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The main objective of this paper is to answer the questions posed by Robinson and
Sadowski [22, p. 505, Commun. Math. Phys., 2010] for the Navier–Stokes equations.
Firstly, we prove that the upper box dimension of the potential singular points set S
of suitable weak solution u belonging to Lq(0, T ; Lp(R3)) for 1 � 2

q
+ 3

p
� 3

2
with

2 � q < ∞ and 2 < p < ∞ is at most max{p, q}( 2
q

+ 3
p
− 1) in this system. Secondly,

it is shown that 1 − 2s dimension Hausdorff measure of potential singular points set
of suitable weak solutions satisfying u ∈ L2(0, T ; Ḣs+1(R3)) for 0 � s � 1

2
is zero,

whose proof relies on Caffarelli–Silvestre’s extension. Inspired by Barker–Wang’s
recent work [1], this further allows us to discuss the Hausdorff dimension of potential
singular points set of suitable weak solutions if the gradient of the velocity is under
some supercritical regularity.

Keywords: Navier–Stokes equations; suitable weak solutions; box dimension;
Hausdorff dimension
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1. Introduction

We consider the three-dimensional incompressible non-stationary Navier–Stokes
equations

{
ut − Δu + u · ∇u + ∇Π = 0, div u = 0 in R

3 × (0, T ),
u|t=0 = u0(x) on R

3 × {t = 0}. (1.1)

Here u describes the velocity of the flow and the scalar function Π represents the
pressure of the fluid. The initial data u0(x) satisfies the divergence-free condition.
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The full regularity of solutions of the three-dimensional Navier–Stokes equa-
tions is not known, the partial regularity theory of suitable weak solutions of
this system starting from Scheffer’s work [23–25] is well-known. The famous
Caffarelli–Kohn–Nirenberg theorem in [4] is that the one-dimensional parabolic
Hausdorff measure of the potential space–time singular points set S of suitable
weak solutions to the 3D Navier–Stokes equations is zero. The critical tool is the
following so-called ε-regularity criterion: there is an absolute constant ε such that if

lim sup
�→0

1
�

∫∫
Q(�)

|∇u|2 dx dt � ε, (1.2)

then u is bounded in a neighbourhood of (0, 0), where Q(�) := B(�) × (−�2, 0)
and B(�) denotes the ball of centre 0 and radius �. To this end, Caf-
farelli–Kohn–Nirenberg [4] established an ε-regularity criterion at one scale

‖u‖L3(Q(1)) + ‖uΠ‖L1(Q(1)) + ‖Π‖L1,5/4(Q(1)) � ε. (1.3)

An alternative approach of Caffarelli–Kohn–Nirenberg theorem based on blow-
up argument was due to Lin, Ladyzhenskaya and Seregin [17, 18], where the
corresponding ε-regularity criterion at one scale reads

‖u‖L3(Q(1)) + ‖Π‖L3/2(Q(1)) � ε. (1.4)

In what follows, a point z = (x, t) in (1.1) is said to be regular if u belongs to L∞

at a neighbourhood of z. Otherwise, it is called singular. Estimates of the size of
potential singular points set in the 3D Navier–Stokes equations can be found in [1,
9, 14, 15, 20–22, 30, 31].

On the other hand, the integral (Serrin) type conditions based on the velocity,
the gradient of the velocity or the pressure lead to the full regularity of Leray–Hopf
weak solutions of the 3D Navier–Stokes equations. Precisely, a weak solution u is
smooth on (0, T ] if it satisfies one of the following three conditions

(1) Serrin [27], Struwe [26], Escauriaza, Seregin and Šverák [7]

u ∈ Lp(0, T ;Lq(R3)) with 2/p + 3/q = 1, q � 3. (1.5)

(2) Beirao da Veiga [2]

∇u ∈ Lp(0, T ;Lq(R3)) with 2/p + 3/q = 2, q > 3/2. (1.6)

(3) Berselli and Galdi [3], Zhou [36, 37]

Π ∈ Lp(0, T ;Lq(R3)) with 2/p + 3/q = 2, q > 3/2. (1.7)

The aforementioned integral (Serrin) type conditions can be seen as the critical
regularity, which is scale invariant under the natural scaling of the Navier–Stokes
equations (1.1). The full regularity means that the set of S is empty. The natu-
ral (supercritical) regularity u ∈ Lq(0, T ; Lp(R3)) with 2

q + 3
p = 3

2 in suitable weak
solutions means that

dimH(S) � 1 and dimB(S) � 5/3, (1.8)

which can be found in [4, 20] and dimH(S) and dimB(S) denote the Haus-
dorff dimension and box dimension of a set S, respectively. A natural question
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is whether the suitable weak solutions satisfying supercritical regularity u ∈
Lq(0, T ; Lp(R3)) with 1 < 2

q + 3
p < 3

2 lower the fractal dimension in (1.8). In this
direction, Gustafson, Kang and Tsai [9] proved that the Hausdorff dimension
of the potential singular points set S of a Leray–Hopf weak solution belonging
to u ∈ Lq(0, T ;Lp(R3)) for 1 � 2

q + 3
p with 2

p + 2
q < 1 and 3

p + 1
q < 1 is at most

3 − q + 2q
p , p > q or 2 − q + 3q

p , p � q. Robinson and Sadowski [22] showed that the
upper box dimension of potential singular points set S of a suitable weak solu-
tion belonging to u ∈ Lq(0, T ;Lp(R3)) for 1 � 2

q + 3
p � 3

2 with 3 < p, q < ∞ is no
greater than

max{p, q}
(

2
q

+
3
p
− 1
)

