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Abstract. Using the many-body techniques appropriate for quantum crystals it is shown that the 
deep interior of a neutron star is most likely an orderly arrangement of neutrons, protons and hyper-
ons forming a solid. It is shown that a liquid or gas arrangement would produce higher energy. If so, 
a neutron star can be viewed as two solids (crust and core) permeated by a layer of ordinary or 
(perhaps) superfluid liquid. Astronomical evidence is in favor of such a structure: the sudden jumps 
in the periods of the Crab and Vela pulsars that differ by a factor of ~ 102 can be easily explained by 
the star-quake model. If the Crab is less massive than Vela (i.e., if it is not dense enough to have a 
solid core), the star-quakes take place in the crust whereas for Vela they occur in the core. 

1. Introduction 

It is not an exaggeration to say that the equation of state of matter at densities much 
beyond nuclear density is not adequately understood. An approach adopted by 
Banerjee et al. (1970), following a suggestion by Bethe, was to assume that when the 
nuclear forces become sufficiently repulsive, a possible minimum energy state could be 
achieved by keeping the nucleons as far away from one another as possible, i.e., by lo
calizing them at lattice sites. This was a preliminary attempt to explore the viability 
of neutron crystallization and the lattice calculation was done in the harmonic ap
proximation employing the classical Debye model. Shortly afterwards Pandharipande 
(1971) calculated the binding energy of dense neutron gas up to a density of the order 
of 7 x 1 0 1 5 g c m " 3 . He used the Reid soft-core potential in the framework of the lowest 
order variational approach by expanding the trial wave function as a product of single 
particle wave functions and the short-range correlation a la Jastrow. His calculations 
yielded energies which were lower approximately by a factor of 1.5-2 compared to the 
energy of Banerjee et al. (1970) over the density range 7 . 5 x l 0 1 4 < £ < 6 x l 0 1 5 g c m ~ 3 . 
This clearly demonstrated a need to undertake a quantum mechanical treatment for 
the neutron lattice. Such a treatment is expected to lower the energy compared to the 
classical calculation by spreading the wave function around each lattice site. Moreover, 
the classical harmonic oscillator treatment is not adequate for a satisfactory descrip
tion of a lattice in which the zero-point kinetic energy of oscillating particles becomes 
comparable with their potential energies. We must, therefore, work in the framework 
of a quantum mechanical formulation by including the effects of short-range correla
tion. 

Recently Anderson and Palmer (1971) and Clark and Chao (1972) adopted an 
empirical approach based on de Boer's quantum mechanical law of corresponding 
states in order to examine the possibility of crystallization of neutron matter. In 
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this approach the solidification pressure of neutron matter is estimated by scaling the 
known low temperature properties of quantum solids like 3 H e to those characteristic 
of nucleons. Both these computations yielded a solidification pressure of the order of 
5 x 1 0 2 7 atmospheres and the corresponding density for the onset of solidification of 
neutron matter in the vicinity of 5 x 1 0 1 4 g c m " 3 . Quite apart from the fact that the 
nucleon-nucleon forces are spin, state, and isospin dependent, which can scarcely be 
embodied in a single effective potential, it is not altogether justified simply to scale the 
potential. Such a scaling, even though it may give an over-all agreement between the 
well-depth and the core-radius of various potentials, almost certainly cannot produce 
a good fit to the tail of the potential where it remains a difficult task to match the 
derivatives of the potential - features which, in fact, are critical from the point of 
view of the stability of the lattice. We have displayed in Figure 1 the singlet 
nucleon-nucleon potential along with the appropriately scaled Lennard-Jones poten
tial from which it can be readily seen that even though the core radius and the depth 
can be fitted to a desired accuracy, the quantitative difference in the relative displace-
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Fig. 2. Elastic constants Cn, Ci 2 computed for an FCC lattice using Reid and L-J (scaled). 

