
19
Basic nuclear structure

The goal is to compare experimental electron scattering data with a
theoretical picture of the hadronic target, and in so doing, develop an
understanding of that system. We start the discussion within the traditional
non-relativistic many-body description of the nucleus.

If the nucleus is modeled as a quantum mechanical system of point nu-
cleons with intrinsic magnetic moments, then one knows how to construct
the charge density, convection current density, and intrinsic magnetiza-
tion density from basic quantum mechanics. In first quantization these
quantities are given by

ρ̂N(x) =
A∑

j=1

e(j)δ(3)(x − xj)

Ĵc(x) =
A∑

j=1

e(j){p(j)

m
, δ(3)(x − xj)}sym

μ̂(x) =
A∑

j=1

μ(j)
σ(j)

2m
δ(3)(x − xj) (19.1)

Here p ≡ (1/i)∇ and σ ≡ (σx, σy, σz) are the Pauli matrices. Thus for a
single particle, for example

〈ρ̂N(x)〉 =

∫
ψ∗(xp)δ

(3)(x − xp)ψ(xp) d
3xp = |ψ(x)|2 (19.2)

and also

〈Ĵc(x)〉 =

∫
ψ∗(xp)

1

2im
[∇pδ

(3)(x − xp) + δ(3)(x − xp)∇p]ψ(xp) d
3xp

=
1

2im
{ψ∗(x)∇ψ(x) − [∇ψ(x)]∗ψ(x)} (19.3)
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148 Part 4 Selected examples

Fig. 19.1. Electromagnetic vertex for a free nucleon.

A partial integration has been used in obtaining the last equality. The
charge and magnetic moment of the nucleon are given by

e(j) ≡ 1

2
[1 + τ3(j)]

μ(j) ≡ λp
1

2
[1 + τ3(j)] + λn

1

2
[1 − τ3(j)] (19.4)

The anomalous magnetic moment λ′(j) of the nucleon is defined by

λ′(j) = λ′
p

1

2
[1 + τ3(j)] + λn

1

2
[1 − τ3(j)]

μ(j) = e(j) + λ′(j) (19.5)

This discussion presents a consistent non-relativistic treatment in a
picture where the nucleus is made up of point nucleons with appropriate
charges and intrinsic magnetic moments; however, a central goal of nuclear
physics is the measurement and calculation of nuclear electromagnetic
transition densities out to momentum transfers q2 = O(m2) and well
beyond. It is essential to consider corrections to the non-relativistic current
operator as one moves into this regime. In order to do this, a fully
relativistic treatment of the interacting many-body system is required, and
the next section is devoted to this topic. For the present, we simply consider
the nuclear current density arising from the full relativistic electromagnetic
vertex of a free nucleon [Mc62].

The relativistic electromagnetic vertex of a free nucleon is illustrated in
Fig. 19.1. The most general structure of the matrix element of the current
for a free nucleon is given by [Bj65, Wa95]

〈p′σ′ρ′|Jμ(0)|pσρ〉 =
i

Ω
ū(p′, σ′)η†

ρ′[F1γμ + F2σμνqν]ηρu(p, σ) (19.6)

Here the spin and isospin quantum numbers have been made explicit;
ū, u are Dirac spinors and ηp, ηn are two-component Pauli isospinors. The
four-momentum transfer is defined by q = p − p′, and the form factors
F1,2 are functions of q2. The isospin structure of the form factors must be
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19 Basic nuclear structure 149

of the form

Fi =
1

2
(FS

i + τ3F
V
i ) ; i = 1, 2 (19.7)

Relevant numerical values are

FS
1 (0) = FV

1 (0) = 1

2mFS
2 (0) = λ′

p + λn = −0.120

2mFV
2 (0) = λ′

p − λn = +3.706 (19.8)

To construct the nuclear current density one carries out the following
steps:

1. Substitute the explicit form of the Dirac spinors for a free nucleon

u(p, σ) =

(
Ep + m

2Ep

)1/2
⎡
⎢⎣

χσ

σ·p
Ep + m

χσ

⎤
⎥⎦ (19.9)