. (1.9)

In addition, the Hausdorff dimension of potential singular points set S of a suitable
weak solution belonging to ∇u ∈ Lq(0, T ;Lp(R3)) for 2 � 2

q + 3
p � 5

2 with 2 < p �
q < ∞ is less than or equal to

max{p, q}
(

2
q

+
3
p
− 2
)

. (1.10)

In [22, Conclusion, Page 9], Robinson and Sadowski mentioned some natural
questions from their results:

(1) It would be interesting to relax the assumption q > 3 in (1.9) and obtain the
same bound for any q � 2;

(2) Similarly in (1.10) one would like to relax the condition q � p.

(3) In order to obtain (1.9) in a bounded domain we would require the analogue
of Lemma 2 (estimates for the pressure when u ∈ Lq(0, T ;Lp(Ω)).

(4) An order of magnitude harder is to determine whether any of these partial
regularity results can be proved for general weak solutions, and not only
suitable weak solutions.

In this paper, our first result is the following theorem.

Theorem 1.1. Let u be a suitable weak solution belonging to u ∈ Lq(0, T ;Lp(R3))
for 1 � 2

q + 3
p � 3

2 with 2 � q < ∞ and 2 < p < ∞. Then, the upper box dimension

of its potential singular points set S is at most max{p, q}
(

2
q + 3

p − 1
)
.

Remark 1.2. Theorem 1.1 answers Robinson and Sadowski’s first question (1).

As observed in [9], the weak solutions in spaces Lq(0, T ;Lp(R3)) with 2
p + 2

q < 1
and 3

p + 1
q < 1 are suitable weak solutions. Therefore, towards the Robinson and

Sadowski’s fourth question (4), we have

Corollary 1.3. Let u be a Leray–Hopf weak solution belonging to u ∈
Lq(0, T ;Lp(R3)) for 1 � 2

q + 3
p � 3

2 with 2
p + 2

q < 1 and 3
p + 1

q < 1. Then, the
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upper box dimension of its potential singular points set S is at most
max{p, q}

(
2
q + 3

p − 1
)
.

With a slight modification of the proof of theorem 1.1 and using the ε-regularity
criterion at one scale without pressure in [33], we can obtain a parallel result of
(1.9) in a bounded domain, which is corresponding to Robinson and Sadowski’s
third issue.

Theorem 1.4. Let u be a suitable weak solution belonging to u ∈ Lq(0, T ;Lp(Ω))
for 1 � 2

q + 3
p � 3

2 with 5
2 < q, p < ∞. Then, the upper box dimension of its interior

potential singular points set S is at most max{p, q}
(

2
q + 3

p − 1
)
.

Roughly, the following figures (Figures 1–4) summarize the known upper box
dimension of its potential singular points set S of suitable weak solutions under
supercritical regularity in the Navier–Stokes equations.

Next, we study the Robinson and Sadowski’s second issue involving the gradi-
ent of the velocity with additional regularity. It seems that this problem is more
complicated. Very recently, in the other direction, Barker and Wang [1] estimate
the Hausdorff dimension of the singular set for the Navier–Stokes equations with
supercritical assumptions on the pressure. There are two new ingredients in their
proof. The first one is the higher integrability of the solutions with certain super-
critical assumptions on pressure in the Navier–Stokes equations. The second one
is the ε-regularity criterion in terms of quantity |∇u|2|u|q−2 with 2 < q < 3, which
usually arises in the Lp type energy estimates of the Navier–Stokes equations. In the
spirit of [1], we consider the ε-regularity criterion via quantity Λs+1u with s > 0,
which usually appears in the Ḣs+1 type energy estimates of the Navier–Stokes
equations. One naturally invokes the Caffarelli–Silvestre extension used in [6, 19,
29] to overcome non-local derivatives. However, since s > 0, one requires higher-
order Caffarelli–Silvestre (Yang) extensions [35]. To this end, we observe that the
following identity due to [6], for α = s + 1 > 1,

cα

∫
R4

+

y3−2α|∇∗(∇u)∗|2(x, y, t) dx dy =
∫

R3

∣∣∣(−Δ)
α−1

2 ∇u
∣∣∣2 (x, t) dx

=
∫

R3
|(−Δ)

α
2 u|2(x, t) dx,

that is,

‖u‖2
Ḣs+1 = cs

∫
R4

+

y1−2s|∇∗(∇u)∗|2(x, y, t) dx dy, (1.11)

which helps us to reduce the proof of theorem 1.5 to show theorem 1.6 just by Caf-
farelli–Silvestre extension rather than higher-order (Yang) extension. Theorem 1.5
can be viewed as the interpolation between the Caffarelli–Kohn–Nirenberg theorem
and Kozono-Taniuchi regular class L2(0, T ;BMO), which is of independent interest.

