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VARIATION REDUCING PROPERTIES OF 
DECREASING REARRANGEMENTS 

KONG-MING CHONG 

Introduction. One well-established characteristic of the operation of 
decreasing rearrangement is its variation reducing property. A systematic 
study of this property has been made in considerable detail by G.F.D. Duff in [5] 
and [6]. He proved some inequalities related to the operation of rearrangement 
in decreasing order showing that the total variation of a sequence or an 
absolutely continuous function is in general diminished by such rearrangement. 
He also showed that the Lp norm of the difference sequence (or the derivative 
function) is diminished by this rearrangement operation unless the given se
quence (or absolutely continuous function) is already monotonie (or equal to 
a monotonie function almost everywhere). One of his inequalities [5, Theorem 
4.1, p. 1168] was later generalized (except for the case of equality) for almost 
everywhere differentiable functions by J.V. Ryff in [10, p. 455]. 

In this paper, we establish some spectral inequalities (i.e. expressions of 
the form f< g or / < g where < and < denote the Hardy-Littlewood-Pôlya 
spectral order relations) showing that the variation reducing properties of 
decreasing rearrangements can also be expressed in the sense of the weak 
spectral order < . With these spectral inequalities, we obtain some results of 
Duff and Ryff as particular cases. Moreover, we give conditions for equality in 
Ryff's generalization of Duff's inequality which was not discussed by Ryff 
in [10, p. 455]. 

1. Preliminaries. Let (X, A, /z) be a finite measure space, i.e., X is a non
empty point set provided with a countably additive non-negative measure ju 
on a cr-algebra A of subsets of X such that n(X) < oo. Whenever X is clear 
from the context, we shall often write J • dp for integration over X. By 
M{X, /x) we denote the set of all extended real valued measurable functions 
on X. Two functions/ £ M(X, M) and g G M(X', / / ) , where n'{X') = n(X), 
are said to be equimeasurable (written f ~ g) whenever 

(1) M ({*: / («) ><}) = / ( { * : « ( * ) >*}) 

for all real t. If / ~ g, it is not hard to see that 

(2) # ( / ) ~ * ( g ) 

whenever $ : R —> R is a Borel measurable function. Moreover, if {Xr, Ar, yj) 
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is any other measure space with n'(X') = n(X), then one can easily verify that 

(3) / o « r ~ / 

whenever a : X —> X' is a measure-preserving map, i.e., <J~1(E) G A and 
n{<r-l(E)) = /*'(£) for all E G A'. 

If / G M(X, M), it is well-known that there exists a unique right continuous 
non-increasing function bf on the interval [0, M POL called the decreasing re
arrangement of/, such that bf a n d / are equimeasurable. In fact, 

(4) df(s) = inf {* G R : /x({x : /(*) > *}) ^ 5} 

for all 5 G [0, /i(jr)]. 
In what follows, we denote the Lebesgue measure on the real line R by m. 
If / , g G M{X, /i) a n d / + , g+ G L 1 ^ , M) where p(X) = a < 00, then we 

w r i t e / < g whenever 

/ fyfo» ^ I hQdm, t G [0, a] 
0 ^ 0 

and / < g whenever / < g and 

Ça Ça 
I 5/^w = V hgdm. 

J 0 •/ 0 

In the sequel, expressions of the form f< g (respectively / < g) are called 
strong (respectively weak) spectral inequalities. 

In establishing the spectral inequalities to be given below, we need the 
following results proved earlier in [2]. 

THEOREM 1.1 (Chong [2, Theorems 2.3, 2.8, 3.1 and Corollaries 2.4 and 3.2]). 
Suppose (X, A, ju) is a finite measure space. Suppose f, g G M(X, /x) with in-
tegrable positive parts. Then / < g if and only if / $ ( / )d/jL ^ J^(g)djji for all 
non-decreasing convex functions $ : R —> R or, equivalently, $ ( / ) < $(g) /or 
a// non-decreasing convex functions <ï> : R —> R SWC/Ê £to $+(g) G Ll(X, n). 

Iff < g awa7 i/ $ : R —•> R is strictly convex increasing such that <£(g) G I*1 (X, fi), 
/&ew J $ ( / )cZ/x = J^(g)dfjL if and only if f ~ g. 

