The log log law for multidimensional stochastic integrals and diffusion processes

Ludwig Arnold

Let for $t \in [a, b] \subset [0, \infty)$

$$X_t = c + \int_a^t f(s)ds + \int_a^t G(s)dW_s ,$$

where W_g is an *n*-dimensional Wiener process, f(s) an *n*-vector process and G(s) an $n \times m$ matrix process. f and G are nonanticipating and sample continuous. Then the set of limit points of the net

$$\left\{\frac{x_{t+h} - x_t}{(2h \log \log 1/h)^{1/2}}\right\}_{e^{-1} > h + 0}$$

in R^n is equal, almost surely, to the random ellipsoid $E_t = G(t)S_m$, $S_m = \{x \in R^m : |x| \le 1\}$. The analogue of Lévy's law is also given. The results apply to *n*-dimensional diffusion processes which are solutions of stochastic differential equations, thus extending the versions of Hinčin's and Lévy's laws proved by H.P. McKean, Jr, and W.J. Anderson.

1. Introduction

The local behavior of the paths of an *m*-dimensional standard Wiener

Received 16 June 1971.

351

process W_t is described by Hinčin's local log log law and Lévy's law concerning the modulus of continuity. The log log law states that for fixed $t \ge 0$ the set of limit points of the net

$$\left\{\frac{W_{t+h}-W_t}{\left(2h \log \log 1/h\right)^{1/2}}\right\}_e^{-1} > h+0$$

is equal, almost surely, to the *m*-dimensional closed unit sphere S_m , while Lévy's law states that the limit points of

$$\begin{cases} \frac{W_{t+h} - W_t}{(2h \log 1/h)^{1/2}} \\ 1 > h \neq 0, \ a \le t \le b - h \end{cases}, \ [a, b] \subset [0, \infty) ,$$

coincide, almost surely, with S_m . In the usual formulation of these laws, only the limit point of maximum modulus 1 is mentioned.

A random function on $[a, b] \subset [0, \infty)$ is called *nonanticipating* if its value at t is measurable with respect to a σ -algebra F_t , where F_t contains all the events generated by $\{W_s, s \leq t\}$, is independent of $\{W_{s+t}-W_t, s \geq 0\}$, and satisfies $F_{t_1} \subset F_{t_2}$ $(t_1 < t_2)$. Let f(t) be an *n*-vector process and G(t) an $n \times m$ matrix process, f and G being nonanticipating and sample continuous. If c is an *n*-vector random variable measurable with respect to F_a , then the process

(1)
$$X_t = c + \int_a^t f(s)ds + \int_a^t G(s)dW_s$$
, $t \in [a, b]$,

(where the first integral is an ordinary Riemann integral and the second one is a stochastic (Itô) integral) is well-defined, nonanticipating, and sample continuous. We are looking for the analogues of Hinčin's and Lévy's laws for the paths of X_{\pm} .

2. The main result

THEOREM. Let X_{+} be the n-vector process defined by (1). Then

(i) for fixed $t \in [a, b)$, the set of limit points of the net

$$\left\{\frac{X_{t+h}-X_{t}}{(2h \log \log 1/h)^{1/2}}\right\}_{e^{-1} > h \neq 0}$$

is equal, almost surely, to the random closed ellipsoid

$$E_t = G(t)S_m = \left\{ x \in \mathbb{R}^n : x = G(t)y, y \in S_m \right\};$$

(ii) the set of limit points of

$$\left\{\frac{X_{t+h}-X_{t}}{(2h \log 1/h)^{1/2}}\right\}_{1>h+0, a \le t \le b-h}$$

is equal, almost surely, to the random closed set $~\cup~~ {\rm E}_t$. $a{\leq}t{\leq}b$

Proof. (i) Since $c + \int_{a}^{t} f(s) ds$ is continuously differentiable, it

is enough to prove the result for the stochastic integral

$$Y_t = \int_a^t G(s) dW_s \, .$$

Write for fixed $t \in [a, b)$

(2)
$$Y_{t+h} - Y_t = G(t)(W_{t+h} - W_t) + \int_t^{t+h} (G(s) - G(t))dW_s$$
.