ment of the points of inflection and different slopes of the two potentials are quite 
noteworthy. The elastic constants computed by using the nuclear and scaled potentials 
are shown in Figure 2 where the interesting feature is the point at which the elastic 
constants go soft. On the scaled L J potential the elastic constants indicate an onset of 
the solid phase at a density ~ 3 . 7 x 1 0 1 5 g c m - 3 , while the elastic constants computed 
using the Reid soft-core potential do not permit the solid to exist until a density 
approximately four times higher is reached. We feel that simply estimating the solidifi
cation pressure does not by any means provide the complete answer, rather we must 
test a given lattice structure for stability to determine whether the solid state is per
missible on mechanical grounds. 

2. Many-Body Treatment 

The many-body treatment which we have used is an extension of the T-matrix approach 
to quantum crystals recently discussed by Brandow (1972), and an excellent review 
can be found in a paper by Guyer (1969). The Slater determinant for a system of N 
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particles is built up by single-particle wave functions which we take to be of Gaussian 
form: 

<l>(r) = x3/2n-3/*e-*2/2lr-Rl\ (1) 

where R is the coordinate of the lattice site around which the particle is supposed to 
perform an oscillatory motion. Clearly (1) is the eigenfunction of an harmonic oscil
lator potential U(r), centered around the lattice site R, i.e., U(r)= 1/2 mco2\r-R\2, 
where the frequency co enters the wave function through the parameter a " 1 = (mco/h) ~112 

which represents the spread of cj> around the lattice site. For determining a we do a 
Hartree calculation by taking the single particle potential to be given by 

l/(r,) = I 4>* (r2) V(r, - r2) <f>j(r2)d3r2, (2) 
J 

where the two-body nucleon-nucleon potential is taken to be Reid's phenomenological 
soft-core potential. The index / runs over successive neighbors (shells) from a given 
particle located at Rv The values of a obtained by solving (2) are then used to start 
the full H F equations which finally give the form of cf). 

Among the various degrees of sophistication that one can use to write the equation 
for the correlated or perturbed wave function \j/ we shall employ the one first employed 
by Guyer and Zane (1969) where ij/ is assumed to satisfy an equation analogous to the 
Bethe-Goldstone equation of motion, i.e., 

[T (1) + T (2) + U (1) + U (2) + V (12)] xj, = exjj . (4) 

Here T(\) and T(2) are respectively the kinetic energies, U(\) and U(2) are the harmon-
oscillator potentials of particles 1 and 2, and K(12) is the two-body interaction poten
tial. Equation (4) is basically the equation of motion of two particles, each moving 
in a harmonic oscillator potential centered around two different lattice sites and in 
addition, interacting through a two-body potential. If one uses for £7 (1) and U(2) 
the form given by (2), then (4) becomes 

[TR + Tr + imco2 (r — A)2 4- mco2 (R — S)2 + V(r)] ij/ = eij/. (5) 
Here 

h2 . h2 • 
TR = -—V2

R, T r = - - V r

2 , r x - r 2 = r , r 1 + r 2 = 2R, 
4m m 

Rx - R2 = A, Rt + R2 = 26. 

Since the nuclear interaction potential is highly angular momentum dependent, we 
write the full angular momentum decomposition of \j/ in the form: 

1=0 J V 2/ + 1 i' 

in the usual notation. The second summation over / ' is introduced to take into account 
the presence of tensor forces. Equation (5) contains a cos0 term which, much like 
the Stark effect, couples / with / + 1, but of course does not couple spins and therefore 
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it is to be expected that the singlet states 1S0, lPl9

 XD2 will be coupled by such a term 
and analogously the triplet states 3Sl9

 3Sl9

 3P09

 3Pl9

 3P29

 3Dl9

 3DU

 3D2 will be linked 
together. After inserting (6) into (5) and with a certain amount of algebraic manipula
tion, we get (x = r/r0, d=Ajr09 a = ocr0): 

