
From Interacting Binaries to Exoplanets: Essential Modeling Tools
Proceedings IAU Symposium No. 282, 2011
Mercedes T. Richards & Ivan Hubeny, eds.

c© International Astronomical Union 2012
doi:10.1017/S1743921311028249

Structure Coefficients for Use in Stellar
Analysis

Gulay Inlek1 and Edwin Budding2

1Department of Physics, Faculty of Arts and Sciences, Balikesir University, Çag̃ış Campus,
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Abstract. We give new values of the structural coefficients ηj , and related quantities, for realis-
tic models of distorted stars in close binary systems. Our procedure involves numerical integra-
tion of Radau’s equation for detailed structural data for stellar models taken from the EZWeb
compilation of the Department of Astronomy, University of Wisconsin-Madison.
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1. Introduction
The classical approach to finding the shape of a body distorted by rotation and tides

utilized equipotential surfaces (Kopal 1959). This approach permits inroads into the solu-
tion of the relevant Poisson’s equation, if contributory effects can be regarded as additive
perturbations upon simpler, more basic forms having spherical symmetry. The perturba-
tions are expressed in terms of suitable harmonic expansions. The equipotentials satisfy
Clairaut’s equation, and this becomes tractable, due to the orthogonality conditions for
products of harmonics in an integral (MacRobert 1927).

2. Equations
We set out the main underlying equations for this work. More background can be

found in Kopal (1959). First, we have a series expansion for the potential, thus:

V = Σ∞
0 r−(n+1)G

∫
r′nPn (cos γ) dm′, (2.1)

with mass element dm′

dm′ =
∫ ∫ ∫

ρr′
2
dr′ sin θ′dθ′dφ′. (2.2)

Clairaut’s equation for surface perturbation can be set out in first-order form:
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We write now, for the perturbation coefficients,

ηj (a) =
a

Y i
j

∂Y i
j

∂a
. (2.4)
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which also satisfy ‘Radau’s equation’:

a
dηj

da
+

6ρ

ρ
(ηj + 1) + ηj (ηj − 1) = j(j + 1), (2.5)

3. Procedure and Results
We wrote a small FORTRAN program to carry out numerical integration of Radau’s

equation. That was first combined with a separate program used to integrate polytropic
models of stars. This was comparable to the method of Brooker & Olle (1995; hereafter
BO), except that, with modern computers, steps can easily be made suitably small to
avoid the numerical problems mentioned by BO, and still return reliable results in a
short time. The Lane-Emden equation is rearranged as two simultaneous first-order dif-
ference equations, while Radau’s equation becomes a first-order difference equation for
ηj applying to each layer. We confirmed numerical agreement with BO to 8 digits with
this program (RADAU).

Replacing the Emden equation integrator with the numerical tables of internal struc-
ture downloaded from the EZWeb compilation
http://www.astro.wisc.edu/∼townsend/static.php?ref=ez-web,
we could apply RADAU to derive corresponding structural parameters for these more
realistic stellar models (of mass M). We computed also representative polytropic indices
(n1 , n2) for such models for comparison with historic treatments. A few examples follow.

Table 1. Zero Age Solar Composition Models
M = 0.5; n1 = 2.52, n2 = 2.19

j 2 3 4 5 6 7
ηj 2.83417 3.39029 4.77155 5.03932 6.23161 7.37262
∆j 1.76418 1.29864 1.15808 1.09570 1.06282 1.04366
kj 0.38209 0.14932 0.07904 0.04785 0.03141 0.02183

M = 3.0; n1 = 2.75, n2 = 2.80
j 2 3 4 5 6 7
ηj 2.97626 3.99355 4.99743 5.99875 6.99931 7.99959
∆j 1.00478 1.00092 1.00028 1.00012 1.00006 1.00002
kj 0.00239 0.00046 0.00014 0.00006 0.00003 0.00001

M = 10.0; n1 = 2.67, n2 = 2.47
j 2 3 4 5 6 7
ηj 2.89750 3.97376 4.98982 5.99509 6.99730 7.99837
∆j 1.02092 1.00376 1.00114 1.00044 1.00020 1.00010
kj 0.01046 0.00188 0.00057 0.00022 0.00010 0.00005

4. Conclusion
This kind of result should have increasing importance with the improved photometric

accuracies of the post-Kepler Mission era, i.e. light curves of mmag accuracy or better.
Proximity effects associated with ellipticity are typically of order 0.1 mag in the majority
of normal close binary light curves. Our results show that stellar type dependent struc-
tural variations affecting the principal terms of the ellipticity are significant at the 1%
level, i.e. ∼0.001 mag, and therefore should receive attention.
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