Here χ↑, χ↓ are two-component Pauli spinors for spin up and down
along the z-axis. Now expand the matrix element in Eq. (19.6)
consistently to order 1/m2. The result is1

〈p′σ′ρ′|Jμ(0)|pσρ〉 =
1

Ω
η

†
ρ′χ

†
σ′Mμχσηρ (19.10)

M = F1
1

2m
(p + p′) + (F1 + 2mF2)

[−iσ × q

2m

]
+ O(

1

m3
)

M0 = F1 − (F1 + 4mF2)

[
q2

8m2
− iq·(σ × p)

4m2

]
+ O(

1

m3
)

Here Mμ = (M, iM0).

2. Take the prescription for constructing the nuclear current density
operator at the origin, in second quantization, to be

Ĵμ(0) =
∑
p′σ′ρ′

∑
pσρ

c
†
p′σ′ρ′ 〈p′σ′ρ′|Jμ(0)|pσρ〉cpσρ (19.11)

where the single-particle matrix element is that of Eq. (19.6).

3. Use the general procedure for passing from first quantization to
second quantization [Fe71]. If, in first quantization the one-body
nuclear density operator has the form

Ĵμ(x) =
A∑
i=1

{J(1)
μ (i)δ(3)(x − xi)} (19.12)

1 It is assumed that both q0 and F2 are O(1/m).
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150 Part 4 Selected examples

then in second quantization the operator density is

Ĵμ(x) =
∑
p′σ′ρ′

∑
pσρ

c
†
p′σ′ρ′ 〈p′σ′ρ′|Jμ(x)|pσρ〉cpσρ (19.13)

with

〈p′σ′ρ′|Jμ(x)|pσρ〉 =

∫
d3y φ

†
p′σ′ρ′(y){J(1)

μ (y)δ(3)(x − y)}φpσρ(y)

(19.14)

4. The discussion in chapter 9 shows that physical rates and cross
sections are expressed in terms of the Fourier transform of the
transition matrix element of the current∫

e−iq·x〈f|Ĵμ(x)|i〉 d3x (19.15)

Here q = p − p′, and in electron scattering q = k2 − k1. Define

〈f|Ĵμ(x)|i〉 ≡ Jμ(x)f i (19.16)

and observe that by partial integration in Eq. (19.15), with localized
densities, one can make the replacement

∇ ↔ iq (19.17)

The presence of terms in iq in the elementary nucleon amplitudes
are then anticipated by defining

J(x)f i ≡ Jc(x)f i + ∇ × μ(x)f i

ρ(x)f i ≡ ρN(x)f i + ∇ · s(x)f i + ∇2φ(x)f i (19.18)

The use of Eq. (19.13) evaluated at x = 0 now permits the identifi-
cation of the nuclear density operators in first quantization, which
give rise to the required result in second quantization of Eq. (19.10).
The operators take the form

Ĵ(x) = Ĵc(x) + ∇ × μ̂(x)

ρ̂(x) = ρ̂N(x) + ∇·ŝ(x) + ∇2φ̂(x) (19.19)

Here the densities are defined by Eqs. (19.1), (19.4), (19.5), and

φ̂(x) =
A∑

j=1

s(j)
1

8m2
δ(3)(x − xj) (19.20)

ŝ(x) =
A∑

j=1

s(j)
1

4m2
σ(j) × {p(j), δ(3)(x − xj)}sym

where in the static limit

s(j) ≡ e(j) + 2λ′(j) (19.21)
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19 Basic nuclear structure 151

Fig. 19.2. Basis of Hartree–Fock states.

5. It is an empirical result that in the nuclear domain2

F1(q
2)

F1(0)
≈ fSN(q2) ≈ F2(q

2)

F2(0)

fSN(q2) =
1

(1 + q2/0.71 GeV2)2
(19.22)

At finite q2, the quantity fSN(q2) enters as an overall factor in the
electromagnetic vertex, and it can be included by using an overall
effective Mott cross section σ̄M in the (e, e′) cross section

σ̄M ≡ σM|fSN(q2)|2 (19.23)

The use of this effective Mott cross section represents an approxi-
mate way of taking into account in the nuclear domain the spatial
extent of the internal charge and magnetization densities of a single
constituent nucleon.