Moreover, if <ï> : R —» R is strictly increasing convex and if / , g G Ll(X, M) 
are swc/̂  2/ta/ / < g, ^ew ^e strong spectral inequality f < g holds whenever the 
integrals J<£(/ )dn and j$(g)dfx are finite and equal. 

THEOREM 1.2 (Hardy, Littlewood and Pôlya [7, Theorem 10, p. 152] and 
Chong [3, Theorem 2.5 and Corollary 2.6]). Suppose f, g G Ll(X, /*), where 
n(X) < 00. Then f < g if and only if / $ ( / )dfx ^ J^(g)d^for all convex func
tions $ : R —> R or, equivalently, $ ( / ) <£ $(g) for all convex functions $ : R —>R 
such that $+(g) G I ^ 1 ^ , /*)• 

Uf *< è and i f $ : R - > R w stricly convex such that $(g) G Ll(X, yi), then 
the equality j'$(/ )aV = j^(g)dn holds if and only iff ~ g. 
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2. Variation reducing properties of decreasing rearrangements. In 
this section, we prove some new spectral inequalities showing that the varia
tion reducing properties of decreasing rearrangements can also be expressed 
in the sense of the weak spectral order < . 

We assume in the sequel without further comments that for any given 
w-tuple a = (#i, a2, . . . , an) 6 Rw, the w-tuple a* = (ai*, a2*, • • , #n*) will 
always denote the decreasing rearrangement of a ; here we have regarded a as 
a measurable function defined on a discrete measure space with n atoms of 
equal measures. We also denote by Aa the vector (Aai, Aa2, . . . , Aan_i) in 
Rn_1, where Aak = ak+i — ak, k = 1, 2, . . . , n — 1. 

THEOREM 2.1. / / a = (alf a2, . . . , an) is any n-tuple in Rw, then 

|Aa*| « |Aa| 

where strong spectral inequality holds if and only if |Aa*| ~ |Aa| or, equivalently, 
the sequence {ai, a2, . . . , an} is monotonie. 

Proof. By definition, we have |Aa| = (|a2 — ai|, |a3 — a2|, . . . , \an — aw_i|). 
After interchanging the summands in each component of |Aa| if necessary, 

we have 

|Aa| ~ (\atl - ai*|, \ai2 - a2*|, . . . , |aiw_! - an-i*|) 

for some permutation (ii, i2y . . . , v_i) of w — 1 integers from the sequence 
{1,2, . . . , » } . 

Now, if ai* g {a i n a<2, . . . , a ^ } , then (a i l f . . . , a ^ J ~ (a2*, . . . , an*) 
and so, by [3, Theorem 3.3] (which is a generalization for general L1 functions 
of a spectral inequality of Lorentz and Shimogaki [8, Proposition 1, p. 34] 
via Luxemburg's Theorem [9, Theorem 9.5]), we have 

(|a2* - Oi*|, |a3* - a2*|, • • • » K* — an_i*|) 
« fla^ - ai*|, |ai2 - a2*|, . . . , l a ^ - a„_i*|). 

Hence |Aa*| « |Aa|. 
If ai* G {a*n ai2, . . . , ain_1}} say ai* = atj for some 1 ^ j ^ n — 1 and if 

{ai, a2, . . . , an} — {ailt ai2J . . . , a ^ } = ak 

for some 1 < k ^ w, then 

|Aa| ~ (|atl - ai*|, . . . , \atj - a / | , . . . , l a ^ - a„-i*|) 

^ (la^ - ai*|, . . . , la^-,! - a^-i*|, |a* - a / | , 

| # ty+l — aj+l*\, • • • y \aU-i — <^n—1*1) 

» (|a2* - ai*|, |a3* - a2*|, . . . , |aw* - a„_i*|), 

again by [3, Theorem 3.3]. 
Finally, if the sequence {aiy . . . , an) is monotonie, then clearly |Aa*| ~ |Aa| 

and, a fortiori, |Aa*| < |Aa|. If the sequence {au . . . , an) is not monotonie, 

https://doi.org/10.4153/CJM-1975-040-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-040-2


VARIATION REDUCING PROPERTIES 333 

then at least one of the components of the vector Aa is the sum of two or more 
non-zero components of the vector Aa* (since there must be three non
monotonic consecutive components of a) and so 

E |Aa<*| < 2 \Aat\, 

i.e. the spectral inequality |Aa*| < | Aa| is (strictly) weak. 

