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Abstract
We consider the large polaron described by the Fröhlich Hamiltonian and study its energy-momentum relation
defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states,
we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling.
The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for
the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with
coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar.
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1. Introduction

1.1. The Model

The large polaron provides an idealized description for the motion of a slow band electron through
a polarizable crystal. The analysis of the polaron is a classic problem in solid-state physics that first
appeared in 1933 when Landau introduced the idea of self-trapping of an electron in a polarizable
environment [30]. Since it provides a simple model for a particle interacting with a nonrelativistic
quantum field, the polaron has been of interest also in field theory and mathematical physics. In
particular, the strong coupling theory of the polaron and Pekar’s adiabatic approximation have been the
source of interesting and challenging mathematical problems.

Following H. Fröhlich [20], the Hamiltonian of the model acts on the Hilbert space

ℋ = 𝐿2 (R3, d𝑥) ⊗ F , (1.1)

with F the bosonic Fock space over 𝐿2 (R3) and is given by

𝐻𝛼 = −Δ 𝑥 + 𝛼−2
N + 𝛼−1𝜙(ℎ𝑥). (1.2)

Here, 𝑥 ∈ R3 is the coordinate of the electron, N denotes the number operator on Fock space and the
field operator 𝜙(ℎ𝑥) = 𝑎†(ℎ𝑥) + 𝑎(ℎ𝑥) with coupling function

ℎ𝑥 (𝑦) = − 1
2𝜋2 |𝑥 − 𝑦 |2

(1.3)

accounts for the interaction between the electron and the quantum field. The creation and annihilation
operators satisfy the usual canonical commutation relations[

𝑎( 𝑓 ), 𝑎†(𝑔)
]
=

〈
𝑓 |𝑔

〉
𝐿2 ,

[
𝑎( 𝑓 ), 𝑎(𝑔)

]
= 0. (1.4)

Since we set ℏ = 1 and the mass of the electron equal to 1/2, the only free parameter is the coupling
constant 𝛼 > 0.

By rescaling all lengths by a factor 1/𝛼, one can show that 𝛼2𝐻𝛼 is unitarily equivalent to the
Hamiltonian

𝐻Polaron
𝛼 = −Δ 𝑥 + N +

√
𝛼𝜙(ℎ𝑥), (1.5)

which is more common in the polaron literature and also explains why 𝛼 → ∞ is called the strong
coupling limit.

The Fröhlich Hamiltonian defines a translation invariant model, that is, it commutes with the total
momentum operator,

[𝐻𝛼,−𝑖∇𝑥 + 𝑃 𝑓 ] = 0, (1.6)

where 𝑃 𝑓 = dΓ(−𝑖∇) denotes the momentum operator of the phonons. This allows the definition of the
energy-momentum relation 𝐸𝛼 (𝑃) as the lowest possible energy of 𝐻𝛼 when restricted to states with
total momentum 𝑃 ∈ R3. To this end, it is convenient to switch to the Lee–Low–Pines representation

𝐻𝛼 (𝑃) = (𝑃 𝑓 − 𝑃)2 + 𝛼−2
N + 𝛼−1𝜙(ℎ0), (1.7)
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where 𝐻𝛼 (𝑃) acts on the Fock space only [32]. The Fröhlich Hamiltonian 𝐻𝛼 is unitarily equivalent
to the fiber decomposition

∫ ⊕
R3 𝐻𝛼 (𝑃)d𝑃, which follows easily from transforming 𝐻𝛼 with 𝑒𝑖𝑃 𝑓 𝑥 and

diagonalizing the obtained operator in the electron coordinate. The energy-momentum relation is then
defined as the ground state energy of the fiber Hamiltonian,

𝐸𝛼 (𝑃) = inf 𝜎(𝐻𝛼 (𝑃)), (1.8)

which by construction satisfies 𝐸𝛼 (𝑅𝑃) = 𝐸𝛼 (𝑃) for all rotations 𝑅 ∈ SO(3). It is known [26] that
𝐸𝛼 (0) ≤ 𝐸𝛼 (𝑃) and hence 𝐸𝛼 (0) = inf 𝜎(𝐻𝛼) (in fact, 𝐸𝛼 (0) < 𝐸𝛼 (𝑃) for all 𝑃 ≠ 0 [29, 52]). Further
properties, such as the domain of analyticity, existence of ground states and the value of the bottom of
the essential spectrum, were analyzed in [44, 21, 58, 45, 23, 10].

The aim of this work is to analyze the quantitative behavior of the energy-momentum relation for
large coupling 𝛼 → ∞. Our main result provides an upper bound for 𝐸𝛼 (𝑃). The upper bound consists
of a momentum independent part coinciding with the optimal upper bound for the ground state energy
of the strongly coupled polaron at rest and a momentum-dependent part. In more detail, the momentum-
independent part is given by the classical Pekar energy and the corresponding quantum fluctuations that
are described by the energy of a system of harmonic oscillators with frequencies determined by the
Hessian of the corresponding classical field functional. This part agrees with the expected asymptotic
form of 𝐸𝛼 (0); see equation (1.25). The momentum-dependent part, on the other hand, describes the
energy of a free particle with mass 𝑀 (𝛼) = 2𝛼4

3

∫
|∇𝜑|2, where 𝜑 denotes the self-consistent polarization

field, which coincides with the classical polaron mass introduced by Landau and Pekar [31]; see equation
(1.24). As will be explained in Section 1.3, our result confirms the heuristic picture of the polaron (the
electron and the accompanying classical field) as a free quasi-particle with largely enhanced mass.
To our best knowledge, the upper bound we present in this work is the first rigorous result about the
connection between the energy-momentum relation 𝐸𝛼 (𝑃) and the classical polaron mass 𝑀 (𝛼).

Starting from the works in the 1930s and 1940s [30, 31, 19], there has been a large number of
publications in the physics literature that studied the ground state energy 𝐸𝛼 (0) and the effective mass,
that is, the inverse curvature of 𝐸𝛼 (𝑃) at 𝑃 = 0. For a comprehensive summary of the earlier results,
we refer to [41]. More recent developments are reviewed in [1].

Mathematically rigorous results for the leading-order asymptotics of 𝐸𝛼 (0), for𝛼 large, were obtained
by Lieb and Yamazaki [40] (with nonmatching upper and lower bounds) and by Donsker and Varadhan
[11] as well as Lieb and Thomas [39]. The effective mass has been studied in [57, 12, 14, 38, 37, 4].
Other works have considered confined polarons or polaron models with more regular interaction [18,
15, 48]. For completeness, let us also mention recent progress in the understanding of the polaron path
measure [47, 3] as well as the increased interest in the analysis of the Schrödinger time evolution of
strongly coupled polarons [25, 34, 35, 42, 13, 16, 17].

1.2. Pekar functionals

The semiclassical theory of the polaron has been introduced by Pekar [51]. It arises naturally in the
context of strong coupling, based on the expectation that the electron and the phonons are adiabatically
decoupled, similarly as the electrons are adiabatically decoupled from the heavy nuclei in the well-
known Born–Oppenheimer theory [6, 5]. With this in mind, one can minimize the Fröhlich Hamiltonian
over product states of the form

Ψ𝑢,𝑣 = 𝑢 ⊗ 𝑒𝑎
† (𝛼𝑣)Ω, (1.9)

where 𝑢 ∈ 𝐻1(R3) is a normalized electron wave function, Ω = (1, 0, 0, . . .) the Fock space vacuum and
𝑒𝑎

† (𝛼𝑣)Ω the coherent state, up to normalization, that is associated with a classical field 𝛼𝑣 ∈ 𝐿2 (R3).
A simple computation leads to the Pekar energy functional

https://doi.org/10.1017/fms.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.45


4 David Mitrouskas et al.

G (𝑢, 𝑣) =

〈
Ψ𝑢,𝑣 |𝐻𝛼Ψ𝑢,𝑣

〉
ℋ〈

Ψ𝑢,𝑣 |Ψ𝑢,𝑣

〉
ℋ

=
〈
𝑢 | (−Δ +𝑉 𝑣 )𝑢

〉
𝐿2 + ||𝑣 ||2

𝐿2 (1.10)

with polarization potential

𝑉 𝑣 (𝑥) = 2 Re
〈
𝑣 |ℎ𝑥

〉
𝐿2 = −Re

∫
𝑣(𝑦)

𝜋2 |𝑥 − 𝑦 |2
d𝑦. (1.11)

By completing the square, one can further remove the field variable and obtain the energy functional
for the electron wave function,

E (𝑢) = inf
𝑣 ∈𝐿2

G (𝑢, 𝑣) =
∫

|∇𝑢(𝑥) |2d𝑥 − 1
4𝜋

∬ |𝑢(𝑥) |2 |𝑢(𝑦) |2
|𝑥 − 𝑦 | d𝑥d𝑦, (1.12)

which is known [36] to admit a unique rotational invariant minimizer 𝜓 > 0 (the minimizing property is
unique only up to translations and multiplication by a constant phase). Alternatively, one can minimize
the Pekar energy functional w.r.t. the electron wave function first. This leads to the classical field
functional

