.
- (ii) A(X) is a k-space if and only if X is locally compact and the set X' of all nonisolated points in X is separable.

Received by the editors November 17, 2013; revised March 3, 2014.

Published electronically April 15, 2014.

AMS subject classification: 46A03, 54D50, 54A25.

Keywords: free locally convex space, k-space, countable tightness.

It is natural to ask for which Tychonoff spaces *X* is the free locally convex space L(X) a *k*-space. Consider two simple cases. If *X* is a finite space of cardinality *n*, then $L(X) \cong \mathbb{R}^n$. If *X* is a countably infinite discrete space, then $L(X) \cong \phi$, where ϕ is the countable inductive limit of the increasing sequence $(\mathbb{R}^k)_{k\in\mathbb{N}}$. It is well known that ϕ is even a sequential k_{ω} -space. It turns out that except for these two simplest cases the space L(X) is never a *k*-space. The following theorem is the main result of the article.

Theorem 1.2 For a Tychonoff space X, L(X) is a k-space if and only if X is a countable discrete space.

The paper is organized as follows. In Section 2 we study the box, the maximal, and maximal locally convex vector topologies on direct sums of the reals \mathbb{R} . The main theorem of this section (see Theorem 2.1) generalizes some of the main results of [13], and it is essentially used to prove Theorem 1.2. In Section 3 we prove Theorem 1.2.

2 Maximal Vector Topologies on Direct Sums of the Reals R

Let κ be an infinite cardinal, let $\mathbb{V}_{\kappa} = \bigoplus_{i < \kappa} \mathbb{R}_i$ be a vector space of dimension κ over \mathbb{R} , let τ_{κ} be the box topology on \mathbb{V}_{κ} , and let μ_{κ} and ν_{κ} be the maximal and maximal locally convex vector topologies on \mathbb{V}_{κ} , respectively. Clearly, $\tau_{\kappa} \subseteq \nu_{\kappa} \subseteq \mu_{\kappa}$ and $L(D) \cong (\mathbb{V}_{\kappa}, \nu_{\kappa})$, where *D* is a discrete space of cardinality κ . It is well known that $\tau_{\omega} = \nu_{\omega} = \mu_{\omega}$ (see [8, Proposition 4.1.4]). However, if κ is uncountable the situation changes [13] (see also Theorem 2.1).

We denote by \overline{A}' the closure of a subset A of a topological space (X, τ) .

For a topological group (G, τ) denote by $k(\tau)$ the finest group topology for *G* coinciding on compact sets with τ . In particular, τ and $k(\tau)$ have the same family of compact subsets. Clearly, $\tau \leq k(\tau)$. If $\tau = k(\tau)$, the group (G, τ) is called a *k*-group [12]. The group $\mathbf{k}(G, \tau) := (G, k(\tau))$ is called the *k*-modification of *X*. The class of all *k*-groups contains all topological groups whose underlying space is a *k*-space.

The next theorem generalizes [13, Theorems 1(i), 3(i), and 5] and simplifies their proofs (we give an independent proof of item (i)).

Theorem 2.1 Let κ be an uncountable cardinal and let τ be a vector topology on \mathbb{V}_{κ} such that $\boldsymbol{\tau}_{\kappa} \subseteq \tau \subseteq \boldsymbol{\nu}_{\kappa}$.

- (i) $\boldsymbol{\tau}_{\kappa} \subsetneq \boldsymbol{\nu}_{\kappa} \subsetneq \boldsymbol{\mu}_{\kappa}$ (see [13]).
- (ii) $(\mathbb{V}_{\kappa}, \tau)$ has uncountable tightness.
- (iii) $(\mathbb{V}_{\kappa}, \tau)$ is not a k-group and hence not a k-space.