The present analysis gives the leading relativistic corrections to the nu-
clear current, assuming it is a one-body operator. It neglects, among other
things: meson exchange currents, other multibody currents, relativistic
terms in the wave functions, and off-shell corrections to the nucleon vertex
in the nuclear medium. We shall return to many of these points.

Consider next the many-body matrix elements of the current [Fe71,
Wa95]. Introduce a complete basis of Hartree–Fock states as illustrated
in Fig. 19.2. Assume a central field and label the quantum numbers by

α = (nl
1

2
jmj;

1

2
mt)

≡ (a;mj, mt) (19.24)

2 A more accurate representation of the experimental data for the proton and neutron

out to very large q2 is given by [Ba73, Wa84]

GM(q2) ≡ F1 + 2mF2 = fSN(q2)GM(0)

GE(q2) ≡ F1 − (q2/2m)F2 = fSN(q2)GE(0)

although Gn
E(q2) remains to be measured well. Elastic scattering from the nucleon is

discussed in more detail in chapter 20.
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Then

−α ≡ (a; −mj,−mt) (19.25)

We shall also need the phase defined by

Sα ≡ (−1)jα−mjα (−1)1/2−mtα (19.26)

Any many-body multipole operator of the above current can now be
written in second quantization as [Fe71]

T̂JMJ ;TMT
(κ) =

∑
α

∑
β

c†
α〈α|TJMJ ;TMT

(κ)|β〉cβ (19.27)

c†
α, cβ are creation and destruction operators for the single-particle

Hartree–Fock states. The single-particle matrix elements are calculated
using the wave functions of this basis, the current densities above, and the
appropriate multipole projections of chapter 9.

Within the present framework, an arbitrary matrix element between
exact eigenstates |Ψi〉 and |Ψf〉 of the nuclear many-body system can be
written

〈Ψf |T̂JMJ ;TMT
(κ)|Ψi〉 =

∑
α

∑
β

〈α|TJMJ ;TMT
(κ)|β〉 ψfi

αβ

ψ
fi
αβ = 〈Ψf |c†

αcβ |Ψi〉 (19.28)

The quantities ψ
fi
αβ are simply numerical coefficients. This result has the

following features:

• It assumes the current is a one-body operator — exchange currents,
for example, are neglected;

• Any shell-model calculation, no matter how complicated, must give
an answer of this form. The exact many-body matrix element is a
sum of single-particle matrix elements with numerical coefficients;

• This is an exact statement within the traditional non-relativistic
nuclear many-body problem.

Let us extract the angular momentum properties of the operators in-
volved in the above. Suppress isospin for the moment; it will be restored
at the end. The angular momentum operator for the system is

Ĵ =
∑
α

∑
β

c†
α〈α|J|β〉cβ

=
∑
nlj

∑
m′

∑
m

c
†
nljm′ 〈jm′|J|jm〉cnljm (19.29)
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19 Basic nuclear structure 153

Note that the single-particle matrix elements of J are diagonal in (nl)
and independent of (nl). Now make use of the basic anti-commutation
relations

{cα, c†
β} = δαβ

{cα, cβ} = {c†
α, c

†
β} = 0 (19.30)

It is then a matter of algebra to establish the relation3

[Ĵ, c
†
nljm] =

∑
m′

〈jm′|J|jm〉c†
nljm′ (19.31)

Hence c†
α is an irreducible tensor operator (ITO) of rank j [Ed74].