F (𝑣) = inf
||𝑢 ||

𝐿2=1
G (𝑢, 𝑣) = inf spec (−Δ +𝑉 𝑣 ) + ||𝑣 ||2

𝐿2 (1.13)

whose unique rotational invariant minimizer is readily shown to be

𝜑(𝑧) = −
〈
𝜓
		ℎ · (𝑧)𝜓〉𝐿2 =

∫ |𝜓(𝑦) |2

2𝜋2 |𝑧 − 𝑦 |2
d𝑦. (1.14)

The corresponding classical ground state energy is called the Pekar energy

𝑒Pek = E (𝜓) = F (𝜑), 𝑒Pek < 0, (1.15)

and by the variational principle it provides an upper bound for inf 𝜎(𝐻𝛼). The validity of Pekar’s ansatz
was rigorously verified by Donsker and Varadhan [11] who proved that lim𝛼→∞ inf 𝜎(𝐻𝛼) = 𝑒Pek and
subsequently by Lieb and Thomas [39] who added a quantitative bound for the error by showing that

inf 𝜎(𝐻F
𝛼) ≥ 𝑒Pek +𝑂 (𝛼−1/5). (1.16)

Given the potential 𝑉 𝜑 for the field 𝜑, one can define the Schrödinger operator

ℎPek = −Δ +𝑉 𝜑 (𝑥) − 𝜆Pek, 𝜆Pek = 𝑒Pek − ||𝜑||2
𝐿2 (1.17)

with 𝜆Pek = inf 𝜎(−Δ + 𝑉 𝜑 (𝑥)) < 0 and 𝜓 the corresponding unique ground state. It follows from
general arguments for Schrödinger operators that ℎPek has a finite spectral gap above zero, and thus the
reduced resolvent

𝑅 = 𝑄𝜓 (ℎPek)−1𝑄𝜓 with 𝑄𝜓 = 1 − 𝑃𝜓 , 𝑃𝜓 = |𝜓〉〈𝜓 |, (1.18)

defines a bounded operator (𝑃𝜓 denotes the orthogonal projection onto the state 𝜓).
The last object to be introduced in this section is the Hessian 𝐻Pek of the energy functional F at its

minimizer 𝜑, defined by

〈
𝑣
		𝐻Pek𝑣

〉
𝐿2 = lim

𝜀→0

1
𝜀2

(
F (𝜑 + 𝜀𝑣) − F (𝜑)

)
∀𝑣 ∈ 𝐿2

R
(R3). (1.19)

In the following lemma, we collect some important properties of 𝐻Pek.
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Lemma 1.1. The linear operator 𝐻Pek : 𝐿2 (R3) → 𝐿2 (R3) has integral kernel

𝐻Pek (𝑦, 𝑧) = 𝛿(𝑦 − 𝑧) − 4 Re
〈
𝜓
		ℎ · (𝑦)𝑅ℎ · (𝑧)𝜓〉𝐿2 (1.20)

and satisfies the following properties.

(i) 0 ≤ 𝐻Pek ≤ 1
(ii) Ker𝐻Pek = Span{𝜕𝑖𝜑 : 𝑖 = 1, 2, 3}

(iii) 𝐻Pek ≥ 𝜏 > 0 when restricted to (Ker𝐻Pek)⊥
(iv) Tr𝐿2 (1 −

√
𝐻Pek) < ∞.

The proof of the lemma, in particular item (ii), is based on the analysis of the Hessian of the energy
functional E [33]. The details are given in Section 4.

1.3. Motivation and goal of this work

In this work, we are interested in the behavior of the energy-momentum relation 𝐸𝛼 (𝑃) for large values
of the coupling 𝛼. In general, 𝐸𝛼 (𝑃) is expected to interpolate between two distinct regimes (see, for
instance, [24, 22, 60, 58]): The quasi-particle regime and the radiative regime. The former corresponds
to small momenta, and the expectation is that the system behaves effectively like a free particle with
energy

𝐸eff
𝛼 (𝑃) = 𝐸𝛼 (0) +

𝑃2

2𝑀eff (𝛼)
, (1.21)

where the effective mass is determined by the inverse curvature of 𝐸𝛼 (𝑃) at 𝑃 = 0 (which is known to
be well defined),

𝑀eff (𝛼) :=
1
2

lim
𝑃→0

(
𝐸𝛼 (𝑃) − 𝐸𝛼 (0)

𝑃2

)−1
. (1.22)

It is easy to verify that 𝑀eff (𝛼) ≥ 1/2 (the mass of the electron in our units), and one can further show
that the inequality is strict if 𝛼 > 0 so that the emerging quasi-particle is heavier than the bare electron.
The heuristic idea is that the electron drags along a cloud of phonons when it moves through the crystal
and thus appears to be heavier than it would be without the interaction. The radiative regime, on the
other hand, describes a polaron at rest and an unbound/radiative phonon carrying the total momentum
P. It is expected to be valid for large momenta and it is characterized by a flat energy-momentum relation
that equals or approaches the bottom of the essential spectrum [45] (see also [29, Lemma 1.1])

𝜎ess (𝐻𝛼 (𝑃)) = [𝐸𝛼 (0) + 𝛼−2,∞). (1.23)

The two regimes cross at |𝑃 | = 𝑃c (𝛼) :=
√

2𝑀eff (𝛼)/𝛼 which marks a characteristic momentum scale
of the polaron. While the quasi-particle picture is expected to be accurate for |𝑃 | � 𝑃c(𝛼), the radiative
regime should hold for |𝑃 | � 𝑃c (𝛼) (see also Remark 1.3 below). Between the two regimes there is no
concrete prediction for the behavior of 𝐸𝛼 (𝑃). A schematic plot is provided in Figure 1.

One aspect of this work is to show that the quasi-particle picture is mathematically rigorous, insofar
as it provides a parabolic upper bound on 𝐸𝛼 (𝑃) that coincides with the expected form of the quasi-
particle energy in the limit of large coupling. Since the quasi-particle energy (1.21) is determined by the
values of 𝐸𝛼 (0) and 𝑀eff (𝛼), it is instructive to recall two long-standing open conjectures concerning
their behavior for 𝛼 → ∞. As explained in the previous section, the phonon field behaves classically
for large coupling, and thus it is expected that 𝑀eff (𝛼) should asymptotically tend to the expression that
follows from the corresponding semiclassical counterpart of the problem. This semiclassical theory of
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Figure 1. The energy-momentum relation 𝐸𝛼 (𝑃) is expected to have two characteristic regimes: The
parabolic quasi-particle regime for |𝑃 | � 𝑃𝑐 (𝛼) =

√
2𝑀eff (𝛼)/𝛼 and the flat radiative regime for larger

momenta. For the transition between the two there is no precise prediction. The dashed lines denote the
quasi-particle energy (1.21) and the bottom of the essential spectrum (1.23). Their intersection defines
the momentum scale 𝑃𝑐 (𝛼) that is proportional to 𝛼 for large coupling. Note that the y-axis is measured
in units of order 𝛼−2.

the effective mass was introduced by Landau and Pekar in 1948 [31], and, based on this work (see also
[57, 14]), it is conjectured that

lim
𝛼→∞

𝑀eff (𝛼)
𝛼4 = 𝑀LP with 𝑀LP =

2
3
||∇𝜑||2

𝐿2 . (1.24)

Although this problem is many decades old, the best rigorous result available at the time of writing is
that 𝑀eff (𝛼) is divergent [38] at least as fast as 𝛼2/5 [4]. Regarding the ground state energy 𝐸𝛼 (0) the
prediction from the physics literature (see, e.g., [2, 43, 59, 27]) is that

𝐸𝛼 (0) = 𝑒Pek + 1
2𝛼2 Tr𝐿2 (

√
𝐻Pek − 1) +𝑂 (𝛼−2−𝛿) as 𝛼 → ∞ (1.25)

for some 𝛿 > 0 (in fact it is predicted that 𝛿 = 2 [27]). Compared to the semiclassical expansion this
includes a subleading correction of order 𝛼−2, which we call the Bogoliubov energy, and which arises
from quantum fluctuations of the field around its classical value. For a nice heuristic derivation of
this correction, we recommend the study of [43]. An upper bound of the form (1.25) is an immediate
consequence of the results in this paper. We also note that a corresponding lower bound on 𝐸𝛼 (0) was
recently established in [8].