Proof We shall use the following simple description of the topology μ_{κ} given in the proof of [13, Theorem 1]. For each $i \in \kappa$, choose some $\lambda_i \in \mathbb{R}^+_i, \lambda_i > 0$, and denote by S_{κ} the family of all subsets of \mathbb{V}_{κ} of the form

$$\bigcup_{i<\kappa} \left(\left[-\lambda_i, \lambda_i \right] \times \prod_{j<\kappa, \ j\neq i} \{0\} \right).$$

804

Free Locally Convex Spaces and the k-space Property

For every sequence $\{S_k\}_{k \in \omega}$ in S_{κ} , we put

$$\sum_{k\in\omega}S_k:=\bigcup_{k\in\omega}(S_0+S_1+\cdots+S_k)$$

and denote by \mathbb{N}_{κ} the family of all subsets of \mathbb{V}_{κ} of the form $\sum_{k \in \omega} S_k$. It is easy to check that \mathbb{N}_{κ} is a base at **0** for $\boldsymbol{\mu}_{\kappa}$ and the family $\widehat{\mathbb{N}}_{\kappa} := \{\operatorname{conv}(V) : V \in \mathbb{N}_{\kappa}\}$ is a base at **0** for $\boldsymbol{\nu}_{\kappa}$ (see [13]). For $(x_i) \in \mathbb{V}_{\kappa}$, we denote $\operatorname{supp}(x_i) := \{i \in \kappa : x_i \neq 0\}$.

We prove the theorem in four steps.

Step 1. For every natural number *n*, set

$$E_n := \left\{ (x_i) \in \mathbb{V}_{\kappa} : |\operatorname{supp}(x_i)| \ge n, \text{ and } x_i \ge \frac{1}{n^2} \text{ for every } i \in \operatorname{supp}(x_i) \right\}.$$

Set $E := \bigcup_{n \in \mathbb{N}} E_n$. Clearly, $\mathbf{0} \notin E$. We show that (a) $\mathbf{0} \in \overline{E}^{\nu_{\kappa}}$; (b) $\mathbf{0} \notin \overline{B}^{\tau_{\kappa}}$ for any countable subset *B* of *E*;

(c) $\mathbf{0} \notin \overline{E}^{\boldsymbol{\mu}_{\kappa}}$.

Take arbitrarily an open convex neighborhood W of **0** in $\boldsymbol{\nu}_{\kappa}$. Choose a neighborhood $\sum_{k \in \omega} S_k$ of **0** in $\boldsymbol{\mu}_{\kappa}$ such that $\sum_{k \in \omega} S_k \subseteq W$. Since κ is uncountable, there is a positive number c > 0 and an uncountable set J of indices such that $\lambda_j^0 > c$ for all $j \in J$, where the positive numbers λ_j^0 define S_0 . Take $n \in \mathbb{N}$ with 1/n < c and a finite subset $J_0 = \{j_1, \ldots, j_n\}$ of J. For every $1 \leq l \leq n$ we set $\mathbf{x}_l = (x_i^l)_{i < \kappa}$, where $x_i^l = \frac{1}{n}$ if $i = j_l$, and $x_i^l = 0$. So $\mathbf{x}_l \in S_0 \subset \sum_{n \in \omega} S_n \subseteq W$ for every $1 \leq l \leq n$. Since W is convex, the element

$$\mathbf{x} := \frac{1}{n} (\mathbf{x}_1 + \dots + \mathbf{x}_n)$$

belongs to *W*. By construction, $\mathbf{x} \in E_n$. Thus $\mathbf{0} \in \overline{E}^{\boldsymbol{\nu}_{\kappa}}$ and (a) holds.

To prove (b) let $B = \{(x_i^n)_{i < \kappa}\}_{n \in \mathbb{N}}$ be a countable subset of *E*. Denote by *I* the set of all indices $i, i < \kappa$, such that $x_i^n \neq 0$ for some $n \in \mathbb{N}$. We can assume that *I* is countably infinite and hence $I = \{i_k\}_{k \in \mathbb{N}}$. Set

$$U := \left\{ (x_i)_{i < \kappa} \in \mathbb{V}_{\kappa} : x_{i_k} \in \left(-\frac{1}{2^{2k}}, \frac{1}{2^{2k}} \right), \forall k \in \mathbb{N} \right\}.$$

Clearly, *U* is an open neighborhood of **0** in τ_{κ} . For each $(x_i)_{i < \kappa} \in U$ and every $n \in \mathbb{N}$, if $x_{i_k} \ge \frac{1}{n^2}$, then $\frac{1}{2^{2k}} \ge \frac{1}{n^2}$ and hence $k \le \log_2 n < n$. This means that the size of the set of indices i_k for which $x_{i_k} \ge \frac{1}{n^2}$ is strictly less than n. So $(x_i)_{i < \kappa} \notin E_n \cap B$ for each $(x_i)_{i < \kappa} \in U$ and every $n \in \mathbb{N}$. Thus $U \cap B = \emptyset$ and (b) is proved.