Theorem 1.5. Let u be a suitable weak solution belonging to u ∈ L2(0, T ; Ḣs+1(R3))
for 0 � s � 1

2 . Then, H1−2s(S) = 0.
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Figure 1. Robinson–Sadowski results on R
3.

Figure 2. Theorem 1.1 on R
3.

Figure 3. Corollary 1.3 weak solutions.

Figure 4. Theorem 1.4 on bounded domain.

Proposition 1.6. Suppose that u is a suitable weak solution to (1.1). Then there
exists an absolute positive constant ε01 such that (0, 0) is a regular point if

lim sup
μ→0

1
μ1−2s

∫∫
Q∗(μ)

y1−2s|∇∗(∇u)∗|2 dx dy dt � ε01. (1.12)
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Figure 5. First part of corollary 1.7.

Figure 6. Second part of corollary 1.7.

As an application of theorem 1.5 and the energy estimate of the Navier–Stokes
equations, we can partially answer the Robinson and Sadowski’s second question.

Corollary 1.7. Let u be a suitable weak solution belonging to ∇u ∈
Lq(0, T ;Lp(R3)) for 2 � 2

q + 3
p � 5

2 .

(1) If 5
2 − 3

p − 5
2q � 0, 2 < p < 54+12

√
14

25 , 1 < q � 2, then H
2( 2

q
+ 3

p
−2)

1− 1
q (S) = 0.

(2) If 2 − 3
p − 1

q � 0, 3
2 < p < 12

7 , q � 4, then Hq( 2
q + 3

p−2)(S) = 0.

Currently, the Hausdorff dimension of suitable weak solutions with the gradient
of the velocity under supercritical regularity are summarized in the following figures
(Figures 5–7).

The remainder of this paper is organized as follows. In §2, we begin with the
notations and the definition of fractal dimension including the Box dimension and
Hausdorff dimension. Then we recall the Caffarelli and Silvestre’s generalized exten-
sion for the fractional Laplacian operator and ε-regularity criterion at one scale.
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Figure 7. Known Hausdorff dimension of the gradient of the velocity.

Section 3 is devoted to the proof of theorem 1.1 concerning Box dimension. Partial
regularity results involving Hausdorff dimension is proved in §4.

2. Preliminaries

First, we introduce some notations used in this paper. Throughout this paper, we
denote

B(x, μ) = {y ∈ R
3||x − y| < μ}, B(μ) := B(0, μ),

Q(x, t, μ) = B(x, μ) × (t − μ2, t), Q(μ) := Q(0, 0, μ),

B∗(x, μ) = B(x, μ) × (0, μ), B∗(μ) := B∗(0, μ),

Q∗(x, t, μ) = B(x, μ) × (0, μ) × (t − μ2, t), Q∗(μ) := Q∗(0, 0, μ).

For p ∈ [1, ∞], the notation Lp(0, T ;X) stands for the set of measurable func-
tions on the interval (0, T ) with values in X and ‖f(·, t)‖X belonging to Lp(0, T ).
For simplicity, we write ‖f‖Lp,q(Q(μ)) := ‖f‖Lp(−μ2,0;Lq(B(μ))) and ‖f‖Lp(Q(μ)) :=
‖f‖LpLp(Q(μ)). We shall denote by 〈f, g〉 the L2 inner product of f and g.
The classical Sobolev norm ‖ · ‖Hs is defined as ‖f‖2

Hs =
∫

Rn(1 + |ξ|)2s|f̂(ξ)|2 dξ,
s ∈ R. We denote by Ḣs homogenous Sobolev spaces with the norm ‖f‖2

Ḣs =∫
Rn |ξ|2s|f̂(ξ)|2 dξ. Denote the average of f on the ball B(μ) by fμ. Γ denotes the

standard normalized fundamental solution of Laplace equation in R
3. We denote

by Div the divergence operator in R
n+1 and ∇∗ the gradient operator in R

n+1. |S|
represents the Lebesgue measure of the set S. We will use the summation conven-
tion on repeated indices. C is an absolute constant which may be different from
line to line unless otherwise stated in this paper.

Definition 2.1. The (upper) box-counting dimension of a set X is usually defined
as

dimB(X) = lim sup
ε→0

log N(X, ε)
− log ε

,

where N(X, ε) is the minimum number of balls of radius ε required to cover X.
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Let β > 0, δ > 0 and Ω × I can be covered by the union of series of parabolic
balls Q(r) with radius rj less than δ for j ∈ N. Define

Pβ
δ (Ω × I) = inf

{∑
rβ
j

∣∣∣ Ω × I ⊆ ∪Q(rj), rj < δ, j ∈ N

}
and Pβ(Ω × I) = limδ→0 Pβ

δ (Ω × I). If there is β0 such that Pβ(Ω × I) = ∞ if
β < β0 and Pβ(Ω × I) = 0 if β > β0, then β0 is called as the parabolic Hausdorff
dimension and Pβ(Ω × I) is the parabolic Hausdorff measure. The details of fractal
dimension can be found in [8].