Now inserting equations (1.24) and (1.25) into equation (1.21), and based on the expectation that the
quasi-particle regime is restricted to |𝑃 | �

√
2𝑀eff (𝛼)/𝛼 ∼ 𝛼, it is clear that the Bogoliubov energy

needs to be taken into account in order to see the quasi-particle energy shift given by 𝑃2/(2𝛼4𝑀LP) ≤
𝛼−2.

To put it concisely, we can summarize the heuristics discussed above in the claim that

lim
𝛼→∞

𝛼2
(
𝐸𝛼 (𝛼𝑃) − 𝑒Pek − 1

2𝛼2 Tr𝐿2
(√

𝐻Pek − 1
) )

= min
{

𝑃2

2𝑀LP , 1
}
. (1.26)

Our main result, Theorem 2.1 below, provides an upper bound for 𝐸𝛼 (𝛼𝑃) that is compatible with this
claim. To be more precise, our result implies that the left side of equation (1.26), with the limit replaced
by the lim sup, is bounded from above by the expression on the right side. This shows in particular that
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the corrections to the quasi-particle energy are always negative, a conclusion that is not entirely obvious
a priori.

During the publication process of this work, a corresponding lower bound on 𝐸𝛼 (𝛼𝑃) was presented
in [9]. When combined with the upper bound presented in this work, the two bounds establish the
validity of equation (1.26).

Furthermore, we would like to mention the recent progress made in the analysis of the large coupling
limit of the effective mass, as reported in [9, 55]. These advancements represent a significant step
forward towards solving the Landau–Pekar conjecture (1.24).

Remark 1.2. An immediate consequence of equation (1.26) is that

1
2

lim
𝑃→0

lim
𝛼→∞

𝛼2
(
𝐸𝛼 (𝛼𝑃) − 𝐸𝛼 (0)

𝑃2

)−1
= 𝑀LP (1.27)

which is to be compared with equation (1.24) where the limits are taken in reversed order. In light of
this, we interpret equation (1.26) as an additional confirmation of the polaron’s quasi-particle nature,
which complements the picture suggested by equation (1.24).

Remark 1.3. An unresolved problem of interest is whether the ground state energy 𝐸𝛼 (𝑃) enters the
essential spectrum for some finite momentum P, which may depend on the dimension and possibly
also on the value of 𝛼. It is known that in two dimensions 𝐸𝛼 (𝑃) remains an isolated eigenvalue for
all P, meaning that the curve approaches inf 𝜎ess(𝐻𝛼 (𝑃)) only in the limit as |𝑃 | goes to infinity [58].
However, in three dimensions the question is unsettled. In Corollary 2.2 below, we prove that for large
𝛼, 𝐸𝛼 (𝑃) remains an isolated eigenvalue for all |𝑃 | �

√
2𝑀LP𝛼. Nonetheless, there is evidence from

results obtained for weak coupling that 𝐸𝛼 (𝑃) agrees with the bottom of the essential spectrum when
|𝑃 | is sufficiently large [10].

2. Main result

We are now ready to state the main result.

Theorem 2.1. Let 𝐸𝛼 (𝑃) = inf 𝜎(𝐻𝛼 (𝑃)) and 𝑀LP = 2
3 ||∇𝜑||

2
𝐿2 with 𝜑 defined in equation (1.14). For

every 𝜀 > 0, there exists a constant 𝐶𝜀 > 0 such that

𝐸𝛼 (𝑃) ≤ 𝑒Pek + Tr𝐿2 (
√
𝐻Pek − 1)

2𝛼2 + min
{

𝑃2

2𝛼4𝑀LP ,
1
𝛼2

}
+ 𝐶𝜀 𝛼

− 5
2+𝜀 (2.1)

for all 𝑃 ∈ R3 and all 𝛼 large enough.

As a consequence of Lemma 1.1, the operator
√
𝐻Pek − 1 is trace-class and nonpositive, implying

that the second term on the right-hand side is finite and lowers the energy. This term corresponds to the
quantum corrections to the ground state energy of the Fröhlich Hamiltonian, as discussed in Section 1.3.
Since 𝐸𝛼 (0) = inf 𝜎(𝐻𝛼), our theorem implies a two-term upper bound for the ground state energy of
the Fröhlich Hamiltonian. A complementary lower bound for 𝐸𝛼 (0) has been recently proved in [8].

The result for |𝑃 |/𝛼 ≥
√

2𝑀LP can be obtained from equations (1.22) and (2.1) for 𝑃 = 0. The relevant
range for the momentum dependent term is |𝑃 |/𝛼 ≤

√
2𝑀LP. For momenta satisfying 𝛼− 1

4+
𝜀
2 � |𝑃 |/𝛼 ≤√

2𝑀LP, the last term in equation (2.1) is subleading for large 𝛼 when compared to the momentum
dependent term. In this region, the upper bound describes a quadratic dispersion relation for a free
quasi-particle with mass 𝛼4𝑀LP. The lower restriction |𝑃 |/𝛼 � 𝛼− 1

4+
𝜀
2 could in principle be improved

by deriving a better error term in equation (2.1).
For a long time, the only rigorous lower bound available for nonzero P was the one derived by Lieb

and Yamazaki [40] in 1958, which states that 𝐸𝛼 (𝑃) ≥ 𝑐1𝑒
Pek + 𝑐2𝑃

2/(2𝛼4𝑀LP) with 𝑐1 ≈ 3.07 and
𝑐2 ≈ 0.11 (where 𝑒Pek is negative). After the completion of our paper, a lower bound that matches our
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upper bound was obtained in [9]. It should be noted that the approach in [9] is different from ours, as it
does not utilize the fiber decomposition of 𝐻𝛼.

Combining a suitable lower bound on the bottom of the essential spectrum (1.23) with Theorem 2.1
yields an extension of known results regarding the existence of a unique ground state of 𝐻𝛼 (𝑃). Fröhlich
[21] showed that a unique ground state exists for |𝑃 | <

√
2, which was later extended by Spohn [58] to a

larger but unspecified domain. More recently, Polzer [52] established the existence of the ground state
for all |𝑃 | <

√
2𝑀eff (𝛼)/𝛼 with 𝑀eff (𝛼) defined by equation (1.22). Our new result demonstrates that

the ground state exists for |𝑃 | <
√

2𝑀LP𝛼.

Corollary 2.2. For every 𝑠 ∈ (0, 1
29 ), there exists a constant 𝛼(𝑠) > 0 such that 𝐸𝛼 (𝑃) is a nondegen-

erate eigenvalue of 𝐻𝛼 (𝑃) for all |𝑃 | < (1 − 2𝛼−𝑠)1/2
√

2𝑀LP𝛼 and 𝛼 ≥ 𝛼(𝑠).

To prove this statement, we combine equations (2.1) and (1.21) and [8, Theorem 1.1] to show that
𝐸𝛼 (𝑃) < inf 𝜎ess (𝐻𝛼 (𝑃)) for the specified values of |𝑃 | and 𝛼. This implies that 𝐸𝛼 (𝑃) is part of the
discrete spectrum, meaning it is an isolated eigenvalue of finite multiplicity. The nondegeneracy of this
eigenvalue can then be established using a Perron–Frobenius type argument, as shown in [44, 29].

In the next two sections, we provide the definition of a suitable trial state and formulate our main
statement as an energy estimate for this trial state. The remainder of the paper is devoted to the proof of
this energy estimate. A sketch of the strategy of the proof is given in Section 3.2.

2.1. Bogoliubov Hamiltonian

In this section, we introduce and discuss a quadratic Hamiltonian defined on the Fock space. For its
definition, we set Π0 and Π1 to be the orthogonal projectors onto Ker𝐻Pek = Span{𝜕𝑖𝜑 : 𝑖 = 1, 2, 3} and
(Ker𝐻Pek)⊥, that is,

Ran(Π0) = Ker𝐻Pek, Ran(Π1) = (Ker𝐻Pek)⊥. (2.2)

Even though we will not make explicit use of it, it is convenient to keep in mind that the decomposition
𝐿2 (R3) = Ran(Π0) ⊕ Ran(Π1) implies the factorization

F = F0 ⊗ F1 with F0 = F (Ran(Π0)) and F1 = F (Ran(Π1)). (2.3)

For technical reasons, which are explained in Section 3.4.3, we introduce the Bogoliubov Hamiltonian
H𝐾 with a momentum cutoff 𝐾 ∈ (0,∞]. Setting N1 = dΓ(Π1) (the number operator on F1) and
recalling equation (1.18) we define

H𝐾 = N1 −
〈
𝜓
		𝜙(ℎ1

𝐾, ·)𝑅𝜙(ℎ
1
𝐾, ·)𝜓

〉
𝐿2 , (2.4)

where the new coupling function

ℎ1
𝐾,𝑥 (𝑦) =

∫
d𝑧Π1 (𝑦, 𝑧)ℎ𝐾,𝑥 (𝑧) with ℎ𝐾,𝑥 (𝑦) = − 1

(2𝜋)3

∫
|𝑘 | ≤𝐾

𝑒𝑖𝑘 (𝑥−𝑦)

|𝑘 | d𝑘 (2.5)

results from the coupling function ℎ𝑥 by removing all momenta larger than K and then projecting to
Ran(Π1). The second term in equation (2.4) defines the quadratic operator given by

