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The p r e s e n t pape r s eeks to put into a c l e a r e r focus the r o l e s of 
c e r t a i n ax ioms in ax iomat i c s tudies of finite d imens iona l C a r t e s i a n 
s p a c e s over v a r i o u s c l a s s e s of o r d e r e d f i e lds . Following T a r s k i [3], 
we define a C a r t e s i a n space as fo l lows. Let 3 - (F, +, • , <) be an 
o r d e r e d f ield. By an n - d i m e n s i o n a l C a r t e s i a n space over $ , we 
unders tand a r e l a t i o n a l s t r u c t u r e C ( 30 = (A , B , D ) , w h e r e A 

n # 3? 3 3 
is the se t of a l l n - t up l e s x = (x , x , . . . , x ) of e l emen t s of F , and 

1 2 n 
B , D a r e r e s p e c t i v e l y the 3 -p lace and 4 - p l a c e r e l a t i ons over A 

3* $ 
defined by the following s t i pu la t ions : for x, "y, "z, "Q" e A , 

B (x y z) if and only if t h e r e ex i s t s an e l emen t k ç F , 0 < k < 1 
3 — — 

such that 

y. = (1 - k) x. + kz. (1 < i < n) ; 
l l l — — 

2 " 2 
D (x y z u) if and only if S (x. - y.) = 2 (z. - u. ) 

5 i=l l * i=l * a 

2 n 

(The symbols 1 , x - y , x , S a r e unders tood as defined in the usua l w a y . ) 
i=l 

Given an o r d e r e d field jp, the language a p p r o p r i a t e for the study of 
C (30 wil l conta in two non- log ica l cons t an t s , v i z . , a 3 -p lace p r e d i c a t e 

symbol (3 and a 4 - p l a c e p r e d i c a t e symbol ô to stand r e s p e c t i v e l y for 
the r e l a t i o n s B and D . We sha l l r e f e r to this language by L . 

The se t of a l l f i r s t - o r d e r s en t ences in L , which a r e t rue in 
(36 

C (30 wil l be called the e l e m e n t a r y theory of C ({g} ) and be denoted 

by ^£ ({$} ). In the s a m e vein, given a c l a s s K of o r d e r e d f ie lds we can 

define the e l e m e n t a r y theory of n - d i m e n s i o n a l C a r t e s i a n spaces over 
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fields in K to be the set of f irst-order sentences in L holding in all 
P6 

C (^) , 3? G K . This theory will be denoted by £ (K) . Going one step 
n n 

further, the common part of theories £ (K) for all dimension values 
n 

n , n :> 2 , will be denoted by £(K) . Given a class K of ordered fields, 
an n > 2, and a sentence 0- in L „ , we say that cr is a dimension 

— n (3 6 n 
axiom of index n for £ (K) if the following conditions hold: (i) cr is 

n n 
in £ (K) and (ii) ~ cr (the denial of 0- ) is in £ (K) for all m ^ n . 

n n n m 
The importance of £(K) and dimension axioms is brought out by the 
following theorem. 

THEOREM. For any class K of ordered fields and an integer 
n , n >_ 2 , if 0" is a dimension axiom of index n for £(K) , then 

£ (K) coincides with the set of sentences which are logical consequences 
n 

of the set £(K) U {cr } . 

In view of the above theorem, it appears that for an axiomatic 
foundation of £ (K) for a given class K of ordered fields, it would be 

n 
ideal first to have ready a set of axioms for the dimension-free part 

£ (K) and then a dimension axiom of appropriate index. It will be seen 
from our definition of dimension axioms that if a sentence cr is a 
dimension axiom of index n for £ (K) then cr is also a dimension axiom 
of index n for £(L<), where L is a subclass of K. Thus a dimension 
axiom of index n for the largest class OF of all ordered fields will 
serve simultaneously for all classes of ordered fields. Such dimension 

axioms are easy to find. For example, the sentence cr which 
n 

guarantees existence of n mutually orthogonal lines at every point and 
excludes existence of n+1 mutually orthogonal lines at all points is such 
an axiom. (The notion of orthogonality though not belonging in L can 

(30 
be easily defined in terms of p and ô.) Although a dimension axiom is 
readily available, it may by no means be easy to obtain an axiom system 
for £(K) . To illustrate this we mention the class OF of all ordered 
fields. It is not known whether £(OF) is axiomatizable, i.e. whether 
there is a recursive set of sentences the set of all logical consequences 
of which coincides with £(OF) . Nevertheless, it is now known that for 
each n, n > 2, the theory £ (OF) is axiomatizable, in fact, finitely 