S I N G L E T 

ho + (E - U0) h0 + a (x, d) h1 = 0 
h'[ + (£ - Ut) ht + ia (x, d) \_h0 - 2h2~] = 0 
h2 + (E - l / 2 ) /z2 - £ a ( x , d) /*x =0. 

where the following notation has been used 

: r^oo = a (*> d) = £ a 4 x d 

ril/2

2°2 = h2 

T R I P L E T 

A3 + ( £ - U3) A3 - V8 K r ? jp A~3 + ^ (x, d) [A 4 + 3A5 + 5A 6] 

r ^ 2 - » 3 9 

0 + i a ( x , d ) [ ( A 3 + 72A~7) + 

(7) 

«3 + (£- V3)K3-y/S V T ^ h 

hl + (E- UJ K + 

h"5 + (E — U5) A5 + 0 

- V 2 ( / J 3 + V ^ 7 ) ] = 0 

* 7 

a; + (£ - u6) K + 

H I A ( x , d) [ ( * 3 - ^ i 

+ ^ ' - 7 2 * 7 ) " H - ° 

I - J a ( x , d) | ^ A 3 + ^ i = « 7 j + 

- 5 7 2 ( * ' + 5 7 2 * ' ) - * * ' ] - 0 2/*rg A; + (£ - C77) A7 - 78 VT - ~ A7 - ^ (x, d) [2A4 + |A 5 + -jVA6] = 0 

A7 + (£ - 0 7 ) A~7 - A7 + ^ a ( x , d ) [A4 - |A 5 + *A6] = 0 

hi + (E — U8) A8 

with the following notation 

0 yVa (x, d ) [3A 5 + A 6 ] = 0 

3 S t : r ^ = A3

 3 i > 2 : r t f } = A6 

3 S , : n ^ 2 = fc3

 3 D , : rtf& = A7 
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0, = 1 a V + 2 ^ K ( s I > i ) + ~ 

The two-body potentials Vk are taken from Reid (1968). 
It can be seen that the two sets of equations are intrinsically coupled by the solid-

state term. Only two normalization conditions are therefore necessary: one for each 
set of singlets and triplets. The solution of the 3 + 8 differential equations presented us 
with considerable numerical difficulty in the absence of any Sturm-Liouville type 
theorems for coupled equations, and the search for the ground state energy of suc
cessive shells was a painfully laborious process. The major concern was to make certain 
that the energy eigenvalues being computed were actually the lowest, i.e., the eigen-
functions hh's had no nodes. 

The energy per particle, E/N, consists of the kinetic energy, which for displaced 
harmonic oscillator wave functions takes the form 

together with the potential energy 

where is the two-body wave function, i.e., ^ = 0 ( r 1 ) </>(r2) and NA is the number 
of particles at distance A from the one chosen as the origin. 

3. Elastic Constants 

We must test the system of nucleons arranged in a lattice structure for stability against 
small deformations. There have been several attempts to derive criteria for the melting 
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of a solid, the best known being Lindemann's rule. This rule gives an empirical 
criterion that a solid melts when the amplitude of oscillation of a particle becomes a 
sizable fraction of the nearest neighbor distance. Such a criterion can only be regarded 
as a convenient 'rule of thumb' designed to test semi-quantitatively the stability of a 
crystalline structure and indeed, a complete theory of melting must examine the detailed 
stability of a lattice when it is deformed under shearing stresses. 