〈
𝜓
		𝜙(ℎ1

𝐾, ·)𝑅𝜙(ℎ
1
𝐾, ·)𝜓

〉
𝐿2 =

∬
d𝑦d𝑧

〈
𝜓
		(ℎ1

𝐾, ·) (𝑦)𝑅(ℎ
1
𝐾, ·) (𝑧)𝜓

〉
𝐿2 (𝑎†𝑦 + 𝑎𝑦) (𝑎†𝑧 + 𝑎𝑧). (2.6)

By definition, H𝐾 acts nontrivially only on the tensor component F1. Below we will show that H𝐾
is bounded from below and diagonalizable by a unitary Bogoliubov transformation. For the precise
statement, we need some further preparations.
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For 𝐾 ∈ (0,∞], we introduce 𝐻Pek
𝐾 as the operator on 𝐿2 (R3) defined by

𝐻Pek
𝐾 � Ran(Π1) = Π1 − 4𝑇𝐾 (2.7a)

𝐻Pek
𝐾 � Ran(Π0) = 0, (2.7b)

where 𝑇𝐾 is defined by the integral kernel

𝑇𝐾 (𝑦, 𝑧) = Re
〈
𝜓
		ℎ1
𝐾, · (𝑦)𝑅ℎ

1
𝐾, · (𝑧)𝜓

〉
𝐿2 . (2.8)

By definition 𝐻Pek
∞ = 𝐻Pek; see equation (1.20). Moreover, we set Θ𝐾 = (𝐻Pek

𝐾 )1/4 and

𝐴𝐾 � Ran(Π1) =
Θ−1
𝐾 + Θ𝐾

2
𝐵𝐾 � Ran(Π1) =

Θ−1
𝐾 − Θ𝐾

2
(2.9a)

𝐴𝐾 � Ran(Π0) = Π0 𝐵𝐾 � Ran(Π0) = 0. (2.9b)

The next lemma, whose proof can be found in Section 4, implies some useful properties of these
operators, among others, that there are constants 𝐶, 𝐾0 > 0 such that

sup
𝐾 ≥𝐾0

(
||𝐴𝐾 ||op + ||𝐵𝐾 ||HS

)
≤ 𝐶. (2.10)

Lemma 2.3. For 𝐾0 large enough, there exist constants 𝛽 ∈ (0, 1) and 𝐶 > 0 such that for all
𝐾 ∈ (𝐾0,∞]

(i) 0 ≤ 𝐻Pek
𝐾 ≤ 1 and (𝐻Pek

𝐾 − 𝛽) � Ran(Π1) ≥ 0
(ii) (𝐵𝐾 )2 ≤ 𝐶 (1 − 𝐻Pek

𝐾 )
(iii) Tr𝐿2 (1 − 𝐻Pek

𝐾 ) ≤ 𝐶.

Moreover, for all 𝐾 ∈ (𝐾0,∞)
(iv) Tr𝐿2 ((−𝑖∇)(1 − 𝐻Pek

𝐾 ) (−𝑖∇)) ≤ 𝐶𝐾 .

Remark 2.4. Since 𝐻Pek
𝐾 has a real-valued kernel it satisfies 𝐻Pek

𝐾 𝑓 = Re(𝐻Pek
𝐾 𝑓 ) + 𝑖 Im(𝐻Pek

𝐾 𝑓 ) for all
𝑓 ∈ 𝐿2 (R3), and the same holds for Π0 and Π1. By the spectral calculus for self-adjoint operators, this
property extends to Θ𝐾 and Θ−1

𝐾 .

To make the relation between H𝐾 and 𝐻Pek
𝐾 precise, we introduce the transformation

U
.
𝐾 𝑎( 𝑓 )U†

𝐾 = 𝑎(𝐴𝐾 𝑓 ) + 𝑎†(𝐵𝐾 𝑓 ) for all 𝑓 ∈ 𝐿2 (R3). (2.11)

That this transformation defines a unitary operator U𝐾 for all 𝐾 ∈ (𝐾0,∞] is a consequence of equation
(2.10) and 𝐴2

𝐾 = 1 + 𝐵2
𝐾 by the well-known Shale–Stinespring condition (see [54, 56, 53]). Also, note

that U𝐾 does not mix the two factors in F = F0 ⊗ F1.

Lemma 2.5. For 𝐾 ∈ (𝐾0,∞] with 𝐾0 large enough and U𝐾 , the unitary operator defined by equation
(2.11), we have

U
.
𝐾H

.
𝐾U

†
𝐾 = dΓ(

√
𝐻Pek
𝐾 ) + 1

2
Tr𝐿2 (

√
𝐻Pek
𝐾 − Π1) (2.12)

with 𝐻Pek
𝐾 defined by equations (2.7a) and (2.7b).

The proof is obtained by an explicit computation and postponed to Section 4. From this lemma, we
can infer that the ground state energy of H𝐾 is given by

inf 𝜎(H𝐾 ) =
1
2

Tr𝐿2
(√

𝐻Pek
𝐾 − Π1

)
=

1
2

Tr𝐿2
(√

𝐻Pek
𝐾 − 1

)
+ 3

2
, (2.13)
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where we also used Π1 = 1−Π0 and Tr𝐿2 (Π0) = 3. Moreover, since 𝐻Pek
𝐾 ≤ Π1 we have inf 𝜎(H𝐾 ) < 0

and from item (iv) of Lemma 2.3 we find that inf 𝜎(H𝐾 ) > −∞ uniformly in 𝐾 → ∞.
For the ground state of H.𝐾 , we shall use the notation

Υ𝐾 = U†
𝐾Ω, (2.14)

where it is important to keep in mind that the state Υ𝐾 has excitations only in F1 (i.e., no zero-mode
excitations) since U†

𝐾 acts as the identity on F0; see equation (2.9b).
From now on, we shall always assume 𝐾 ≥ 𝐾0 large enough such that Lemmas 2.3 and 2.5 are

applicable.

2.2. Trial state and energy estimate

As starting point for the definition of our trial state, consider the Fock space wave function obtained
from the fiber decomposition of the classical Pekar product state Ψ𝜓,𝜑 , that is,

ΨPek
𝛼 (𝑃) =

∫
d𝑥 𝑒𝑖 (𝑃 𝑓 −𝑃)𝑥𝜓(𝑥)𝑒𝑎† (𝛼𝜑)Ω. (2.15)

Testing the energy of 𝐻𝛼 (𝑃) with ΨPek
𝛼 (𝑃), one would in fact obtain that 𝐸𝛼 (𝑃) is bounded from above

by

𝑒Pek − 3
2𝛼2 + 𝑃2

𝛼4𝑀LP + 𝑜(𝛼−2). (2.16)

For 𝐸𝛼 (0), this provides already a better bound compared to the semiclassical approximation for
inf 𝜎(𝐻𝛼). The improvement comes from taking into account the translational symmetry and can be
interpreted as the missing zero-point energy of three quantum oscillators (that turned into translational
degrees of freedom). As a side remark, we find it somewhat surprising that fiber decompositions of this
form have been employed very rarely in the polaron literature, exceptions being [28] and [49]. We think
they could be of interest also for other translation-invariant polaron type models.

To obtain the desired bound for 𝐸𝛼 (𝑃), we need to add several modifications to the integrand in
equation (2.15). On the one hand, we have to replace the classical field 𝜑 by a suitably shifted 𝜑𝑃 in
order to get the correct momentum dependent term (note that equation (2.16) is missing a factor 1

2 in the
quadratic term). The missing part of the rest energy (compare with equation (2.13)), on the other hand,
is caused by two types of correlations that need to be added to the Pekar product state. First, we include
correlations between the electron and the phonons. This is done in the spirit of first-order adiabatic
perturbation theory. Second, we rotate the vacuum by the unitary transformation (2.11) that diagonalizes
the Bogoliubov Hamiltonian (2.4). As discussed, the latter describes the quantum fluctuations of the
phonons around the classical field. For technical reasons, briefly explained in Section 3.2, we also need
to introduce suitable momentum and space cutoffs in the trial state.