Now we prove (c). For every $k \in \omega$ and each $i < \kappa$, set

$$\lambda_i^k = \frac{1}{(k+4)^3 4^{k+1}} \quad \text{and} \quad S_k := \bigcup_{i < \kappa} \left(\left[-\lambda_i^k, \lambda_i^k \right] \times \prod_{j < \kappa, \ j \neq i} \{ 0 \} \right).$$

We show that $E \cap \sum_{k \in \omega} S_k = \emptyset$. Clearly, $S_0 \cap E = \emptyset$. Taking into account that for n > 0,

(2.1)
$$\sum_{k=n-1}^{\infty} \frac{1}{(k+4)^3 4^{k+1}} < \frac{1}{(n+3)^3} \sum_{k=n-1}^{\infty} \frac{1}{4^{k+1}} < \frac{1}{(n+3)^3} < \frac{1}{n^2},$$

we obtain that any element $\mathbf{x} \in \sum_{k \in \omega} S_k$ has at most n-1 coordinates that are greater than or equal to $\frac{1}{n^2}$. So $E_n \cap \sum_{k \in \omega} S_k = \emptyset$ for every $n \in \mathbb{N}$. Thus $E \cap \sum_{k \in \omega} S_k = \emptyset$ and (c) holds.

Now (a) and (b) prove (ii), and (a) and (c) show that $\boldsymbol{\nu}_{\kappa} \subsetneq \boldsymbol{\mu}_{\kappa}$.

Step 2. We claim that $\boldsymbol{\tau}_{\kappa} \subsetneq \boldsymbol{\nu}_{\kappa}$. Indeed, set

$$A := \left\{ (x_i)_{i < \kappa} \in \mathbb{V}_{\kappa} : x_i \ge 0, \forall i < \kappa, \text{ and } \sum_{i < \kappa} x_i > 1 \right\}$$

Clearly, $\mathbf{0} \notin A$. To prove the claim it is enough to show the following:

- (d) $\mathbf{0} \in \overline{A}^{\boldsymbol{\tau}_{\kappa}}$; (e) $\mathbf{0} \notin \overline{A}^{\boldsymbol{\nu}_{\kappa}}$.

We first show (d). Take an arbitrary neighborhood U of **0** in the box topology τ_{κ} of the form $\mathbb{V}_{\kappa} \cap \prod_{i < \kappa} (-\lambda_i, \lambda_i)$. Since κ is uncountable, there is a positive number c > 0 and an uncountable set *J* of indices such that $\lambda_j > c$ for all $j \in J$. Pick a finite subset *F* of *J* such that c|F| > 1 and set $y_i = c$ if $i \in F$, and $y_i = 0$ otherwise. Clearly, $(y_i)_{i<\kappa} \in A \cap U$. Thus $\mathbf{0} \in \overline{A}^{\boldsymbol{\tau}_{\kappa}}$.

Now we prove (v). Take λ_i^k as in the proof of (iii), and note that each element x of $\operatorname{conv}(\sum_{k \in \omega} S_k)$ has the form

$$\mathbf{x} = c_1(x_i^1) + \cdots + c_m(x_i^m),$$

where $c_1, \ldots, c_m > 0$, $c_1 + \cdots + c_m \le 1$ and $(x_i^1), \ldots, (x_i^m) \in \sum_{k \in \omega} S_k$. The inequality (2.1) for n = 1 implies

$$\sum_{i < \kappa} (c_1 x_i^1 + \dots + c_m x_i^m) < c_1 \frac{1}{4^3} + \dots + c_m \frac{1}{4^3} \le \frac{1}{4^3} < 1.$$

So $\mathbf{x} \notin A$. Thus conv $(\sum_{k \in \omega} S_k) \cap A = \emptyset$ and (v) is proved.