Any lattice has to Satisfy the requirement that its energy density must have a 
stationary value at equilibrium. However, for the structure to be stable, the energy 
must have a positive-definite quadratic form, thus increasing its value while under
going a small strain. Following the notation of Born and Huang (1950), when a cube 
of side 2 a is deformed homogeneously, the energy to the second order of deformation 
in terms of the strain components eap comes out to be 

E(S) = E(0) + i d ! (e2

xx + e2

yy + e2

zz) + Cl2 (eyyezz + 
^zz^xx ^xx^yy) 

Here £(0) is the energy of the undeformed cube whose lattice points can be described 
by R 0 = (/,#, l2a, / 3 a ) , (lu / 2 , / 3 being integers), 0 is the potential, and 

d i = jJ^D2<Plt- P, 

Cl2 = j)D2<Pl2l2-P, 

d 4 = y ^ D 2 * / J / f - P . 

and y = 4(BCC), y = 2(FCC), V=ya3, the summation extending over various shells. 
The quadratic form in (5) is positive definite provided 

Q i + 2 C 1 2 > 0 (Sublimation: lattice has no cohesion), 
d 4 > 0 (Melting: lattice unstable against shearing stresses), 
Q1 — Q2 > 0 (Gel: elastic resistance against shearing stresses). 

For a lattice structure to be stable we must demand the satisfaction of all of the 
foregoing conditions. 

4. Results 

We have attempted three different ordered structures: BCC((body-centered cubic), 
F C C (face-centered cubic) and HCP (hexagonal close packing). A major complication 
arises because of the possible spin configurations: for a given solid structure, say BCC, 
one could in principle arrange the nucleons in a large number of ways depending upon 
the spin configuration. In a BCC lattice one could start with any site with a neutron 
with its spin up ; in the next site on the same cube one can put N t , N 4 , P T or Pt. In 
the next site one has again a similar situation. We have tried several configurations 
with an arbitary spin arrangement just to ensure that such arrangements are not 
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Fig. 5. The product hVvs. r for the singlet states. 
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Fig. 6. The product hVvs. r for the triplet states. 

TABLE I 
Energy per particle (MeV) vs. 10 - 1 5 Q (g cm - 3 ) for various configurations with mixed spins 10" 1 5 Q FCC BCC HCP FCC 
(g cm - 3 ) N:P = 1:1 Pure neutrons Pure neutrons Pure neutrons 

1.41 107.4 131.6 118.4 114.5 
1.832 181.2 188.7 174.8 171.8 
2.596 355.9 310.3 293.7 282.5 
3.344 548.9 472.5 441.6 428.5 
4.398 911.3 720.5 684.1 652.4 
5.237 1194.0 923.2 884.7 864.6 
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TABLE II 
FCC pure neutrons mixed spins 

10" 1 5 Q A c r 1 (H.F.) K.E. P.E. BIN 
(g cm - 3 ) (fermi (fermi) (MeV) (MeV) (MeV) 

1.41 1.188 0.460 146.4 -31.9 114.5 
1.603 1.138 0.435 163.8 -24.2 139.6 
1.832 1.089 0.410 183.9 -12.1 171.8 

*S 2.294 1.010 0.376 219.4 19.6 239.0 
2.596 0.969 0.361 238.3 44.2 282.5 
3.344 0.891 0.323 297.2 131.3 428.5 
3.776 0.855 0.310 322.3 186.9 509.2 
4.398 0.813 0.291 366.0 286.4 652.4 
5.237 0.767 0.271 421.9 442.7 864.6 

YN 

B . C . C . 

Fig. 7. BCC configuration for an equal number of neutrons and protons. 
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TABLE III 
FCC pure neutrons (mixed spins) elastic constants 

10~15
 X Q 

(g cm - 3 ) 
10~36

 x cn 
(dyne cm - 2 ) 

IO"3 6 X C12 
(dyne cm - 2 ) 

10~36
 X C44 

(dyne cm - 2 ) 

5.237 38.46 14.40 7.55 
4.398 22.625 8.602 4.142 
3.776 14.529 6.052 3.212 
3.344 9.286 4.065 1.985 
2.596 4.164 1.683 0.675 
1.832 1.065 0.5414 0.1084 
1.603 0.5177 0.3386 0.0326 
1.41 0.1883 0.1838 -0.0362 

FCC 

Fig. 8. FCC configuration. 