Next, we focus on Caffarelli and Silvestre’s generalized extension for the fractional
Laplacian operator (−Δ)α with 0 < α < 1 in [5]. The fractional power of Laplacian
in R

3 can be interpreted as

(−Δ)αu = −Cα lim
y→0+

y1−2α∂yu∗,

where u∗ satisfies {
Div (y1−2α∇∗u∗) = 0in R

4
+,

u∗|y=0 = u,x ∈ R
3.

(2.1)

As a by-product of the above equation, for any v|y=0 = u, it holds∫
R4

+

y1−2s|∇∗u∗|2 dx dy �
∫

R4
+

y1−2s|∇∗v|2 dx dy. (2.2)

Moreover, from § 3.2 in [5], the definition of the Ḣα norm can be written as

‖u‖2
Ḣα =

∫
R3

|ξ|2α|û(ξ)|2 dξ =
∫

R4
+

y1−2α|∇∗u∗|2 dx dy. (2.3)

We recall the following observation due to [6], for α > 1,

cα

∫
R4

+

y3−2α|∇∗(∇u)∗|2(x, y, t) dx dy =
∫

R3

∣∣∣(−Δ)
α−1

2 ∇u
∣∣∣2 (x, t) dx

=
∫

R3
|(−Δ)

α
2 u|2(x, t) dx.

Hence,

‖u‖2
Ḣs+1 = cs

∫
R4

+

y1−2s|∇∗(∇u)∗|2(x, y, t) dx dy. (2.4)

Based on the natural scaling of the Navier–Stokes equations, we set the following
two dimensionless quantities:

E∗
∗(∇∗(∇u)∗;μ) =

1
μ1−2s

∫∫
Q∗(μ)y1−2s|∇∗(∇u)∗|2 dx dy dt, E∗(∇u;μ)

=
1
μ

∫∫
Q(μ)

|∇u|2 dx dt.

To make our paper more self-contained and more readable, we outline the proof of
the Poincaré inequality concerning Caffarelli and Silvestre’s generalized extension.
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Lemma 2.2. Let u and u∗ be defined in (2.1). There exist a constant C such that

‖u − uμ‖
L

6
3−2s (B(μ/2))

� C

(∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy

)1/2

, (2.5)

‖u − uμ‖L2(B(μ/2)) � Cμs

(∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy

)1/2

. (2.6)

Proof. Consider the usual cut-off functions

η1(x) =

{
1, x ∈ B(�μ), 0 < � < 1,

0, x ∈ Bc(μ),

and

η2(y) =

{
1,0 � y � �μ,

0,y > μ,

satisfying

0 � η1, η2 � 1, and μ|∂xη1(x)| + μ|∂yη2(y)| � C.

By the Young inequalities, (2.3) and (2.2), we arrive at

‖uη1‖2
Ḣs(R3)

=
∫

R4
+

y1−2s|∇∗(uη1)∗|2 dx dy

� C

∫
R4

+

y1−2s|∇∗(u∗η2η1)|2 dx dy

� Cμ−2

∫
B∗(μ)

y1−2s|u∗|2 dx dt + C

∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy.

This guarantees that

‖(u − u∗
B∗(μ))η1‖2

Ḣs(R3)

� Cμ−2

∫
B∗(μ)

y1−2s|u∗ − u∗
B∗(μ)|2 dx dt + C

∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy, (2.7)

where u∗
B∗(μ) = 1

|B∗(μ)|
∫

B∗(μ)
y1−2su∗ dx dy and |B∗(μ)| =

∫
B∗(μ)

y1−2s dy dx.
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Thanks to the classical weighted Poincaré inequality, we infer that∫
B∗(μ)

y1−2s|u∗ − u∗
B∗(μ)|2 dx dy � Cμ2

∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy. (2.8)

Plugging (2.8) into (2.7), we observe that

‖(u − u∗
B∗(μ))η1‖2

Ḣs(R3)
� C

∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy.

