REMARKS CONCERNING THE 2-HILBERT CLASS FIELD OF IMAGINARY QUADRATIC NUMBER FIELDS: CORRIGENDA

Elliot Benjamin

In my earlier paper [1] I made the claim that there are three groups in Hall and Senior's book "The Groups of Order $2^{n}(n \leqslant 6)$ " that are in error (groups 64/140, 64/141, 64/143). However, it has been pointed out to me by Franz Lemermeyer that I made the unfortunate oversight of using the definition $[x, y]=x y x^{-1} y^{-1}$ for the commutator whereas Hall and Senion use the definition $[x, y]=x^{-1} y^{-1} x y$ (see [2]). With this correction there is no problem with the above three groups in Hall and Senior.

In the course of proving my Theorem 2 in [1], which states that if k is an imaginary quadratic number field with $C_{k, 2} \cong(2,4)$ and $C_{k_{1,2}}$ elementary then k has finite 2class field tower of length at most 2 , the corrected group presentations should be as follows:

$$
\begin{aligned}
& G_{1}=\langle q, s\rangle: x^{2}=y^{2}=z^{2}=1, z r z r=x, y s^{-1} y s=x, q r q r=y, z s^{-1} z s=y \\
& \quad q s^{-1} q s=z, q^{2}=1, r^{2}=1, s^{2}=r \\
& G_{2}=\langle 1, s\rangle: x^{2}=y^{2}=z^{2}=1, z r z r=x, y s^{-1} y s=x, q^{-1} r q r=y, z s^{-1} z s=y, \\
& q^{-1} s^{-1} q s=z, q^{2}=x, r^{2}=1, s^{2}=r .
\end{aligned}
$$

Since the new computations once again yield the same kernels for the transfer maps as in [1], the above theorem is still valid.

I would like to express my gratitude to Franz Lemermeyer for pointing out to me my mis-use of Hall and Senior's commutator definition. Dr. Lemermeyer has also conveyed to me a few typographical misprints in my paper:
p. 380 line 8 from bottom: $G^{\prime}=\operatorname{Gal}\left(k_{1} / k\right)$ should be $G^{\prime}=\operatorname{Gal}\left(k_{2} / k_{1}\right)$;
p. 380 line 3 from bottom: $G \cdot G \rightarrow H / H^{\prime}$ should be $t: G / G^{\prime} \rightarrow H / H^{\prime}$;

p. 381 line 8 from bottom: $G / G \cong(2,4)$ should be $G / G^{\prime} \cong(2,4)$;
p. 381 line 5, from bottom: the relation $s^{2}=r$ is missing.

In Dr Lemermeyer's recently completed Ph.D. thesis, he has obtained some interesting group theoretical results regarding the assumptions for my Theorem 2; I believe these results will be forthcoming.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

References

[1] E. Benjamin, 'Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields', Bull. Austral. Math. Soc 48 (1993), 379-383.
[2] M. Hall and J.K. Senior, The groups of order $2^{n}(n \leqslant 6)$ (Macmillan, New York, 1964).

Unity College
Unity ME 04988-9502
United States of America

[^0]: Received 19th April, 1994