The limit points of

$$\left\{\frac{G(t)\left(W_{t+h}-W_{t}\right)}{\left(2H\log\log\left(1/h\right)^{1/2}\right)}\right\}_{h\neq0}$$

are clearly, almost surely, equal to $G(t)S_m$. The proof will be completed once we know that

$$\lim_{h \to 0} \frac{\int_{t}^{t+h} \left(G_{ij}(s) - G_{ij}(t)\right) dW_{g}^{j}}{\left(2h \log \log 1/h\right)^{1/2}} = 0 \text{ almost surely, } 1 \le i \le n, 1 \le j \le m.$$

There exists a new scalar Wiener process $\,\overline{\it\scriptscriptstyle W}^{ij}_t\,$ so that

$$\int_{t}^{t+h} \left(G_{ij}(s)-G_{ij}(t)\right)dW_{s}^{j} = \overline{W}_{\tau(h)}^{ij}$$

with

$$\tau(h) = \int_t^{t+h} \left(G_{ij}(s) - G_{ij}(t) \right)^2 ds ,$$

(see McKean [3], p. 29). Since by the scalar log log law

(3)
$$\frac{\lim_{h \neq 0} \frac{|\overline{w}_{\tau(h)}^{ij}|}{(2\tau(h)\log \log 1/\tau(h))^{1/2}} = 1 \text{ almost surely,}$$

and

$$\lim_{h \neq 0} \left(\frac{2\tau(h)\log \log 1/\tau(h)}{2h \log \log 1/h} \right)^{1/2} = \sqrt{\tau'(0)} = 0 \text{ almost surely},$$

(see Anderson [1], Lemma 3.1.1), the result follows.

(ii)~ We proceed as in (i).~ Lévy's law for $~W_t~$ holds in any small interval, thus giving us as possible limit points of

$$\left\{ \frac{G(t)(W_{t+h}-W_t)}{(2h \log 1/h)^{1/2}} \right|_{h\neq 0, a\leq t\leq b-n}$$

the set $\bigcup E_t$. The remainder in (2) is treated as in (*i*) using Lévy's $a \le t \le b$ law for scalar processes instead of (3). Q.E.D.

We remark that the ellipsoid E_t can also be written as

$$E_t = U(t)\sqrt{\Lambda(t)} S_n$$
,

where $GG^T = U\Lambda U^T$, U being the $n \times n$ eigenvector matrix and Λ the $n \times n$ diagonal matrix of the eigenvalues λ_i of GG^T . Thus, E_t is the ellipsoid whose main axes have length $\sqrt{\lambda_i}$ and point into the direction of the eigenvectors of GG^T .

https://doi.org/10.1017/S0004972700047328 Published online by Cambridge University Press

The theorem contains numerous special cases, in particular the statements

$$\frac{1}{\lim_{h \neq 0} \frac{|X_{t+h} - X_t|}{(2h \log \log 1/h)^{1/2}}} = \max_i \sqrt{\lambda_i(t)}$$

and

$$\frac{1}{\underset{\substack{h\neq0}{2\leq t\leq b-h}}{\lim}} \frac{|X_{t+h}-X_t|}{(2h \log 1/h)^{1/2}} = \max_{\substack{a\leq t\leq b}} \max_i \sqrt{\lambda_i(t)}$$

proved for a particular case by McKean ([3], p. 96), and a result of Anderson [1] for the components X_{\pm}^{i} ,

$$\frac{1}{\lim_{h \to 0} \frac{X_{t+h}^{2} - X_{t}^{2}}{(2h \log \log 1/h)^{1/2}} = \sqrt{(G(t)G(t)^{T})_{ii}}$$

3. Application to multidimensional diffusions

If the vector stochastic differential equation

$$dX_t = f(t, X_t)dt + G(t, X_t)dW_t$$
, $X_a = c$,

has continuous coefficients satisfying the usual Lipschitz condition and growth restriction, the solution is unique and constitutes a vector diffusion process X_t (see Gikhman-Skorokhod [2], p. 402). Our theorem applies to X_t , where the random ellipsoid $E_t = G(t, X_t)S_m$ now depends only on t and the state X_t .

References

- [1] William James Anderson, "Local behaviour of solutions of stochastic integral equations", (Ph.D. thesis, McGill University, Montreal, 1969).
- [2] I.I. Gikhman, A.V. Skorokhod, Introduction to the theory of random processes (Sounders, Philadelphia, London, Toronto, 1969).

[3] H.P. McKean, Jr, Stochastic integrals (Academic Press, New York, London, 1969).

Centre de recherches mathématiques, Université de Montréal, Montréal, Canada.

356