Use of the Wigner–Eckart theorem allows one to establish the following
relations [Ed74]

〈jm|J1q|jm′〉 = (−1)m
′−m+1〈j,−m′|J1q|j,−m〉∑

m

〈jm|J1q|jm〉 = 0 (19.32)

This permits the angular momentum operator to be written in an equiva-
lent form [recall Eq. (19.26)]

Ĵ =
∑
α

∑
β

(S−αc−α)〈α|J|β〉(S−βc−β)
† (19.33)

=
∑
nlj

∑
m′

∑
m

[(−1)j+m′
cnlj,−m′] 〈jm′|J|jm〉 [(−1)j+mc

†
nlj,−m]

Hence one concludes the S−αc−α is an ITO by the same proof as above.
Now restore isospin (treated in an exactly analogous fashion) and

assume the initial and final many-body target states are eigenstates of
angular momentum and isospin. Use of Eq. (19.27) and the Wigner–Eckart
theorem on both the many-body and single-particle matrix elements, and
a change of dummy indices, leads to4

〈JfMfTfM̄f |T̂JMJ ;TMT
|JiMiTiM̄i〉 =

(−1)Jf−Mf

(
Jf J Ji

−Mf MJ Mi

)
× [J ⇀↽] × 〈JfTf

...
...T̂J,T

...
...JiTi〉

=
∑
a,b

〈a ...
...T̂J,T

...
... b〉〈JfMfTfM̄f |

⎧⎨
⎩ ∑

mjαmjβ

〈jαmjαjβmjβ |jαjβJMJ〉

3 See [Fe71, Wa95].

4 The symbol 〈
...
...O

...
... 〉 indicates a matrix element reduced with respect to both angular

momentum and isospin.
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×
∑

mtαmtβ

〈tαmtαtβmtβ |1
2

1

2
TMT 〉(−1)

jβ+mjβ (−1)
1/2+mtβ

× 1√
(2J + 1)(2T + 1)

c†
αc−β

}
|JMiTM̄i〉 (19.34)

One now identifies the tensor product [cα � S−βc−β]JMJ ;TMT
of two ITO

[Ed74]. Use of the Wigner–Eckart on that quantity gives, upon cancellation
of common factors, the following expression for the matrix element of a
multipole operator

〈JfTf

...
... T̂J,T (κ)

...
...JiTi〉 =

∑
a,b

〈a ...
... TJ,T (κ)

...
... b〉ψfi

J,T (a, b) (19.35)

ψ
fi
J,T (a, b) =

1√
(2J + 1)(2T + 1)

〈JfTf

...
... ζ̂†(ab; JT )

...
...JiTi〉

ζ̂†(ab; JMJ, TMT ) ≡
∑

mjαmjβ

〈jαmjαjβmjβ |jαjβJMJ〉

×
∑

mtαmtβ

〈tαmtαtβmtβ |1
2

1

2
TMT 〉c†

α[S−βc−β]

This is our principal result for the many-body matrix element. It has the
following features:

• It is doubly reduced with respect to angular momentum and isospin;

• It expresses the many-body matrix element as a sum of single-particle
matrix elements;

• It assumes a one-body current;

• It is exact within the traditional non-relativistic nuclear many-body
problem.

Consider the isospin dependence in more detail. The previous single-
particle densities, and hence the single-particle multipole operators, all
have the form

TJMJ
=

1

2
T(0)

JMJ
+

1

2
τ3T(1)

JMJ

≡ I00 T(0)
JMJ

+ I10 T(1)
JMJ

(19.36)

It follows from this definition that 〈 1
2 ||IT ||1

2〉 = [(2T + 1)/2]1/2 [Ed74].
The many-body multipole operators thus have the corresponding isospin
structure

T̂JMJ
= T̂JMJ ;00 + T̂JMJ ;10 (19.37)
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19 Basic nuclear structure 155

In electron scattering (e, e′), as well as real photon transitions, the third
component of isospin of the target cannot change, and hence M̄f =
M̄i. Now use the Wigner–Eckart theorem on the isospin dependence of
the many-particle matrix elements to obtain the doubly reduced matrix
elements. The basic result in Eq. (19.35) can then be employed. The
isospin dependence of the single-particle matrix elements in Eq. (19.36)
factors, and thus the doubly reduced single-particle matrix elements are
particularly simple. It follows that the many-body matrix elements that
enter into the cross sections and rates must take the form

〈Ψf ||T̂J(κ)||Ψi〉 = 〈Jf;TfM̄i||T̂J(κ)||Ji;TiM̄i〉 (19.38)