— n 
axiomatizable. In [1], the author gave a system of axioms for £ (OF), 

n 
for each n. For this axiom system the following representation theorem 
is established: A relational structure 0\ = (A, B, D) is a model of the 
system if and only if Q[ is isomorphic to a Cartesian space C (3) for 

some ordered field jy . The system consists of a set £ of axioms and 
a dimension axiom "c? which differs from cr referred to earlier in 

n n 

that cr guarantees existence of n mutually orthogonal and segment-

comparable lines, and excludes as before existence of n + 1 mutually 
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or thogona l l i ne s , cr is thus s t r o n g e r than cr . Its s t r eng th is brought 

home by the fact that while £ toge ther with "cr p rov ides an axiom 
n 

s y s t e m for £ (OF) , £ toge ther with cr f a i l s . This las t fact is shown 
n __ n 

by cons t ruc t i ng a m o d e l for £ LJ (cr } in which IT f a i l s . This leads us 
__ n n 

to conclude that £ LJ {cr } does not cons t i tu te an axiom s y s t e m for £ (OF) , 
n n 

and, t h e r e f o r e , the theory of £ is ac tua l ly weaker than P.(OF). Jus t 
to what extent should one have to s t r eng then ~£ in o r d e r to obtain an 
ax iom s y s t e m for £ ( O F ) ? The ques t ion is open. As r e m a r k e d a l r eady , 
we do not even know whether fi(OF) admi t s of an ax iomat i za t ion at a l l . 
The author is inclined to m a k e the negat ive con jec tu re . One can, 
however , show that the theory £ ( O F ) , as well as the t heo r i e s £ (OF) 

n 
for a l l n >. 2 is undec idab le . 

The s i tua t ion i m p r o v e s when one c o n s i d e r s the n a r r o w e r c l a s s P F 
of a l l P y t h a g o r e a n o r d e r e d f i e ld s . (An o r d e r e d field is cal led P y t h a g o r e a n 
if for any two e l emen t s a , b e F t h e r e ex i s t s an e l emen t c e F such 

2 2 2 

that c = a + b . ) It is known that in £ ( P F ) the ax iom of s e g m e n t -

c o n s t r u c t i o n p lays an i m p o r t a n t r o l e . F o r r eady r e f e r e n c e we take the 

following fo rmula t ion of T a r s k i [3, A 1 0 ] 

(SC) : / \ x y u v v z ((3 (x y z) A ô (y z u v)) 

The i m p o r t a n c e of this axiom b e c o m e s c l e a r e r by the fact that the 
addi t ion of this ax iom to an ax iom s y s t e m for £ (OF) leads at once 

n 
to an ax iom s y s t e m for £ ( P F ) . But is £ ( P F ) ax ioma t i zab l e? The 

n 
a n s w e r is a f f i rma t ive . Uti l izing ideas contained in Scott [2] the author 
es tab l i shed that the ax ioms A l - A 11 in T a r s k i [3] cons t i tu te an 
ax ioma t i za t ion of £ ( P F ) . Now the ax ioms in £ a r e obtained f rom 
those in [3] by omit t ing (SC) and adding some of i ts spec i a l c a s e s . Thus 
£ toge ther with (SC) is logical ly equivalent to the s y s t e m A l - A 11 of 
T a r s k i . Thus al though Y, is inadequate for £ ( O F ) , it s e r v e s a d m i r a b l y 
as a b a s e for cons t ruc t ing axiom s y s t e m s for £ ( O F ) , £(P F) , and 

n 
£ ( P F ) . We have thus a choice , namely , e i ther to add (SC) to £ (OF) 

n n 
or to add a d i m e n s i o n ax iom to £ ( P F ) , both £ (OF) and £(P F) being 

n 
a x i o m a t i z a b l e . Speaking of an ax iom of s e g m e n t - c o n s t r u c t i o n , we migh t 
r e p l a c e (SC) above containing five v a r i a b l e s by the following axiom 
containing four v a r i a b l e s : 

(SC1) : A x y u V z ((3 (x y z) A ô (y z y u)) . 
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In P the two a x i o m s (SC) and (SC ) a r e equ iva len t . M o r e o v e r , this 

equ iva lence is e s t ab l i shed without the use of the ax iom of p a r a l l e l s . We 
sha l l have occas ion to speak of yet another equiva lent ax iom l a t e r . In 
view of the foregoing o b s e r v a t i o n s , the author would plead for a due 
r ecogn i t i on of the ax iom of s e g m e n t c o n s t r u c t i o n in ax ioma t i c s tud ies by 
r e s e r v i n g i ts use only for l a t e r s t ages when i ts use b e c o m e s r e a l l y 
n e c e s s a r y . 

Another c l a s s of o r d e r e d f ie lds to be d i s c u s s e d in th is pape r is 
that of the so - ca l l ed Euc l idean o r d e r e d f i e l d s , E F . (An o r d e r e d field 
is said to be Euc l idean if for eve ry e l e m e n t a in F, a _> 0 , t h e r e 

2 
ex i s t s an e l e m e n t c such that c = a . ) One s e e s that the c l a s s E F 
is a s u b c l a s s of P F . It is known that in P ( E F ) the c i r c l e ax iom 

n 
p lays an i m p o r t a n t r o l e . Again for r e a d y r e f e r e n c e , we take it in 
T a r s k i ' s fo rmula t ion , v i z . [3; A 1 3 ' ] . We r e f e r to it as ( C A ) . In this 
fo rmula t ion , as in o ther known ones , the not ions of points lying ins ide and 
lying outs ide a c i r c l e a r e u sed . In the a b s e n c e of s e g m e n t - c o m p a r a b i l i t y 
of a l l l ines these not ions a r e i napp l i cab l e . 