Step 3. For the convenience of the reader we prove the following well-known fact: compact subsets of $(\mathbb{V}_{\kappa}, \boldsymbol{\tau}_{\kappa})$, and hence compact subsets of $(\mathbb{V}_{\kappa}, \boldsymbol{\mu}_{\kappa})$ and $(\mathbb{V}_{\kappa}, \tau)$, are finite-dimensional. Indeed, suppose for a contradiction that $(\mathbb{V}_{\kappa}, \boldsymbol{\tau}_{\kappa})$ has an infinitedimensional compact subset K. Then the intersection of K with some countably infinite-dimensional subspace is also infinite-dimensional. So the space $(\mathbb{V}_{\omega}, \boldsymbol{\tau}_{\omega}) =$ $(\mathbb{V}_{\omega}, \boldsymbol{\mu}_{\omega})$ has an infinite-dimensional compact subset. But this contradicts [17, Lemma 9.3].

Step 4. Now we prove (iii). By Step 3 the k-modifications $\mathbf{k}(\tau)$ and $\mathbf{k}(\boldsymbol{\mu}_{\kappa})$ of τ and $\boldsymbol{\mu}_{\kappa}$ respectively coincide. Since $\mu_{\kappa} \subseteq \mathbf{k}(\mu_{\kappa})$, (i) implies that

$$\tau \subsetneq \boldsymbol{\mu}_{\kappa} \subseteq \mathbf{k}(\tau) = \mathbf{k}(\boldsymbol{\tau}_{\kappa}).$$

Thus $(\mathbb{V}_{\kappa}, \tau)$ is not a *k*-group and hence not a *k*-space.

Remark 2.2 Theorem 5 of [13] states that $(\mathbb{V}_{\omega}, \boldsymbol{\tau}_{\omega}) = \phi$ is not sequential, because the zero vector **0** belongs to the closure of the set X defined in the proof of this theorem. However, $\mathbf{0} \notin \overline{X}$, since $X \cap V = \emptyset$ for $V = \prod_{n \in \mathbb{N}} \left(-\frac{1}{2n}, \frac{1}{2n} \right)$. So the proof of [13, Theorem 5] is wrong.

806

Free Locally Convex Spaces and the k-space Property

We end this section with the following question in which t(X) denotes the tightness of a space *X*.

Question 2.3 For a cardinal $\kappa > \aleph_0$, is $t(\mathbb{V}_{\kappa}, \boldsymbol{\mu}_{\kappa}) = t(\mathbb{V}_{\kappa}, \boldsymbol{\nu}_{\kappa}) = t(\mathbb{V}_{\kappa}, \boldsymbol{\tau}_{\kappa}) = \kappa$?

3 Proof of Theorem 1.2

Let $\mathbf{s} = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$ be the convergent sequence with the usual topology induced from \mathbb{R} . It is well known that $A(\mathbf{s})$ is a sequential non-Fréchet–Urysohn space.

Recall (see [2]) that a topological space Y has *countable cs*^{*}-*character* if for each $y \in Y$, there exists a countable family \mathcal{D} of subsets of Y such that for each nontrivial sequence in Y converging to y and each neighbourhood U of y, there is $D \in \mathcal{D}$ such that $D \subseteq U$ and D contains infinitely many elements of that sequence. Note that the free locally convex space $L(\mathbf{s})$ has countable cs^* -character by [6, Proposition 5]. Recall also that a topological group G is an \mathcal{MK}_{ω} -group if its topology is defined by an increasing sequence of compact metrizable subsets.

In the next proposition we consider an important partial case of Theorem 1.2.

Proposition 3.1 The space $L(\mathbf{s})$ is not a k-space.

Proof We note first that $L(\mathbf{s})$ is not Fréchet–Urysohn, because it contains $A(\mathbf{s})$ as a closed subgroup. Further, $L(\mathbf{s})$ has countable cs^* -character [6].

Suppose for a contradiction that L(s) is a *k*-space. Define the following embedding *p* of **s** into the classical Banach space c_0 :

$$p(0) = \mathbf{0}$$
 and $p\left(\frac{1}{n}\right) := \left(0, \dots, 0, \frac{1}{n}, 0, \dots\right),$

where 1/n is placed in position *n*. So there is a continuous linear monomorphism $\tilde{p}: L(\mathbf{s}) \to c_0$ such that $\tilde{p}(x) = p(x)$ on **s**. Hence any compact subset of the *k*-space $L(\mathbf{s})$ is metrizable. Thus $L(\mathbf{s})$ is a sequential space.