energetically convenient. We were then able to establish that for a given configuration 
the minimum for energy was achieved whenever the spins of neighboring particles 
were symmetrically arranged, i.e., in the same cube the particles on neighboring 
sites should have anti-parallel spins (mixed spins). An analogous situation was 
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found to hold for the other two configurations studied, namely F C C and HCP. 
For a given configuration with a prescribed spin arrangement the system of 3 + 8 

equations has to be solved for each shell to yield the lowest eigenvalue. The resulting 
hk

9s are inserted in the energy expression and the computations are carried far enough 
(approximately up to 24 shells) that contributions of further shells are unimportant. 
The resulting singlet wave functions 1S0, 1P1, 1D2, and the triplet wave functions 
3 P 0 , 3PU

 3P2, are respectively displayed in Figures 3 and 4 and the products hV for 
the two cases are shown in Figures 5 and 6. 

TABLE IV 
FCC pure neutrons - mixed spins equation of state 

10-15tf E/N 10~36 X £ 10-36 x p r 
(g cm"3) (MeV) (erg cm - 3 ) (dyne cnr 2 ) 

1.0 75.50 0.969 0.101 1.714 
1.2 96.88 1.187 0.150 2.082 
1.4 119.33 1.415 0.217 2.330 
1.6 143.33 1.654 0.304 2.479 
1.8 169.08 1.906 0.412 2.545 
2.0 196.08 2.170 0.541 2.567 
2.2 225.63 2.448 0.693 2.647 
2.4 256.49 2.741 0.877 2.799 
2.6 289.42 3.052 1.100 2.888 
2.8 324.54 3.381 1.355 2.764 
3.0 361.51 3.729 1.622 2.514 
3.2 399.71 4.095 1.891 2.326 
3.4 438.66 4.477 2.174 2.369 
3.6 478.48 4.878 2.505 2.625 
3.8 519.71 5.299 2.909 2.883 
4.0 562.85 5.743 3.383 2.985 
4.2 608.12 6.212 3.905 2.918 
4.4 655.31 6.706 4.449 2.751 
4.6 704.07 7.225 4.999 2.581 
4.8 754.00 7.769 5.557 2.489 
5.0 804.90 8.336 6.144 2.514 

The geometrical configuration of the nucleons for BCC, F C C and H C P respectively 
are displayed in Figures 7, 8, and 9 and Table I summarizes the energy per particle as 
a function of the density for the three configurations. On energetic grounds it is 
convenient to have only neutrons at the high density end as can be seen from a com
parison of the energies computed for an FCC consisting of pure neutrons and one with 
an equal number of neutrons and protons. The FCC structure made up of neutrons 
with mixed spins does indeed appear to be the lowest energy configuration and the 
detailed results for such a system are presented in Table II where the density is given 
in the first column, the nearest neighbor distance in the second, the spread of the 
wave function in the third, with the kinetic, potential, and total energy per particle 
following in order. The region of stability is indicated on the right where it is shown 
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that the lattice is stable only in the density range upwards of ~ 1.5 x 1 0 1 5 g c m " 3 . The 
elastic constants C n , C 1 2 , C 4 4 are shown in Table III as a function of the density: it 
can be seen that C 4 4 < 0 for Q<, 1.5 x 1 0 1 5 g c m " 3 indicating that the F C C structure 
made up of neutrons can withstand shearing stresses at a density upwards of this 
value. The spread of the wave function as measured by a " 1 (fermi) vs. the density is 
exhibited in Figure 10 along with the nearest neighbor distance: it can be readily seen 
that a " 1 is about a thir^ of the nearest neighbor distance over the density range 
1.41 x 1 0 1 5 < £ < 5 . 2 3 7 x 1 0 1 5 g e m " 3 . 

H.CP . 
Fig. 9. HCP configuration. 