This together with the Sobolev embedding yields that

(∫
B(�μ)

|u − u∗
B∗(μ)|

6
3−2s dx

) 3−2s
3

�
(∫

R3
|(u − u∗

B∗(μ))η1| 6
3−2s dx

) 3−2s
3

� ‖(u − u∗
B∗(μ))η1‖2

Ḣs(R3)

� C

∫
B∗(μ)

y1−2s|∇∗u∗|2 dx dy. (2.9)

It follows from u∗ = u(x) +
∫ y

0
∂zu

∗ dz and the Hölder inequality that

∣∣u∗
B∗(μ) − uμ

∣∣ = 1
|B∗(μ)|

∣∣∣∣∣
∫

B∗(μ)

y1−2s

∫ y

0

∂zu
∗ dz

∣∣∣∣∣
� C

1
|B∗(μ)|

∫
B(μ)

∫ μ

0

y1−2s

(∫ y

0

z1−2s|∂zu
∗|2 dz

)1/2

×
(∫ y

0

z−(1−2s) dz

)1/2

dy dx

� Cμs− 3
2

(∫
B∗(μ)

z1−2s|∇∗u∗|2 dx dz

)1/2

. (2.10)

Combining (2.9) with the latter inequality, we deduct that

(∫
B(�μ)

|u − uμ| 6
3−2s

) 3−2s
6

�
(∫

B(�μ)

|u − u∗
B∗(μ)|

6
3−2s

) 3−2s
6

+

(∫
B(�μ)

|u∗
B∗(μ) − uμ| 6

3−2s

) 3−2s
6

� C

(∫
B∗(μ)

y1−2s|∇∗u∗|2
) 1

2

,

which means (2.5) and (2.6). �
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Proposition 2.3. ([11]) Let the pair (u,Π) be a suitable weak solution to the 3D
Navier–Stokes system (1.1) in Q(1). There exists an absolute positive constant ε
depending only on p and q such that if the pair (u, Π) satisfies

‖u‖Lq,p(Q(1)) + ‖Π‖L1(Q(1)) � ε, (2.11)

for 1 � 2/q + 3/p < 2, 1 � p, q � ∞, then u ∈ L∞(Q(1/2)).

Proposition 2.4. ([33]) Let the pair (u,Π) be a suitable weak solution to the 3D
Navier–Stokes system (1.1) in Q(1). For any δ > 0, there exists an absolute positive
constant ε such that if u satisfies

∫∫
Q(1)

|u| 52+δ dx dt � ε, (2.12)

then u ∈ L∞(Q(1/16)).

For the generalization of the ε-regularity criterion (2.12) at one scale without pres-
sure, the reader may refer to recent work [16] by Kwon. Next, we recall the Leibniz
rule for fractional derivatives and product estimates for the fractional Laplacian.

Lemma 2.5. ([12]) Let α > 0, p ∈ (1,∞) and pi ∈ (1,∞), i = 1, 2, 3, 4. Then there
exists a positive constant C such that

‖Λα(fg) − fΛαg‖Lp � C(‖∇f‖Lp1 ‖Λα−1g‖Lp2 + ‖Λαf‖Lp3 ‖g‖Lp4 ) (2.13)

and

‖Λα(fg)‖Lp � C(‖Λαf‖Lp1 ‖g‖Lp2 + ‖f‖Lp3 ‖Λαg‖Lp4 ), (2.14)

where 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

For the convenience of readers, we present the known fractional Gagliardo–
Nirenberg inequality at the end of this section.

Proposition 2.6. ([10, 32, 34]) Suppose that u ∈ Lq(Rn) and Λsu ∈ Lr(Rn).
Let 0 � σ < s < ∞ and 1 < q, r � ∞. Then there exists a positive constant C =
C(n, q, p, r, s, σ) such that

‖Λσu‖Lp(Rn) � C‖u‖θ
Lq(Rn)‖Λsu‖1−θ

Lr(Rn) (2.15)

with
n

p
− σ = θ

n

q
+ (1 − θ)

(n

r
− s
)

, (2.16)

where 0 < θ < 1 − σ
s and s − n

r 
= σ − n
p .
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3. Box dimension of possible singular points set of suitable weak
solutions

This section contains the proof of theorem 1.1, corollary 1.3 and theorem 1.4. The
key point is an application of the ε-regularity criteria (2.11) and (2.12) at one scale.

Proof of theorem 1.1. We present the proof by contradiction. We suppose
that dimB(S) > max{p, q}(2

q + 3
p − 1). We pick a constant α such that α0 =

max{p, q}
(

2
q + 3

p − 1
)

< α < dimB(S). Therefore, using the definition of the box
dimension, we know that there exists a sequence δj → 0 such that N(S, δj) >

δ−α
j .We assume that (xi, ti)

N(S,δj)
i=1 be a collection of δj- separated points in S.

By the regularity criterion in proposition 2.3, for any (xi, ti) ∈ S, we get

∫ ti

ti−δ2
j

⎡
⎣
(∫

Bi(δj)

|u|p dx

) q
p

+

(∫
Bi(δj)

|Π|p/2 dx

) q
p

⎤
⎦dt > δ

(−p+3) q
p +2

j ε1,

where Bi(μ) := B(xi, μ). Thus we have

N(S, δj)∑
i=1

∫ ti

ti−δ2
j

⎡
⎣
(∫

Bi(δj)

|u|p dx

) q
p

+

(∫
Bi(δj)

|Π|p/2 dx

) q
p

⎤
⎦dt

> N(S, δj)δ
(−p+3) q

p +2

j ε1. (3.1)

The pressure equation helps us to obtain, for p > 2, q � 2,

‖Π‖p/2

Lq/2(0,T ;Lp/2(R3))
� C‖u‖p

Lq(0,T ;Lp(R3)). (3.2)

For the case q
p > 1, we know that α0 = q

(
2
q + 3

p − 1
)
.