= (−1)Tf−M̄i

(
Tf 0 Ti

−M̄i 0 M̄i

)∑
a,b

1√
2

〈a ||T(0)
J || b〉ψfi

J,0(ab)

+(−1)Tf−M̄i

(
Tf 1 Ti

−M̄i 0 M̄i

)∑
a,b

√
3

2
〈a ||T(1)

J || b〉ψfi
J,1(ab)

This is the basic multipole matrix element for the transition |Ji;TiM̄i〉 →
|Jf;TfM̄i〉. It relates the many-body reduced matrix element to a sum
of single-particle reduced matrix elements; the isospin dependence of the
transition multipoles has now been explicitly exhibited. The many-body

physics is in the numerical coefficients ψ
fi
J,T (ab). Again, this is a general

result within the current framework.
Once one has a set of coefficients ψ

fi
J,T (ab) from the many-body analysis

(several examples are discussed in chapter 20), the problem is reduced
to computation of the single-particle reduced matrix elements of the
multipole operators [Wi63]. The tables in [Do79, Do80] are a substantial
aid here since all the angular momentum algebra of computing the reduced
matrix element of a tensor product in a coupled basis [Ed74] has already
been carried out. There are two sets of tables. The first [Do79] is in a
harmonic oscillator single-particle basis where the wave functions can be
written in analytic form [Fe71, Wa95]. In this case, the required radial
integrals can all be done analytically in terms of hypergeometric functions
[de66]. The result is of the form exp (−y) × polynomial in y where

y ≡
(
κbosc

2

)2

h̄ωosc =
h̄2

mb2
osc

(19.39)

In the second set of tables [Do80], the calculation is carried out for
arbitrary radial wave functions up to the point where a final radial
integral must be done numerically.
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If one inserts the single-particle densities from Eqs. (19.1, 19.4, 19.5,
19.20), then through O(1/m) the single-particle multipole operators take
the form

MJMJ
(κ) = MMJ

J (κx)
1

2
(1 + τ3)

iT
mag
JMJ

(κ) =
κ

m

{
MMJ

JJ (κx) · 1

κ
∇ 1

2
(1 + τ3)

−1

2

[
1

iκ
∇ × (MMJ

JJ )

]
· σ

[
1

2
(μp + μn) +

1

2
τ3(μp − μn)

]}

T el
JMJ

(κ) =
κ

m

{[
1

iκ
∇ × (MMJ

JJ )

]
· 1

κ
∇ 1

2
(1 + τ3)

+
1

2
(MMJ

JJ ) · σ

[
1

2
(μp + μn) +

1

2
τ3(μp − μn)

]}
(19.40)

Here

MMJ
J (κx) ≡ jJ(κx)YJMJ

(Ωx)

MMJ
JJ ≡ jJ(κx)YMJ

JJ1(Ωx) (19.41)

Note the isospin dependence is now explicit and one can read off T(0)
JMJ

and

T(1)
JMJ

in Eq. (19.36). Furthermore, it is no longer necessary to symmetrize

the convection current since ∇ · MMJ
JJ = ∇ · [∇ × MMJ

JJ ] = 0.
A notation which identifies the various pieces of the multipole operators

in Eqs. (19.40) is introduced in [Do79]

MJMJ
(κ) =

1

2
(1 + τ3)M

MJ
J (κx) (19.42)

iT
mag
JMJ

(κ) ≡ κ

m

{
1

2
(1 + τ3) ΔMJ

J

+

[
1

2
(μp + μn) +

1

2
τ3(μp − μn)

] (
−1

2

)
Σ′MJ
J

}

T el
JMJ

(κ) ≡ κ

m

{
1

2
(1 + τ3) Δ′MJ

J

+

[
1

2
(μp + μn) +

1

2
τ3(μp − μn)

] (
1

2

)
ΣMJ
J

}

The quantities (Δ,Δ′,Σ,Σ′) follow from comparison with Eqs. (19.40). One
can now directly employ the tables in [Do79, Do80].
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