The equation of state derived by arranging neutrons with their spins mixed in an 
F C C lattice is summarized in Table IV. Here the first column lists the density, the 
second the energy per particle, the third the mass-energy density, the fourth the pres
sure derived by using the relation P = — (dE/dV) and the last column shows the adia-
batic index r=(e+P) P'^^dP/de. Figure 11 exhibits a comparison of our energies 
vs. density (obtained on the assumption that nucleons are arranged in a lattice) and 
the energies obtained for a neutron gas by Pandharipande. It is clear that at the high 
density end a lattice made up of neutrons is energetically most convenient. The interes-
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ting feature to be noted is that the curves cross around £ ^ 1.5 x 1 0 1 5 g c m " 3 where the 
stability analysis shows that C 4 4 < 0 (i.e., the lattice cannot withstand any shearing 
stresses at a lower density). Below 1.5 x 1 0 1 5 g c m " 3 the energies obtained by 
doing a lattice calculation exceed the corresponding energies given by a gas computa
tion. We should therefore like to conclude that our computation seems to indicate a 
possible solid phase for cold matter at densities exceeding 1.5 x 1 0 1 5 g c m - 3 . 

\Ol5p(g cm 3 ) 

Fig. 10. Spread of the wave function and the nearest neighbor distance as a function of the density. 

We have constructed neutron star models composed of cold matter by integrating 
the equations governing the relativistic stellar structure. For this purpose our equation 
of state, obtained by assuming a crystalline neutron state, was smoothly joined up with 
Pandharipande's pure-neutron equation of state at a density of 1.5 x 1 0 1 5 g c m " 3 . In 
Figure 12 we show the resulting neutron star masses in units of the solar mass as a 
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function of the central density. We find a maximum mass of 1.56 MQ for a stable 
neutron star at a central density 3 x 1 0 1 5 g c m " 3 , not very different from a maximum 
mass of 1.66 MQ calculated by Baym et al. (1971) at a central density of 4.1 x 1 0 1 5 g 
cm 

We also attempted a few baryonic crystals by including hyperons in an FCC lattice. 

1 5 0 0 i 

1 4 0 0 

1 3 0 0 

1 2 0 0 -

1 1 0 0 -

1 0 0 0 

9 0 0 

* 8 0 0 

7 0 0 

6 0 0 

5 0 0 

4 0 0 

3 0 0 

2 0 0 

1 0 0 

0 

I O " 1 5 p ( g m / c m 3 ) 

1 0 

Fig. 11. Energy per particle vs. the density for an FCC lattice made up of pure neutrons and of equal 
number of neutrons and protons; the dashed line shows Pandharipande's result for neutron gas. 

The hyperonic potentials were derived by extending the work of Brown et al. (1970), 
and a typical hyperonic potential (A, N; T= 1 /2) is displayed in Table V. The resulting 
energies for various distributions of baryons are shown in Figure 13: it is at once 
evident that the energies are considerably lowered compared to the pure neutron mat
ter arranged in a lattice. One of the principal reasons for this lowering of energy can be 
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Fig. 12. Neutron star mass in units of the solar mass vs. the central density; the dashed curve shows 

the results of Baym et al. 
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TABLE V 
,4, potential: T = l / 2 ; V = Vc + Vff<rra2 + VTSi2 + F L sL-S -f VQWI* 

7r(i39,r = l,Ps) ^(548, T = 0 , Ps) A: (495, r = 1/2, Ps) 

7T EE 0.7 f"1 r] = 2.7817 f-1 k ee 2.3465 f"1 

Vc 0 0 0 
Va 0 - 19.395 (e-«r/r) + (-) L + s57.743(e-*7r) 
VT 0 - 58.185/(r)(e-^/0 

fir) = i + 0.359/r + 0.129/r2 

+ ( - )L + S173.288 fir) (e~kr/r) 
fir) = i + 0.4261/r + 

+ 0.1816/r2 

F l s 0 0 0 
VQ 0 0 0 

<t(490, T = 0, S) w(888, T= 0, V) 