COROLLARY 2.2. / / a = {au a2, . . . , an) 6 Rw, then 

<ï>(|Aa*|)« <ï>(|Aa|) 

and, in particular, 

Z #(|Aa,*|) g Z $(|Aa(|) 
f = l i=l 

for all increasing convex functions $ : R+ —> R. 
7/ $ is strictly increasing and convex, then the strong spectral inequality 

<ï>(|Aa*|) -< <ï>(|Aa|) holds or, equivalently, 

£ *(|Ac4*|) = £ #(|Ao,|) 

if and only if the sequence {a\, a2, . . . , an) is monotonie. 

Proof. This follows easily from Theorem 2.1 by virtue of Theorem 1.1. 

COROLLARY 2.3. Let a = (ai, a2, . . . , an) £ Rw where at > 0, i = 1, 2, . . . , 
w. 7/ &i,i+i = ai/ai+i or a,i+i/ai whichever is greater or equal to 1, i = 1 , 2 , . . . , 
n — 1, then 

tU U A \ v y / ^ l * a 2 * O n - 1 * \ 

\a2* #3 an / 

where strong spectral inequality holds if and only if the seuqence {ai, . . . , an) is 
monotonie. 

Proof. The result follows easily on applying Theorem 2.1 to the vector 
log a = (log aif . . . , log an) and then exponentiating, i.e. using Theorem 1.1. 

As a direct consequence of Corollary 2.2, we have the following theorem of 
G.F.D. Duff [5, Theorem (2.1), p. 1156]. 

THEOREM 2.4 (Duff). If a = (au . . . , an) £ Rw, then 

Z \Aak*\p ^ Z \àak\
p, p ^ 1 

where equality holds if and only if the sequence {ai, . . . , an) is monotonie. 

In [6, Theorem 3, p. 423], Duff obtained an improved version of Theorem 
2.4. We observe that the proof given by him (except for the case of equality) 
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is immediately applicable to extending his result to more general concave or 
convex functions, provided we use the following lemma. Our method gives 
necessary (and sufficient) conditions for equality to hold in his theorem. 

LEMMA 2.2. / / a< ^ 0, i' = 1, 2, . . . , n, then 

*(ai) + . . . + Han) S *(ai + a2 + . . . + an) + (n - l)<i>(0) 

for all convex functions $ : R + —> R and the inequality is reversed if $ : R + —> R 
is concave. 

If 3> is strictly convex or strictly concave, then equality holds if and only if 
all except possibly one of the a / s , i — 1, 2, . . . , n, are zero. 

Proof. It is easy to see that the strong spectral inequality 

(au a2, . . . , an) < (ai + a2 + . . • + a», 0, . . . , 0) 

holds. With this spectral inequality, the result then follows easily from Theorem 
1.2. 

THEOREM 2.6. Let a = (ax, a2, . . . , an) be any n-tuple in Rn. If Nk denotes 
the number of intervals of [ak] that contain the open interval (ak*, ak+x*), k = 
1,2, . . . , n — 1, and if <£ : R+ —> R is a convex function satisfying $(0) = 0, 
then 

i ; Nk$(\Aak*\) g "t, <K|Aa*|) 

where equality holds if $ is the identity map of R+ . The inequality is reversed if 
$ : R+ —» R is concave and satisfying $(0) = 0. 

/ / <i> is strictly convex or strictly concave, then equality holds if and only if the 
sequence {a\, a2, . . . , an\ is monotonie. 

Proof. Using Lemma 2.5, the proof of the first part of the theorem is essen
tially the same as that given in [6, Theorem 3, p. 423]. 

The sufficiency of the condition for equality is clear. To prove the necessity, 
let <J> : R + —» R be strictly convex. If the sequence {ai, a2, . . . , an} is not 
monotonie, then there must be at least three non-monotonic consecutive 
components of a, and so at least one of the components of the vector Aa is the 
sum of two or more non-zero components of the vector Aa*. Using the fact that 
Un/=i[^ï, #i+i] = [an*> #i*L it is then not hard to see that 

£ NM\Aat*\) < £ $( |Aa, |) . 