Explicitly, we consider the family of Fock space wave functions Ψ𝐾,𝛼 (𝑃) ∈ F , depending on the
coupling 𝛼, the total momentum 𝑃 ∈ R3 and the cutoff 𝐾 ∈ (𝐾0,∞), given by

Ψ𝐾,𝛼 (𝑃) =
∫

d𝑥 𝑒𝑖 (𝑃 𝑓 −𝑃)𝑥 𝑒𝑎
† (𝛼𝜑𝑃)−𝑎 (𝛼𝜑𝑃) (𝐺0

𝐾,𝑥 − 𝛼−1𝐺1
𝐾,𝑥

)
, (2.17)

where

𝜑𝑃 = 𝜑 + 𝑖𝜉𝑃 with 𝜉𝑃 =
1

𝛼2𝑀LP (𝑃∇)𝜑, 𝑀LP =
2
3
||∇𝜑||2

𝐿2 , (2.18)
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and (recall equations (1.18) and (2.5))

𝐺0
𝐾,𝑥 = 𝜓(𝑥)Υ𝐾 , 𝐺1

𝐾,𝑥 = 𝑢𝛼 (𝑥) (𝑅𝜙(ℎ1
𝐾, ·)𝜓) (𝑥)Υ𝐾 and Υ𝐾 = U†

𝐾Ω. (2.19)

Here, 𝑢𝛼 : R3 → [0, 1] is a radial function, satisfying

𝑢𝛼 (𝑥) =

{
1 ∀ |𝑥 | ≤ 𝛼

0 ∀ |𝑥 | ≥ 2𝛼
and ||∇𝑢𝛼 ||𝐿∞ + ||Δ𝑢𝛼 ||𝐿∞ ≤ 𝐶𝛼−1 (2.20)

for some 𝐶 > 0. For completeness, we recall that 𝜓 > 0 and 𝜑 are the unique rotational invariant
minimizers of the Pekar functionals (1.12) and (1.13).

Remark 2.6. Writing 𝐺𝑖
𝐾 ,𝑥 , we think of these states as elements in 𝐿2 (R3,F) and of

(𝑅𝜙(ℎ1
𝐾, ·)𝜓) (𝑥) =

∬
d𝑧d𝑦 𝑅(𝑥, 𝑦)ℎ1

𝐾,𝑦 (𝑧)𝜓(𝑦)
(
𝑎†𝑧 + 𝑎𝑧

)
(2.21)

as an x-dependent Fock space operator. Via the isomorphism 𝐿2 (R3,F) � ℋ, we can view 𝐺𝑖
𝐾 ,𝑥 also

as a wave function in ℋ. In this case, we shall write

𝐺0
𝐾 = 𝜓 ⊗ Υ𝐾 , 𝐺1

𝐾 = 𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝜓 ⊗ Υ𝐾 . (2.22)

Remark 2.7. Let us note that in equation (2.17), we anticipated the fact that the integrand is in 𝐿1 (R3,F)
and thus Ψ𝐾,𝛼 (·) ∈ 𝐶𝑏 (R3,F). For 𝐺0

𝐾 , the integrability follows directly from the exponential decay
of 𝜓 (as shown in Lemma 3.7), while for 𝐺1

𝐾 it can be seen from∫
d𝑥 |𝑢𝛼 (𝑥) | ‖(𝑅𝜙(ℎ1

𝐾, ·)𝜓) (𝑥)Υ𝐾 ‖F ≤ ‖𝑢𝛼‖𝐿2 ‖𝑅𝜙(ℎ1
𝐾, ·)𝜓 ⊗ Υ𝐾 ‖F < ∞, (2.23)

where we used Cauchy–Schwarz and Lemmas 3.8, 3.9 and 3.13. A more precise estimate for the norm
of Ψ𝐾,𝛼 (𝑃) for large 𝛼 will be given in Proposition 3.17.

For the introduced trial states, we prove the following energy estimate, where H∞ denotes the
Bogoliubov Hamiltonian (2.4) for 𝐾 = ∞.

Proposition 2.8. Let Ψ𝐾,𝛼 (𝑃) ∈ F as in equation (2.17), choose 𝑐, 𝑐 > 0 and set 𝑟 (𝐾, 𝛼) = 𝐾−1/2𝛼−2+√
𝐾𝛼−3. For every 𝜀 > 0, there exists a constant 𝐶𝜀 > 0 (we omit the dependence on c and 𝑐) such that〈

Ψ𝐾,𝛼 (𝑃) |𝐻𝛼 (𝑃)Ψ𝐾,𝛼 (𝑃)
〉
F〈

Ψ𝐾,𝛼 (𝑃) |Ψ𝐾,𝛼 (𝑃)
〉
F

≤ 𝑒Pek +
inf 𝜎(H∞) − 3

2
𝛼2 + 𝑃2

2𝛼4𝑀LP + 𝐶𝜀𝛼
𝜀𝑟 (𝐾, 𝛼) (2.24)

for all |𝑃 |/𝛼 ≤ 𝑐, 𝐾/𝛼 ≤ 𝑐 and 𝛼 large enough.

The next section, which constitutes the bulk of the paper, is devoted to proving this proposition.
Before embarking on the proof, let us now deduce its main consequence and conclude the proof of
Theorem 2.1.

Proof of Theorem 2.1. With equation (2.13) and 𝐻Pek
∞ = 𝐻Pek we can rewrite the term of order 𝛼−2 as

inf 𝜎(H∞) −
3
2

=
1
2

Tr𝐿2
(√

𝐻Pek − 1
)
. (2.25)

Choosing K proportional to 𝛼 optimizes the asymptotics of the error in equation (2.24) and thus
proves equation (2.1) for |𝑃 | ≤

√
2𝑀LP𝛼 by the variational principle. For larger |𝑃 |, we use 𝐸𝛼 (𝑃) ≤

𝐸𝛼 (0) + 𝛼−2 as a consequence of equation (1.24) and apply equation (2.1) for 𝑃 = 0. �
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3. Proof of Proposition 2.8

We recall the definition of the field operators

𝜙( 𝑓 ) = 𝑎†( 𝑓 ) + 𝑎( 𝑓 ), 𝜋( 𝑓 ) = 𝜙(𝑖 𝑓 ) (3.1)

and the Weyl operator

𝑊 ( 𝑓 ) = 𝑒−𝑖 𝜋 ( 𝑓 ) = 𝑒𝑎
† ( 𝑓 )−𝑎 ( 𝑓 ) = 𝑒𝑎

† ( 𝑓 )𝑒−𝑎 ( 𝑓 )𝑒
− 1

2 || 𝑓 ||
2
𝐿2 . (3.2)

The Weyl operator is unitary and satisfies

𝑊†( 𝑓 ) = 𝑊 (− 𝑓 ), 𝑊 ( 𝑓 )𝑊 (𝑔) = 𝑊 (𝑔)𝑊 ( 𝑓 )𝑒2𝑖 Im〈𝑔 | 𝑓 〉
𝐿2 = 𝑊 ( 𝑓 + 𝑔)𝑒𝑖 Im〈𝑔 | 𝑓 〉

𝐿2 . (3.3)

3.1. The total energy

The proof of Proposition 2.8 starts with a convenient formula for the energy evaluated in the trial state.
For the precise statement, we introduce the y-dependent function in 𝐿2 (R3),

𝑤𝑃,𝑦 = (1 − 𝑒−𝑦∇)𝜑𝑃 , (3.4)

and the y-dependent Fock space operator

𝐴𝑃,𝑦 = 𝑖𝑃 𝑓 𝑦 + 𝑖𝑔𝑃 (𝑦), 𝑔𝑃 (𝑦) = − 2
𝑀LP

∫ 1

0
d𝑠 〈𝜑|𝑒−𝑠𝑦∇(𝑦∇)3(𝑃∇)𝜑〉𝐿2 . (3.5)

Since 𝑔𝑃 (𝑦) is real-valued, we have (𝐴𝑃,𝑦)† = −𝐴𝑃,𝑦 .
We further consider the shift operator 𝑇𝑦 = 𝑒𝑦∇ on 𝐿2 (R3), that is, (𝑇𝑦 𝑓 ) (𝑥) = 𝑓 (𝑥 + 𝑦) for every

𝑓 ∈ 𝐿2 (R3), and the Hamiltonian acting on ℋ

𝐻𝛼,𝑃 = ℎPek + 𝛼−2
N + 𝛼−1𝜙(ℎ𝑥 + 𝜑𝑃), (3.6)

where we recall that ℎPek = −Δ +𝑉 𝜑 − 𝜆Pek.