<r = 2.4873 f"1 co = 4.5076 f"1 

Vc - 1131.08(<r"/'') + 6815.036(e-<°V) 
Va + 0.9883 f{r) (*-"/#•) 

f(r) = 0.402/r + 0.3232/r2 + 0.129/r3 

+ [616.7849-43.6140fir)] («r«'/r) 
/ ( r ) = 0.2218/r + 0.0984/r2 + 0.0218/r3 

VT 0 
- 925.177 fir) (e-»r/r) 

fir) = i + 0.2218/r + 0.04929/r2 

K l s 
- 135.9047 fir)ie-°r/r) 

f(r) = 0.402/r + 0.1616/r 2 
- 5754.498 fir) (e~mrJr) 

fir) = 0.2218/r + 0.04929/r2 

VQ 
- \.9166 fir) ie-°r/r) 

fir) = 0.1616/r2 + 0.1299/r3 

+ 87.228fir) (e-»'/r) 
f(r) = 0.0492/r2 + 0.0218/r3 

<?(755, T = 1, V) A:*(890, T = 1/2, V) 

Vc 

Va 

VT 

K l s 

VQ 

Q = 3.8324 f-1 

0 
0 

k* = 4.4275/- 1 

(_ )L+s 5 52 .4 i66(^V/r ) 
(-) L + s[353.103-147.8237/(r)](^*7r) 
fir) = 0.2258/r + 0.1020/r2 + 0.0230/r3 

- ( - ) L + s 529 .65 / ( r ) (*-**r/r) 
fir) = i + 0.2258/r + 0.0510/r2 

- ( - ) L + s1495.686/(r) (*-**'/r) 
fir) = 0.2258/r + 0.0510/r2 

( - )L + s-295.647/(r) (<r**'/r) 
f(r) = 0.0510/r2 + 0.0230/r3 

attributed to the 3P1 wave which in the nucleon-nucleon interaction is purely re
pulsive, but is modestly attractive in all the hyperon-hyperon and hyperon-nucleon 
interactions. The question of the hyperonic interactions, however, needs to be examined 
further before any firm conclusions can be drawn. 
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D I S C U S S I O N 

Bethe: When Johnson and 1 attempted to calculate a crystal model for neutron matter, we found the 
coupling between higher angular momentum states very important, even though these states have 
essentially no potential energy. The reason is that the unperturbed wavefunction in relative coor
dinates, 

<j> = exp — (r — a)2oc 
is centered at a, the lattice distance, and therefore has strong components with large /, when expanded 
around r = 0. It is legitimate to stop with / = 2? 

Canuto: We do not have any reason to believe that the higher waves are unimportant. Since the 
coupling amongst the waves is very complicated, we have decided to examine results for / ̂  2. The 
higher waves will have a strong centrifugal repulsion and as a consequence the wavefunctions for 
those waves are expected to be pushed away from the origin where the potential is essentially at
tractive. We therefore feel that if anything their inclusion will lower the energy. 

Bethe: Your conclusion is done with essentially the Brueckner-Goldstone method. When I tried 
to apply this to high density gas, I got much too high binding energy in the 2-body approximation. 
I realize that many-body clusters are less important for the crystal than for the gas, but still I believe 
that Pandharipande method is more reliable at high density. In any case, gas and crystal should be 
done with the same method. 

Canuto: I agree that gas and crystal should be computed with the same method. It remains to be 
seen if a variational method as the one employed by Pandharipande is preferable. Historically 
speaking, as far as the quantum crystals are concerned, people have gone from variational computa
tion to the Bruckner-Goldstone method and not vice versa. We have employed what quantum crystal 
physicists have suggested to us as being the best method available. 

Bethe: In light of Ruderman's remark after my paper, I withdraw my statement that neutron 
crystals can not exist at high density. However, I do not believe that Canuto and Chitre have yet 
proved their existence by the present calculations. 
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