Now, we can apply the inequality
∑N(S, δj)

i=1 (ai)
q
p � (

∑N(S, δj)
i=1 ai)

q
p to control

the left-hand side of (3.1) by ‖u‖q
Lq(0,T ;Lp(R3)) + ‖Π‖q/2

Lq/2(0,T ;Lp/2(R3))
. This together

with (3.2) implies that

C � N(S, δj)δ
(−p+3) q

p +2

j ε1 � δ
(−p+3) q

p +2−α

j ε1. (3.3)

We immediately get a contradiction as j → ∞.

For the rest case q
p � 1, we invoke the inequality

∑N(S, δj)
i=1 (ai)

q
p �

N (1− q
p )(S, δj)(

∑N(S, δj)
i=1 ai)

q
p in the proof. With a slight modification of the above

proof, we see that C � N
q
p (S, δj)δ

(−p+3) q
p +2

j ε1. This means that

C � N(S, δj)δ
p
q [(−p+3) q

p +2]

j ε1 � δ
p
q [(−p+3) q

p +2]−α

j ε1. (3.4)

This led a contradiction as j → ∞. The proof of this theorem is achieved. �
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Proof of corollary 1.3. It follows from 1 � 2
q + 3

p � 3
2 with 2

p + 2
q < 1 and 3

p + 1
q < 1

that u ∈ L4(0, T ;L4(Rn)). Thanks to the work [28], we observe that u is a suitable
weak solution. Following the path of the above proof, we complete the proof. �

Proof of theorem 1.4. As the same manner of proof of theorem 1.1 and replacing
the application of the regularity criterion (2.11) by (2.12), the proof of this theorem
is completed. �

4. Hausdorff dimension of possible singular points set of suitable weak
solutions

First, we prove proposition 1.6. As an application of this proposition, we can achieve
the proof of corollary 1.7. To this end, we prove the following lemma, which roughly
indicates that the smallness of ∇∗(∇u)∗ yields the smallness of ∇u.

Lemma 4.1. For 0 < μ � 1
2ρ, there is an absolute constant C independent of μ and

ρ, such that

E∗(∇u;μ) � C

(
ρ

μ

)
E∗

∗(∇∗(∇u)∗; ρ) + C

(
μ

ρ

)2

E∗(∇u; ρ).

Proof. With the help of the triangle inequality, the Hölder inequality and (2.6), we
see that∫

B(μ)

|u|2 dx � C

∫
B(μ)

|u − ūρ|2 + C

∫
B(μ)

|ūρ|2

� C

(∫
B( ρ

2 )
|u − ūρ|2

)
+ C

μ3

ρ3

(∫
B(ρ)

|u|2
)

� Cρ2s

(∫
B∗(ρ)

y1−2s|∇∗u∗|2 dx dy

)
+ C

μ3

ρ3

(∫
B(ρ)

|u|2
)

, (4.1)

that is,

∫
B(μ)

|∇u|2 dx � Cρ2s

(∫
B∗(ρ)

y1−2s|∇∗(∇u)∗|2 dx dy

)
+ C

μ3

ρ3

(∫
B(ρ)

|∇u|2
)

.

Integrating in time on (−μ2, 0) this inequality, we obtain

∫∫
Q(μ)

|∇u|2 dx � Cρ2s

(∫∫
Q∗(ρ)

y1−2s|∇∗(∇u)∗|2 dx dy

)
+ C

μ3

ρ3

(∫∫
Q(ρ)

|∇u|2
)

,

which leads to

E∗(∇u;μ) � C

(
ρ

μ

)
E∗

∗(∇∗(∇u)∗; ρ) + C

(
μ

ρ

)2

E∗(∇u; ρ).

This achieves the proof of this lemma. �
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Proof of proposition 1.6. From (1.12), we know that there exists a constant ρ1 such
that

E∗
∗(∇∗(∇u)∗; ρ) � ε01, for all 0 < ρ � ρ1.

Combining this with lemma 4.1, we conclude that, for 0 < ρ � ρ1,

E∗(∇u;μ) � C

(
ρ

μ

)
E∗

∗(∇∗(∇u)∗; ρ) + C

(
μ

ρ

)2

E∗(∇u; ρ)

� C1

(
ρ

μ

)
ε01 + C1

(
μ

ρ

)2

E∗(∇u; ρ).

Before going further, we set λ = μ
ρ � 1

2 . Hence, there holds

E∗(∇u;λρ) � C1λ
−1ε01 + C1λ

2E∗(∇u; ρ).

Choosing λ sufficiently small such that q = C1λ
2 < 1 and taking ε01 such that

C1λ
−1ε01 � (1−q)ελ

2 , we obtain

E∗(∇u;λρ) � (1 − q)λ
2

ε + qE∗(∇u; ρ).