Lemma 3.1. For Ψ𝐾,𝛼 (𝑃) defined in equation (2.17), we have

〈
Ψ𝐾,𝛼 (𝑃) |𝐻𝛼 (𝑃)Ψ𝐾,𝛼 (𝑃)

〉
F

=
(
𝑒Pek + 𝑃2

2𝛼4𝑀LP

)
N + E + G +K, (3.7)

where N = ||Ψ𝐾,𝛼 (𝑃) ||2F and

E =
∫

d𝑦
〈
𝐺0
𝐾 |𝐻𝛼,𝑃𝑇𝑦𝑒

𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺0
𝐾

〉
ℋ

(3.8a)

G = − 2
𝛼

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝐻𝛼,𝑃𝑇𝑦𝑒

𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ

(3.8b)

K =
1
𝛼2

∫
d𝑦

〈
𝐺1
𝐾 |𝐻𝛼,𝑃𝑇𝑦𝑒

𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ
. (3.8c)

For the proof, we recall that the Weyl operator shifts the creation and annihilation operators by
complex numbers,

𝑊 (𝑔)†𝑎†( 𝑓 )𝑊 (𝑔) = 𝑎†( 𝑓 ) + 〈𝑔 | 𝑓 〉𝐿2 , 𝑊 (𝑔)†𝑎( 𝑓 )𝑊 (𝑔) = 𝑎( 𝑓 ) + 〈𝑔 | 𝑓 〉𝐿2 , (3.9)
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and, as a simple consequence,

𝑊 (𝑔)†𝜙( 𝑓 )𝑊 (𝑔) = 𝜙( 𝑓 ) + 2 Re
〈
𝑓 |𝑔

〉
𝐿2 , (3.10a)

𝑊 (𝑔)†N𝑊 (𝑔) = N + 𝜙(𝑔) + ||𝑔 ||2
𝐿2 , (3.10b)

𝑊 (𝑔)†𝑃 𝑓 𝑊 (𝑔) = 𝑃 𝑓 − 𝑎†(𝑖∇𝑔) − 𝑎(𝑖∇𝑔) −
〈
𝑔 |𝑖∇𝑔

〉
𝐿2 . (3.10c)

Moreover, we need the following identity.

Lemma 3.2. Let 𝜑𝑃 = 𝜑 + 𝑖𝜉𝑃 with 𝜉𝑃 defined by (2.18). Then

𝑊†(𝛼𝜑𝑃)𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑊 (𝛼𝜑𝑃) = 𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦). (3.11)

Proof of Lemma 3.2. We first observe that

𝑒−𝑖𝑃 𝑓 𝑦𝑎†( 𝑓 )𝑒𝑖𝑃 𝑓 𝑦 = 𝑎†(𝑒−𝑦∇ 𝑓 ) (3.12)

which follows from 𝑑
𝑑𝑠 𝑒

−𝑖𝑠𝑃 𝑓 𝑦𝑎†(𝑒 (𝑠−1)𝑦∇ 𝑓 )𝑒𝑖𝑠𝑃 𝑓 𝑦 = 0. In combination with equation (3.3), this leads
to

𝑊†(𝛼𝜑𝑃)𝑒𝑖𝑃 𝑓 𝑦𝑊 (𝛼𝜑𝑃) = 𝑒𝑖𝑃 𝑓 𝑦𝑊 (𝛼(1 − 𝑒−𝑦∇)𝜑𝑃) exp
(
𝑖𝛼2 Im〈𝜑𝑃 |𝑒−𝑦∇𝜑𝑃〉𝐿2

)
. (3.13)

Recalling 𝜑𝑃 = 𝜑 + 𝑖 1
𝛼2𝑀LP (𝑃∇)𝜑, we compute

𝛼2 Im〈𝜑𝑃 |𝑒−𝑦∇𝜑𝑃〉𝐿2 =
2

𝑀LP 〈𝜑|𝑒
−𝑦∇(𝑃∇)𝜑〉𝐿2

= − 2
𝑀LP 〈𝜑| (𝑦∇)(𝑃∇)𝜑〉𝐿2 −

2
𝑀LP

∫ 1

0
d𝑠 〈𝜑|𝑒−𝑠𝑦∇(𝑦∇)3 (𝑃∇)𝜑〉𝐿2 , (3.14)

where we inserted 𝑒−𝑦∇ = 1 − (𝑦∇) + 1
2 (𝑦∇)

2 −
∫ 1

0 d𝑠 𝑒−𝑠𝑦∇(𝑦∇)3 and used that, due to rotational
invariance of 𝜑, 〈𝜑| (𝑃∇)𝜑〉𝐿2 = 0 = 〈𝜑| (𝑦∇)2 (𝑃∇)𝜑〉𝐿2 . Also, because of rotational invariance,

〈𝜑| (𝑦∇)(𝑃∇)𝜑〉𝐿2 = − (𝑃𝑦)
3

||∇𝜑||2
𝐿2 = − (𝑃𝑦)

2
𝑀LP, (3.15)

and thus, 𝛼2 Im〈𝜑𝑃 |𝑒−𝑦∇𝜑𝑃〉𝐿2 = 𝑃𝑦 + 𝑔𝑃 (𝑦). �

Proof of Lemma 3.1. Throughout this proof, let Ξ𝑖 = 𝑊 (𝛼𝜑𝑃)𝐺𝑖
𝐾 ∈ 𝐿2 (R3) ⊗ F , 𝑖 = 0, 1, with 𝐺𝑖

𝐾

defined in equation (2.19) and set Ψ𝑖 =
∫

d𝑥 𝑒𝑖 (𝑃 𝑓 −𝑃)𝑥Ξ𝑖 (𝑥). First, note that Ψ𝑖 ∈ 𝐷 (𝐻𝛼 (𝑃)1/2) for
𝑖, 𝑗 ∈ {0, 1} which follows from 𝐷 (𝐻𝛼 (𝑃)1/2) = 𝐷 (|𝑃 𝑓 |+N1/2) [40] together with |𝑃 𝑓 |Ξ𝑖 ∈ 𝐿1 (R3,F)
and N1/2Ξ𝑖 ∈ 𝐿1 (R3,F). The integrability of these states is verified using Lemmas 3.16 and 3.14.

Below, we shall employ the identities1〈
Ψ𝑖 |Ψ 𝑗

〉
F
=
∫

d𝑦
〈
Ξ𝑖 |𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ 𝑗

〉
ℋ

(3.16a)

〈
Ψ𝑖 |𝐻𝛼 (𝑃)Ψ 𝑗

〉
F
=
∫

d𝑦
〈
Ξ𝑖 |𝐻𝛼𝑒

𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ 𝑗

〉
ℋ
, (3.16b)

1Strictly speaking, Ψ𝑖 does not belong to the operator domain of 𝐻𝛼 (𝑃) (and similarly for Ξ𝑖 and 𝐻𝛼). Nonetheless, the
following steps are justified by the well-known fact that the quadratic form with momentum cutoff (that is, with ℎ𝑥 replaced by
ℎΛ,𝑥 given in equation (2.5)) converges to the quadratic form associated with 𝐻𝛼 (𝑃) [40, 25].
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where 𝐻𝛼 is the Fröhlich Hamiltonian given by equation (1.2). To obtain the first identity, write〈
Ψ𝑖 |Ψ 𝑗

〉
F
=
∫

d𝑥
〈
Ξ𝑖 (𝑥) |

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃) (𝑦−𝑥)Ξ 𝑗 (𝑦)

〉
F
=
〈
Ξ𝑖 |

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ 𝑗

〉
ℋ

and for the second one, use 𝑒−𝑖 (𝑃 𝑓 −𝑃)𝑥𝜙(𝑣0) = 𝜙(𝑣𝑥)𝑒−𝑖 (𝑃 𝑓 −𝑃)𝑥 so that〈
Ψ𝑖 |𝜙(𝑣0)Ψ 𝑗

〉
F
=
∫

d𝑥
〈
Ξ𝑖 (𝑥) |𝜙(𝑣𝑥)

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃) (𝑦−𝑥)Ξ 𝑗 (𝑦)

〉
F

(3.17a)

〈
Ψ𝑖 |NΨ 𝑗

〉
F
=
∫

d𝑥
〈
Ξ𝑖 (𝑥) |N

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃) (𝑦−𝑥)Ξ 𝑗 (𝑦)

〉
F

(3.17b)

〈
Ψ𝑖 | (𝑃 𝑓 − 𝑃)2Ψ 𝑗

〉
F
=
∫

d𝑥
〈
Ξ𝑖 (𝑥) |(𝑃 𝑓 − 𝑃)2

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃) (𝑦−𝑥)Ξ 𝑗 (𝑦)

〉
F

=
∫

d𝑥
〈
Ξ𝑖 (𝑥) |(−Δ 𝑥)

∫
d𝑦 𝑒𝑖 (𝑃 𝑓 −𝑃) (𝑦−𝑥)Ξ 𝑗 (𝑦)

〉
F
. (3.17c)

With equations (3.16a) and (3.16b), the norm and the energy of the trial state are given by

||Ψ𝐾,𝛼 (𝑃) ||2F =
∑

𝑖∈{0,1}
𝛼−2𝑖

∫
d𝑦

〈
Ξ𝑖 |𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ𝑖

〉
ℋ

− 2𝛼−1 Re
∫

d𝑦
〈
Ξ0 |𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ1

〉
ℋ

(3.18a)

〈
Ψ𝐾,𝛼 (𝑃) |𝐻𝛼 (𝑃)Ψ𝐾,𝛼 (𝑃)