Since $L(\mathbf{s})$ is a sequential non-metrizable space with countable cs^* -character, [2, Theorem 1] implies that $L(\mathbf{s})$ has an open \mathcal{MK}_{ω} -subgroup. So $L(\mathbf{s})$ is an \mathcal{MK}_{ω} -group as it is (arcwise) connected. Thus $L(\mathbf{s})$ is complete [14, 4.1.6]. However $L(\mathbf{s})$ is not complete by a corollary of [19, Theorem 5]. This contradiction shows that $L(\mathbf{s})$ is not a *k*-space.

The next two lemmas help us to reduce the proof of Theorem 1.2 for simpler cases.

Lemma 3.2 For every infinite compact space K there is a quotient mapping f of K onto an infinite metrizable compact space C.

Proof We show first that there is a continuous function $f: K \to [0, 1]^{\mathbb{N}}$ such that f(K) is infinite. Indeed, the compact space *K* can be considered as an infinite subspace of a Tychonoff cube [3, 3.2.5]. Now take for *f* the projection to an appropriate countable face.

Now we set C := f(K). By construction, C is an infinite metrizable compact space. Since K is compact, f is a quotient map by [3, 2.4.8 and 3.1.12].

Lemma 3.3 If Y is a compact subspace of a Tychonoff space X, then L(Y) can be identified with the closed subspace L(Y, X) of L(X) generated by Y.

Proof Note that the topology of the free lcs L(Z) over a Tychonoff space Z is determined by continuous seminorms arising from pseudometrics on Z (see [18, 20]). As Y is compact, each continuous pseudometric on Y can be extended to a continuous pseudometric on X (see [3, 8.5.6]). These two facts imply that L(Y) can be identified with L(Y, X). Since Y is closed in X we can repeat word for word the proof of [16, Proposition 3.8] to show that L(Y, X) is closed in L(X).

We need also the following standard fact.

Lemma 3.4 Let X and Y be Tychonoff spaces, let $f: X \to Y$ be a quotient mapping, and let $\Phi: L(X) \to L(Y)$ be a continuous linear operator such that $\Phi(x) = f(x)$ for each $x \in X$. Then Φ is a quotient map.

Proof Let *H* be the kernel of Φ , let $q: L(X) \to L(X)/H$ be the quotient map and $i: L(X)/H \to L(Y)$ be the induced linear operator. So $\Phi = i \circ q$, and *i* is a continuous linear isomorphism. Since $f = i \circ q|_X$, the restriction $j := i|_{q(X)}$ is a quotient map by [3, 2.4.5]. As $j: q(X) \to Y$ is a continuous isomorphism, we obtain that *j* is a topological isomorphism of q(X) onto *Y* (see [3, 2.4.7]). Consider the locally convex topology τ_i on the underlying linear space $L_a(Y)$ of L(Y) induced by *i* from the quotient space L(X)/H. Then τ_i is finer than the topology τ of L(Y) and $\tau_i|_Y = \tau|_Y$. By the definition of τ we obtain that $\tau_i = \tau$. Thus L(Y) is a quotient space of L(X).

Proposition 3.5 For each infinite compact space K, the space L(K) is not a k-space.

Proof By Lemma 3.2, there is a quotient mapping f of K onto an infinite metrizable compact space C. Since C contains a subspace that is homeomorphic to s, Proposition 3.1 and Lemma 3.3 imply that L(C) is not a k-space. Also taking into account that a quotient space of a k-space is a k-space, Lemma 3.4 implies that the space L(K) is not a k-space.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Assume that L(X) is a *k*-space. We show first that each compact subset *K* of *X* is finite. Indeed, suppose for a contradiction that *X* has an infinite compact subset *K*. Then, by Lemma 3.3 and Proposition 3.5, the *k*-space L(X) has a closed subspace L(K) that is not a *k*-space, a contradiction.

As L(X) is a *k*-space we obtain that *X* is a *k*-space as well. Since each compact subset of *X* is finite we deduce that *X* is a discrete space. Now Theorem 2.1(iii) implies that *X* is countable.

The converse assertion is clear.