Iterating this inequality, we infer that

E∗(∇u;λkρ) � λ

2
ε + qkE∗(∇u; ρ). (4.2)

Based on the definition of E∗(∇u; ρ), there is a positive sufficiently large number
K0 such that

qK0E∗(∇u; ρ1) � qK0
C‖∇u‖2

L2
t,x

ρ1
� λε

2
. (4.3)

We write ρ2 = λK0ρ1, then, for all 0 < ρ � ρ2, there is a positive constant k � K0

such that λk+1ρ1 � ρ � λkρ1 and

E∗(∇u; ρ) � 1
λk+1ρ1

∫∫
Q(λkρ1)

|∇u|2 dx dt =
1
λ

E∗(∇u;λkρ1)

� 1
λ

[
qkE∗(∇u; ρ1) +

1
2
λε

]

� ε,

where (4.2) and (4.3) were used.
Finally, the famous ε-regularity criterion (1.2) helps us to finish the proof of this

proposition. �

Now we are in a position to complete the proof of theorem 1.5.

Proof of theorem 1.5. For the case s = 0, we complete the proof by the Caf-
farelli–Kohn–Nirenberg theorem in [4]. For the other borderline case s = 1/2, by
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the fact Ḣ
3
2 (R3) ↪→ BMO and the Serrin class L2(0, T ;BMO) due to Kozono and

Taniuchi [13], we know there is no singular point in the weak solutions of the
Navier–Stokes equations. Hence, we achieve the proof of two borderline cases. For
the rest cases, from (2.4), we derive from u ∈ L2(0, T ; Ḣs+1(R3)) with 0 < s < 1

2
that ∫ ∫

R4
+

y1−2s|∇∗(∇u)∗|2(x, y, t) dx dy dt < +∞.

At this stage, the Vitali covering lemma used in [4] together with proposition
1.6 yields that 1 − 2s dimension of potential singular points set of suitable weak
solutions satisfying u ∈ L2(0, T ; Ḣs+1(R3)) for 0 < s < 1

2 is zero. The process is
standard, hence, we omit the detail here.

In summary, the desired result is derived. �

The proof of corollary 1.7 is a consequence of the following two lemmas.

Lemma 4.2. Let ∇u ∈ Lq(0, T ;Lp(R3)) for 2 � 2
q + 3

p � 5
2 with 5

2 − 3
p − 5

2q � 0, 2 <

p < 54+12
√

14
25 , 1 < q � 2. Then

u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1+s(R3)),

where 0 � s =
5
2− 3

p− 5
2q

1− 1
q

� 1
2 .

Proof. The incompressible condition allow us to get

〈u · ∇Λsu,Λsu〉 = 0. (4.4)

Multiplying the Navier–Stokes equations with Λ2su, using the divergence-free
condition and (4.4), we know that

1
2

d
dt

‖Λsu‖2
L2(R3) + ‖Λs+1u‖2

L2(R3) = −〈Λs(u · ∇u) − u · ∇(Λsu),Λsu〉.

The Hölder inequality guarantees that

|〈Λs(u · ∇u) − u · ∇(Λsu),Λsu〉| � ‖Λs(u · ∇u) − u · ∇(Λsu)‖L2(R3)‖Λsu‖L2(R3).

By means of the Leibniz rule for fractional derivatives (2.13), we infer that

‖Λs(u · ∇u) − u · ∇(Λsu)‖L2(R3) � C‖∇u‖Lp(R3)‖Λsu‖
L

2p
p−2 (R3)

, p > 2.

Consequently, we arrive at

1
2

d
dt

‖Λsu‖2
L2(R3) + ‖Λs+1u‖2

L2(R3) � C‖∇u‖Lp(R3)‖Λsu‖
L

2p
p−2 (R3)

‖Λsu‖L2(R3).

(4.5)
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We conclude by the fractional Gagliardo–Nirenberg inequality (2.15) and the
Sobolev inequality that,

‖Λsu‖
L

2p
p−2 (R3)

� C‖∇u‖
3
p

5
2−s− 3

p

Lp(R3) ‖u‖
5
2−s− 6

p
5
2−s− 3

p

L

3
3
2−s (R3)

� C‖∇u‖
3
p

5
2−s− 3

p

Lp(R3) ‖Λsu‖
5
2−s− 6

p
5
2−s− 3

p

L2(R3) , (4.6)

where we require

0 �
3
p

5
2 − s − 3

p

� 1,
5
2
− s − 3

p
> 0 and s �

3
p

5
2 − s − 3

p

.

Indeed, in the light of the definition of s and 1 < q � 2, we observe that
3
p

5
2−s− 3

p

� 1.

In addition, taking advantage of the definition of s again, we know that 5
2 − s − 3

p >

0. Some straightforward computations yield that 9−√
56

6 < 1
p < 9+

√
56

6 guarantees

that s �
3
p

5
2−s− 3

p

.