〉
F
=

∑
𝑖∈{0,1}

𝛼−2𝑖
∫

d𝑦
〈
Ξ𝑖 |𝐻𝛼𝑒

𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ𝑖

〉
ℋ

− 2𝛼−1 Re
∫

d𝑦
〈
Ξ0 |𝐻𝛼𝑒

𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ1
〉
ℋ
. (3.18b)

Inserting Ξ𝑖 = 𝑊 (𝛼𝜑𝑃)𝐺𝑖
𝐾 and applying Lemma 3.2, we find for 𝑖, 𝑗 ∈ {0, 1}〈

Ξ𝑖 |𝑒𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ 𝑗

〉
ℋ
=
〈
𝐺𝑖
𝐾 |𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑇𝑦𝐺 𝑗

𝐾

〉
ℋ

(3.19a)〈
Ξ𝑖 |𝐻𝛼𝑒

𝑖 (𝑃 𝑓 −𝑃)𝑦𝑇𝑦Ξ 𝑗

〉
ℋ
=
〈
𝐺𝑖
𝐾 |𝑊 (𝛼𝜑𝑃)†𝐻𝛼𝑊 (𝛼𝜑𝑃)𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑇𝑦𝐺 𝑗

𝐾

〉
ℋ
. (3.19b)

Using equations (3.10a) and (3.10b) and 2 Re〈𝜑𝑃 |ℎ𝑥〉𝐿2 = 2 Re〈𝜑|ℎ𝑥〉𝐿2 = 𝑉 𝜑 (𝑥) (see equation
(1.11)) the Weyl-transformed Hamiltonian becomes

𝑊 (𝛼𝜑𝑃)†𝐻𝛼𝑊 (𝛼𝜑𝑃) = −Δ 𝑥 +𝑉 𝜑 (𝑥) + 𝛼−2
N + 𝛼−1𝜙(ℎ𝑥 + 𝜑𝑃) + ||𝜑𝑃 ||2𝐿2

= 𝐻𝛼,𝑃 + 𝑒Pek + ||𝜑𝑃 ||2𝐿2 − ||𝜑||2
𝐿2 (3.20)

with 𝐻𝛼,𝑃 defined by equation (3.6). Note that we added and subtracted 𝑒Pek = 𝜆Pek + ||𝜑||2
𝐿2 and used

equation (3.6). Altogether, this implies〈
Ψ𝐾,𝛼 (𝑃) |𝐻𝛼 (𝑃)Ψ𝐾,𝛼 (𝑃)

〉
F

=
(
𝑒Pek + ||𝜑𝑃 ||2𝐿2 − ||𝜑||2

𝐿2

)
N + E + G +K. (3.21)

The claimed result now follows from

||𝜑𝑃 ||2𝐿2 − ||𝜑||2
𝐿2 =

1
𝛼4 (𝑀LP)2 || (𝑃∇)𝜑||

2
𝐿2 =

𝑃2

2𝛼4𝑀LP , (3.22)

where we used || (𝑃∇)𝜑||2
𝐿2 =

𝑃2

3 ||∇𝜑||2
𝐿2 =

𝑃2

2 𝑀LP because of rotational invariance of 𝜑. �
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3.2. A short guide to the proof

3.2.1. Heuristic picture
Given Lemma 3.1, the remaining task is to show that (E +G +K)/N coincides, up to small errors, with
the energy contribution of order 𝛼−2 in equation (2.24). Although our proof is somewhat technical, the
main idea is a simple one, and we explain the corresponding heuristics here in order to facilitate the
reading. The main point is that the integrals appearing in the terms given in Lemma 3.1 turn out to be, as
𝛼 → ∞ and |𝑃 |/𝛼 ≤ 𝑐, sharply localized around zero at the length scale of order 𝛼−1. In this regime, as
formally 𝑤𝑃,𝑦 (𝑧) ≈ 𝑦∇𝜑(𝑧) for y small, the Weyl operator 𝑊 (𝛼𝑤𝑃,𝑦) effectively acts nontrivially only
on the F0 part of the Fock space (at this point, it is convenient to recall the factorization (2.3)). Moreover,
we shall show that 𝑒𝐴𝑃,𝑦 can be effectively replaced by the identity operator and it suffices to consider
𝑇𝑦 ≈ 1 + 𝑦∇. Since our trial state coincides with the vacuum on F0, we thus expect for |𝑦 | small that

𝑇𝑦𝑒
𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺𝑖

𝐾 ≈ 𝑒−𝜆𝛼
2𝑦2 (1 + 𝑦∇)𝑒𝑎† (𝛼𝑦∇𝜑)𝐺𝑖

𝐾 , 𝑖 = 0, 1 (3.23)

with 𝜆 = 1
6 ||∇𝜑||

2
𝐿2 . (Since 𝑇𝑦 acts on the electron coordinate, it commutes with 𝑒𝐴𝑃,𝑦 and 𝑊 (𝛼𝑤𝑃,𝑦)).

Taking this approximation for granted, and considering only the term with 𝑖 = 𝑗 = 0 in equations (3.18a)
and (3.19a), would lead to

N ≈
∫

d𝑦
〈
𝐺0
𝐾 |𝑇𝑦𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ

=
∫

d𝑦 𝑒−𝜆𝛼
2𝑦2 + Errors. (3.24)

With the above replacement and keeping only the terms of order 𝛼−2 (relative to the factor from the
norm), the energy terms are found to be given by

E =
1
𝛼2

〈
𝜓 ⊗ Υ𝐾 |N1𝜓 ⊗ Υ𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 + Errors (3.25a)

+ 1
𝛼

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 〈
𝜓 ⊗ Υ𝐾 |

(
𝜙(ℎ · + 𝜑) (1 + (𝑦∇)𝑎†(𝛼𝑦∇𝜑))

)
𝜓 ⊗ Υ𝐾

〉
ℋ

(3.25b)

G = − 2
𝛼2 Re

〈
𝜓 ⊗ Υ𝐾 |𝜙(ℎ1

· )𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝜓 ⊗ Υ𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 + Errors (3.25c)

K =
1
𝛼2

〈
𝜓 ⊗ Υ𝐾 |𝜙(ℎ1

· )𝑅𝑢𝛼ℎPek𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝜓 ⊗ Υ𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 + Errors. (3.25d)

From here, the Bogoliubov energy is obtained by setting 𝑢𝛼 = 1 and 𝐾 = ∞ in the leading-order
terms and using 𝑅ℎPek𝑅 = 𝑅, since this would imply (omitting the errors)

(3.25a) + (3.25c) + (3.25d) =
〈
𝜓 ⊗ Υ∞|(N1 − 𝜙(ℎ1

· )𝑅𝜙(ℎ1
∞, ·))𝜓 ⊗ Υ∞

〉
ℋ

1
𝛼2

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

=
inf 𝜎(H∞)

𝛼2

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2
. (3.26)

The remaining − 3
2𝛼2 term stems from the part of the interaction involving the zero modes. In equation

(3.25b), the term not involving 𝑦∇ vanishes due to 〈𝜓 |ℎ ·𝜓〉𝐿2 = −𝜑. Moreover, 〈𝜓 |ℎ ·∇𝜓〉𝐿2 = − 1
2∇𝜑

using ∇ℎ · = −(∇ℎ)· via integration by parts (in the sense of distributions). Thus, since [𝑎†(𝑦∇𝜑),U†
∞] =

0,

(3.25b) =
∫

d𝑦 𝑒−𝜆𝛼
2𝑦2 〈

Ω|𝜙(〈𝜓 |ℎ ·𝑦∇𝜓〉)𝑎†(𝑦∇𝜑)Ω
〉
F

= −1
2

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 ||𝑦∇𝜑||2
𝐿2 = − 3

2𝛼2

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2
. (3.27)
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Equations (3.26) and (3.27) now add up to the desired energy of order 𝛼−2; see equation (2.25). Note
that for estimating the error induced by replacing 𝑒𝐴𝑃,𝑦 by unity we require the momentum cutoff K in
the definition of the trial state; see Lemma 3.16.