P ( E F ) is ax ioma t i zab l e by adding the ax ioms (S C) and (CA) 

both to an axiom s y s t e m for P ( O F ) . S i m i l a r l y , by adding t h e s e two 

ax ioms to P one obta ins an ax iom s y s t e m for P ( E F ) . This app roach , 
though sound, is defect ive on a e s t h e t i c g r o u n d s . We should have a s ingle 
in tui t ively s imp le ax iom which when added to an ax iom s y s t e m for 
P (OF) wi l l give an ax iom s y s t e m for P ( E F ) . It should have two o ther 

n n 
d e s i r a b l e f e a t u r e s , n a m e l y (i) by adding this axiom to P one should 
a r r i v e at an ax iom s y s t e m for P ( E F ) and (ii) the ax iom of s e g m e n t 
c o n s t r u c t i o n should be an ea sy consequence of this ax iom in P . ( Jus t 
as e v e r y Euc l idean field is n e c e s s a r i l y P y t h a g o r e a n . ) In o the r w o r d s , 
th i s s ingle ax iom should by i t se l f be equiva len t in "£" to the conjunct ion 
of (SC) and (CA) . The following i s such an ax iom: 

(E) : / \ x y z u {(3(xyz) - * V v V w [p (uyv ) A (3(z v w) A ô (z v v w) A ô (x z xw)]} . 

(Intui t ively, this ax iom e x p r e s s e s the fact that if y is be tween x and z 
and u is an a r b i t r a r y point, then the s e g m e n t u y can be extended to 
a point v such that the poin ts x v z f o r m a r i g h t angle at v . ) One can 
show that this ax iom holds in a l l C (g) > w h e r e $ is E u c l i d e a n . 

Conve r se ly , if this ax iom holds in a C ($) , 3* any o r d e r e d field, then 

$ is n e c e s s a r i l y E u c l i d e a n . It wi l l t h e r e f o r e follow that this ax iom 
when added to an ax iom s y s t e m for £ ( O F ) l eads to an a x i o m a t i z a t i o n 

of P ( E F ) . To see that (E) i m p l i e s (S C) in "£ we o b s e r v e f i r s t that 

(E) logical ly i m p l i e s the following s e n t e n c e : 
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(SC ) : A x y z u {p(xyz) A ô(xyyz) -*• V v V w[(3(uyv) A (3(ZVW) 

A ô(zvvw) A ô(xzxw)]} . 

(Intuitively, (SC ) states that if y is the midpoint of the segment xz , 

and u is an arbitrary point then the segment uy can be extended to a 
point v such that the points xvz form a right angle.) At a first glance, 
(S C ) does not look like an axiom of segment-construction. But we can 

show that (SC ) is equivalent to (SC ) in J. , and hence that (S C), (SC ) 

and (SC ) are all equivalent in 7T . However, for showing the equivalence 

of (SC, ) and (SC,) in F we seem to need the parallel axiom. Next, 
1 2 

one shows that (CA) is also a consequence of (E) . The demonstration 
of this last fact is slightly involved. The proof that (CA) and (S C) 
together imply (E) in P. is straightforward. Another interesting 

candidate in connection with the class EF is the following: 

(B) p(xyz) -*Vv(T(vyx) AT (xvz)), 

where T (xyz) is intended to express the fact that x, y, z form a right 
angle at y . It is essentially known that by adding (B) to an axiom system 
for £ (PF) one obtains an axiom system for £ (EF). It follows that 

n n 
in P (PF) the three axioms (CA), (E) and (B) are all equivalent. 

They are also equivalent in 8(PF). Axiom (B) is preferable to (CA) 
in the axiomatic studies of P-(EF) in that it is meaningful even in the 
absence of an axiom of segment construction. The implication (E) -+• (B) 
holds in £ . The author has not succeeded in showing whether the 
opposite inclusion also holds in P. (OF), in general, far less in P . 

n 

(This implication holds in £ (OF). Analytically expressed, this leads 

to the following problem: 

Problem. Let 3 be any ordered field such that for some fixed 
positive integer n > 2 , and all a,, . . . a € F , 1 > 0 the system 

— I n — 
of equations 

a, x, + . . . + a x 
1 1 n n 

2 2 t , 2 2 , 
x, + . . . + x = 1 (a, + . . . + a 

1 n 1 n 
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has a lways a so lu t ion for x . . . x in F . Is the field n e c e s s a r i l y E u c l i d e a n ? 
1 n 

(in the c a s e when n = 2 , and, in the c a s e when !* is P y t h a g o r e a n , the 
a n s w e r is a f f i r m a t i v e . ) 

We have left the c l a s s R C F of a l l r e a l c losed f ie lds out of the 
p r e s e n t d i s c u s s i o n . The author in tends to d i s c u s s p r o b l e m s r e l a t e d 
to P- ( R C F ) and ft(RCF) in a futur e p a p e r . 
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