Inserting (4.6) into (4.5), we have

1
2

d
dt

‖Λsu‖2
L2(R3) + ‖Λs+1u‖2

L2(R3) � C‖∇u‖
3
p

5
2−s− 3

p

+1

Lp(R3) ‖Λsu‖
5
2−s− 6

p
5
2−s− 3

p

+1

L2(R3)

� C‖∇u‖q
Lp(R3)‖Λsu‖

5
2−s− 6

p
5
2−s− 3

p

+1

L2(R3) . (4.7)

Thanks to
5
2−s− 6

p
5
2−s− 3

p

� 1, we derive from (4.7) and ∇u ∈ Lq(0, T ;Lp(R3)) for 2 �
2
q + 3

p � 5
2 that u ∈ L2(0, T ; Ḣ1+s(R3)). �

Lemma 4.3. Let u be a suitable weak solution belonging to ∇u ∈ Lq(0, T ;Lp(R3))
for 2 � 2

q + 3
p � 5

2 with 2 − 3
p − 1

q � 0, 3
2 < p < 12

7 , q � 4. Then

u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1+s(R3)),

where 0 �s =
2− 3

p− 1
q

2
q

� 1
2 .

Proof. In view of the standard energy estimate, the integration by parts and the
incompressible condition, we have

1
2

d
dt

‖Λsu‖2
L2(R3) + ‖Λs+1u‖2

L2(R3) = 〈Λs(ujui),Λs+1ui〉.

It follows from the Hölder inequality that

|〈Λs(ujui),Λs+1ui〉| � ‖Λs(ujui)‖L2(R3)‖Λs+1u‖L2(R3).
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We deduce from the product estimates for the fractional Laplacian (2.14) and the
Sobolev embedding that

‖Λs(ujui)‖L2(R3) � C‖Λsu‖
L

6p
5p−6 (R3)

‖u‖
L

3p
3−p (R3)

� C‖Λsu‖
L

6p
5p−6 (R3)

‖∇u‖Lp(R3),
6
5

< p < 3.

Combining the above estimates together, we observe that

1
2

d

dt
‖Λsu‖2

L2(R3) + ‖Λs+1u‖2
L2(R3) � C‖Λsu‖

L
6p

5p−6 (R3)
‖∇u‖Lp(R3)‖Λs+1u‖L2(R3).

(4.8)

According to the fractional Gagliardo–Nirenberg inequality (2.15) and the
Sobolev inequality, we discover that

‖Λsu‖
L

6p
5p−6 (R3)

� C‖u‖
2− 3

p

s− 3
2 + 3

p

L
3p

3−p (R3)
‖Λs+1u‖

s− 7
2 + 6

p

s− 3
2 + 3

p

L2(R3) � C‖∇u‖
2− 3

p

s− 3
2 + 3

p

Lp(R3) ‖Λs+1u‖
s− 7

2 + 6
p

s− 3
2 + 3

p

L2(R3) ,

(4.9)

where we need p � 3
2 , 0 � s− 7

2+ 6
p

s− 3
2+ 3

p

� 1, s − 3
2 + 3

p > 0 and s
s+1 <

s− 7
2+ 6

p

s− 3
2+ 3

p

.

On one hand, we can examine
2− 3

p

s− 3
2+ 3

p

� 1 via q � 4 and 2 > p � 3
2 . On the other,

direct calculation ensures that q > 2, p > 3
2 yields that s − 3

2 + 3
p > 0. Moreover,

3
2 < p < 12

7 means s
s+1 <

s− 7
2+ 6

p

s− 3
2+ 3

p

.

Inserting (4.9) into (4.8), we find

1
2

d
dt

‖Λsu‖2
L2(R3) + ‖Λs+1u‖2

L2(R3) � C‖∇u‖
s+ 1

2
s− 3

2 + 3
p

Lp(R3) ‖Λs+1u‖
s− 7

2 + 6
p

s− 3
2 + 3

p

+1

L2(R3) ,

which implies that

‖Λsu‖2
L∞(0,T ;L2(R3)) + ‖Λs+1u‖2

L2(0,T ;L2(R3))

� C0+C‖∇u‖
s+ 1

2
s− 3

2 + 3
p

L

2s+1
2− 3

p (0,T ;Lp(R3))

‖Λs+1u‖
s− 7

2 + 6
p

s− 3
2 + 3

p

+1

L2(0,T ;L2(R3)).

We deduce from p > 3
2 that

s− 7
2+ 6

p

s− 3
2+ 3

p

+ 1 < 2. Hence, the Young inequality further

allows us to get that

‖Λsu‖2
L∞(0,T ;L2(R3)) +

1
2
‖Λs+1u‖2

L2(0,T ;L2(R3)) � C0+C‖∇u‖
2s+1
s− 3

p

L

2s+1
2− 3

p (0,T ;Lp(R3))

.

The proof of this lemma is completed. �
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Proof of corollary 1.7. Combining lemma 4.2, lemma 4.3 and theorem 1.5, we
immediately finish the proof of corollary 1.7. �
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