Recall that a topological space *X* is called a k_R -space if it is Tychonoff and every $f: X \to \mathbb{R}$, whose restriction to each compact subset $K \subset X$ is continuous, is continuous on *X*. Clearly, all Tychonoff *k*-spaces are k_R -spaces; the converse is false.

808

Free Locally Convex Spaces and the k-space Property

Question 3.6 Let X be a Tychonoff space that is not a discrete countable space. Is L(X) a non- k_R -space? What about $L(\mathbf{s})$ and $L(\kappa)$ for uncountable κ ?

Acknowledgments The author is deeply indebted to Taras Banakh for fruitful discussions that led to the current general form of Theorem 1.2. It is a pleasure to thank Arkady Leiderman for his attention and interesting remarks.

References

- A. V. Arhangel'skii, O. G. Okunev, and V. G. Pestov, *Free topological groups over metrizable spaces*. Topology Appl. **33**(1989), no. 1, 63–76. http://dx.doi.org/10.1016/0166-8641(89)90088-6
- [2] T. Banakh and L. Zdomskyy, *The topological structure of (homogeneous) spaces and groups with countable cs*-character*. Appl. Gen. Topol. 5(2004), no. 1, 25–48.
- [3] R. Engelking, *General topology*. (Polish), Mathematics Library, 47, Panstwowe Wydawnictwo Naukowe, Warsaw, 1975.
- [4] J. Flood, Free topological vector spaces. Ph. D. thesis, Australian National University, Canberra, 1975.
- [5] _____, Free locally convex spaces. Dissertationes Math CCXXI, PWN, Warczawa, 1984.
- [6] S. Gabriyelyan, J. Kakol, and A. Leiderman, *The strong Pytkeev property for topological groups and topological vector spaces*. http://prometeo2013058.blogs.upv.es/files/2014/02/sPp-MM.pdf
- [7] M. Graev, Free topological groups. (Russian) Izvestiya Akad. Nauk SSSR Ser. Mat. 12(1948), 279–324; Topology and Topological Algebra. Translation Series 1, 8(1962), 305–364.
- [8] H. Jarchow, *Locally convex spaces*. Mathematical Textbooks, B.G. Teubner, Stuttgart, 1981.
- [9] J. Mack, S. A. Morris, and E. T. Ordman, Free topological groups and the projective dimension of a locally compact abelian groups. Proc. Amer. Math. Soc. 40(1973), 303–308. http://dx.doi.org/10.1090/S0002-9939-1973-0320216-6
- [10] A. A. Markov, On free topological groups. Dokl. Akad. Nauk SSSR 31(1941), 299–301.
- [11] C. E. McPhail and S. A. Morris, *Identifying and distinguishing various varieties of abelian topological groups*. Dissertationes Math. 458(2008).
- [12] N. Noble, k-groups and duality. Trans. Amer. Math. Soc. 151(1970), 551-561.
- [13] I. V. Protasov, Maximal vector topologies. Topology Appl. 159(2012), no. 9, 2510–2512. http://dx.doi.org/10.1016/j.topol.2011.10.021
- [14] I. V. Protasov and E. G. Zelenyuk, *Topologies on groups determined by sequences*. Mathematical Studies Monograph Series, 4, VNTL, L'viv, 1999.
- [15] D. A. Raikov, Free locally convex spaces for uniform spaces. (Russian) Mat. Sb. 63(105)(1964), 582–590.
- [16] B. V. Smith-Thomas, Free topological groups. General Topology and Appl. 4(1974), 51–72. http://dx.doi.org/10.1016/0016-660X(74)90005-1
- [17] N. E. Steenrod, A convenient category of topological spaces. Michigan Math. J. 14(1967), 133–152. http://dx.doi.org/10.1307/mmj/1028999711
- [18] M. G. Tkachenko, On completeness of free abelian topological groups. Soviet Math. Dokl. 27(1983), 341–345.
- [19] V. V. Uspenskii, On the topology of free locally convex spaces. Soviet Math. Dokl. 27(1983), 781–785.
 [20] ______, Free topological groups of metrizable spaces. Math. USSR-Izv. 37(1991), no. 3, 657–680.

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva P.O. 653, Israel e-mail: saak@math.bgu.ac.il