Remark. Theorem 2.6 implies, in particular, that 

£ *(|Ac**|) =g 2 $(|Aa4|) 
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for all increasing convex functions $ : R+ —> R, and so it gives an alternative 
proof for Theorem 2.1 by virtue of Theorem 1.1. 

In [10, p. 455], Ryff obtained a continuous analogue of Theorem 2.4 for 
almost everywhere differentiate functions defined on the unit interval [0, 1]. 
We observe that the proof given by him is readily applicable to extending the 
spectral inequality given in Theorem 2.1 to almost everywhere differentiable 
functions and to obtain conditions for strong spectral inequality. His proof 
implies, in particular, the following interesting result. 

THEOREM 2.7. If a function f is differentiable almost everywhere on a finite 
interval [0, a], then there exists a measure preserving transformation a : [0, a] —> 
[0, a] such that 

\8/\ o<r S 1 / ' | m-a.e. 

Proof. In [10], Ryff proved that there exist a measure preserving map a of 
the interval [0, a] into itself and a set D C [0, a] satisfying m(D) = a, 
| / ' ( * ) | < oo, \8/\ oa(t) < oo, /( /) = 8foa(t) for all / Ç D, and a'(/) ^ 1, 
(8/ oa(t))a'(t) = / ' ( / ) whenever 8/ o a (t) ^ 0 , I C D . 

Thus, on the subset of D where 8/ o a 9e 0, the preceding paragraph implies 

\S/\oa ^ | / ' | 

which is also trivially satisfied on the subset of D where 8/ o a = 0. Since 
m(D) = a, the result follows. 

THEOREM 2.8. If f is almost everywhere differentiable on a finite interval [0, a], 
then 

I *(\6/\)dm ^ I *(\f\)dtn 
Jo J o 

for all non-decreasing (not necessarily convex) functions <i> : R+ —> R and, in 
particular, 

*(|8/l) «H\fV 
for all non-decreasing functions 3> : R+ —•» R such that $ + ( | / ' | ) is integrable. 

If <ï> is strictly increasing such that $>(| / ' |) is integrable, then the strong spectral 
inequality $( |ô/ | ) < $(\f'\) or the equality 

) H\8/\)dm= ) *{\f\)d* 
*J o •* o 

holds if and only if $( |ô/ | ) ~ $ ( | / ' | ) or | 5 / | ~ | / ' | . 
/ / / is absolutely continuous, then \8/\ < | / ' | or \8/\ ~ \f'\ if and only if 

f is monotonie. 

Proof. By (2), (3) and Theorem 2.7, we clearly have <ï>(|ô/l) ~ * ( M ° <0 ^ 
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<ï>(|/'|) and so $( |ô/ | ) < 3>(|/ ' |) whenever $ is an increasing function such 
that S+f l / ' l ) is integrable. 

If 3> : R + —> R is strictly increasing such that $ ( | / ' | ) is integrable, then 
/$ ( |o / | )dm = $H\f'\)dm implies J $ ( | ô / o a\)dm = J s f l / ' | ) d r o and so 
<£(|5/|oo-) = $ ( | / ' | ) m-a.e., which, in turn, implies that \ô/\ o a = \f'\ 
m-a.e. Hence \ô/\ ~ \f'\ since a : [0, a] —> [0, a] is measure preserving. 

Clearly, the condition is sufficient. 
The last assertion follows directly from the preceding paragraph and Duff's 

Theorem [5, Theorem (4.1), p. 1168]. 

Remarks, (i) Theorem 2.8 extends Duff-Ryff Theorem [10, p. 455]. 
(ii) If / is only required to be differentiate almost everywhere on [0, a], 

then the equality 

I \S/\dm = I \f\dm 
•̂  o J o 

does not necessarily imply t h a t / is monotonie. Take, for example, 

/ = X[0,a/3) + 3X[a/3,2a/3) + 2x[2a/3,a) 

where x denotes characteristic function. Then , clearly, / ' = 0 = 5 / m-a.e., 
b u t / is not monotonie. 
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