The main issue in equation (3.23) is that, while for small enough y one can use the first-order
approximation 𝑊 (𝛼𝑤𝑃,𝑦) ≈ 𝑊 (𝛼𝑦∇𝜑), for y large, on the other hand, the higher-order terms in 𝑤𝑃,𝑦

begin to play an important part, ultimately killing the Gaussian factor. Writing

〈
𝐺𝑖
𝐾 |𝐻𝛼 (𝑃)𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑇𝑦𝐺 𝑗

𝐾

〉
ℋ

(3.28)

= 𝑒
− 𝛼2

2 ||𝑤𝑃,𝑦 ||2
𝐿2
〈
𝐺𝑖
𝐾 |𝐻𝛼 (𝑃)𝑒𝐴𝑃,𝑦 𝑒𝑎

† (𝛼𝑤𝑃,𝑦 )𝑒−𝑎 (𝛼𝑤𝑃,𝑦 )𝑇𝑦𝐺
𝑗
𝐾

〉
ℋ
, 𝑖, 𝑗 = 0, 1,

we notice that, since

||𝑤𝑃,𝑦 ||2𝐿2 = 2
∫

d𝑘 |�̂�𝑃 (𝑘) |2 (1 − cos(𝑘𝑦)) → 2||𝜑𝑃 ||2𝐿2 for |𝑦 | → ∞, (3.29)

the prefactor should lead to a y-independent, exponentially small constant. In order to make use of this
exponential decay in 𝛼, however, we need to ensure that

		〈𝐺𝑖
𝐾 |𝐻𝛼 (𝑃)𝑒𝐴𝑃,𝑦 𝑒𝑎

† (𝛼𝑤𝑃,𝑦 )𝑒−𝑎 (𝛼𝑤𝑃,𝑦 )𝑇𝑦𝐺
𝑗
𝐾

〉
ℋ

		 ≤ 𝐶𝛼𝑛𝑔(𝑦) (3.30)

is polynomially bounded in 𝛼 with some integrable function 𝑔(𝑦), which heuristically can be expected
to be true since the average number of particles in the state 𝐻𝛼 (𝑃)𝐺𝑖

𝐾 is of order one w.r.t. 𝛼. To obtain
the required integrability in y is also the reason for introducing the cutoff function 𝑢𝛼 in the definition
of 𝐺1

𝐾 .

3.2.2. Outline of the proof
Although the replacement (3.23) illustrates the main idea behind extracting the leading order terms, in
our proof we do not directly perform this replacement and estimate the resulting error. Instead, when
taking inner products, we commute the exponential operators 𝑒𝑎

† (𝛼𝑤𝑃) and 𝑒−𝑎 (𝛼𝑤𝑃) in 𝑊 (𝛼𝑤𝑃,𝑦)
to the left resp. to the right until they hit the vacuum state in 𝐺𝑖

𝐾 . This involves the Bogoliubov
transformation, cf. Lemma 3.12 and gives rise to a slight modification of 𝑤𝑃,𝑦 , which we denote by
𝑤𝑃,𝑦 . These manipulations naturally lead to a multiplicative factor exp(− 𝛼2

2 ||𝑤𝑃,𝑦 ||2
𝐿2 ) which, as we

shall see, indeed behaves like the Gaussian function in equation (3.23) for |𝑦 | small and tends to a
constant exponentially small in 𝛼 as |𝑦 | → ∞. In Lemma 3.5, we prove the large 𝛼 asymptotics of
integrals of the type

∫
𝑔(𝑦) exp(− 𝛼2

2 ||𝑤𝑃,𝑦 ||2
𝐿2 )d𝑦 for a suitable class of functions g. The major part of

the proof, apart from extracting the leading order terms, is to establish that the resulting error terms
in the integrands are, in fact, functions in this class. This is, for the most part, achieved by use of
elementary estimates combined with the commutator method by Lieb and Yamazaki [40] in the form
stated in Lemma 3.9. As already mentioned, for certain terms this makes the introduction of the space
cutoff 𝑢𝛼 and the momentum cutoff K necessary, while for others, it is enough to use the well-known
regularity properties of 𝜓, the relevant consequences of which are summarized in Lemma 3.7.

In the next two sections, we state the remaining necessary lemmas. The main proof is then carried
out in Sections 3.5–3.9.

Throughout the remainder of the proof, we will abbreviate constants by the letter C and write 𝐶𝜏

whenever we want to specify that it depends on a parameter 𝜏. As usual, the value of a constant may
change from one line to the next.
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3.3. The Gaussian lemma

We recall that 𝑤𝑃,𝑦 = (1 − 𝑒−𝑦∇)𝜑𝑃 and Θ𝐾 = (𝐻Pek
𝐾 )1/4 and set

𝑤0
𝑃,𝑦 = Π0𝑤𝑃,𝑦 ∈ Ker𝐻Pek (3.31a)

𝑤1
𝑃,𝑦 = Π1𝑤𝑃,𝑦 ∈ (Ker𝐻Pek)⊥ (3.31b)

𝑤1
𝑃,𝑦 = Θ𝐾 Re(𝑤1

𝑃,𝑦) + 𝑖Θ−1
𝐾 Im(𝑤1

𝑃,𝑦) (3.31c)

𝑤𝑃,𝑦 = 𝑤0
𝑃,𝑦 + 𝑤1

𝑃,𝑦 . (3.31d)

Remark 3.3. Note that (𝑦, 𝑧) ↦→ Re(𝑤𝑃,𝑦) (𝑧) is even as a function on R6, while Im(𝑤𝑃,𝑦) (𝑧) is odd
on the same space. Since Π0 and Θ𝐾 both commute with the reflection operator (𝜋 𝑓 ) (𝑥) = 𝑓 (−𝑥), they
preserve the parity properties just mentioned. That Π0 has the desired properties follows directly from its
explicit form. To see this for Θ𝐾 , it is enough to check this for 𝐻Pek

𝐾 , which can be easily done using the
fact that the resolvent R commutes with the reflection operator, which, on the other hand, follows from
the invariance of ℎPek and 𝑃𝜓 under parity, cf. the definition of R (1.18). Thus, (𝑦, 𝑧) ↦→ Re(𝑤𝑖

𝑃,𝑦) (𝑧)
is even as a function on R6 for 𝑖 = 0, 1 while the corresponding imaginary parts are odd on the same
space. These facts will be of relevance below where they lead to the vanishing of several integrals.

The following lemma is proven in Section 4.

Lemma 3.4. Let 𝜆 = 1
6 ||∇𝜑||

2
𝐿2 . For every 𝑐 > 0, there exists a constant 𝐶 > 0 such that

||𝑤1
𝑃,𝑦 ||

2
𝐿2 + ||𝑤1

𝑃,𝑦 ||
2
𝐿2 ≤ 𝐶

(
𝛼−2𝑦2 + 𝑦4) (3.32a)		||𝑤0

𝑃,𝑦 ||
2
𝐿2 − 2𝜆𝑦2		 ≤ 𝐶

(
𝛼−2𝑦2 + 𝑦4 + 𝑦6) (3.32b)		||𝑤𝑃,𝑦 ||2𝐿2 − 2𝜆𝑦2		 ≤ 𝐶
(
𝛼−2𝑦2 + 𝑦4 + 𝑦6) (3.32c)

for all 𝑦 ∈ R3, |𝑃 |/𝛼 ≤ 𝑐 and 𝛼 > 0.

For 0 ≤ 𝛿 < 1 and 𝜂 > 0, we introduce the weight function

𝑛𝛿,𝜂 (𝑦) = exp
(
−

𝜂𝛼2(1−𝛿) ||𝑤𝑃,𝑦 ||2
𝐿2

2

)
, (3.33)

where, for ease of notation, the dependence on 𝛼, P and K is omitted. Using the arguments laid down
in Remark 3.3, it is easy to see that 𝑛𝛿,𝜂 (𝑦) is even as a function of y. Moreover, in the limit of large
𝛼 the dominant part of the weight function when integrated against suitably decaying functions comes
from the term in the exponent that is quadratic in y, cf. equation (3.32c). This is a crucial ingredient in
our proofs and the content of the next lemma.

Lemma 3.5. Let 𝜂0 > 0, 𝑐 > 0, 𝜆 = 1
6 ||∇𝜑||

2
𝐿2 and 𝑛𝛿,𝜂 defined in equation (3.33). For every 𝑛 ∈ N0,

there exist constants 𝑑, 𝐶𝑛 > 0 such that∫
|𝑦 |𝑛𝑔(𝑦)

			𝑛𝛿,𝜂 (𝑦) − 𝑒−𝜂𝜆𝛼
2(1−𝛿) 𝑦2

			d𝑦 ≤ 𝐶𝑛
||𝑔 ||𝐿∞

𝛼 (4+𝑛) (1−𝛿)+𝛿 + 𝑒−𝑑𝛼
−2𝛿+1 || | · |𝑛𝑔 ||𝐿1 (3.34)

for all nonnegative functions 𝑔 ∈ 𝐿∞(R3) ∩ 𝐿1 (R3), 𝜂 ≥ 𝜂0, 𝛿 ∈ [0, 1), |𝑃 |/𝛼 ≤ 𝑐 and all 𝛼 large
enough.
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At first reading, one should think of 𝑛 = 0, 𝛿 = 0, 𝜂 = 1 and g a suitable 𝛼-independent nonnegative
function. In this case, the integral involving the Gaussian is of order 𝛼−3 whereas the term on the right-
hand side is of order 𝛼−4 and thus contributing a subleading error. The proof of the lemma is given in
Section 4. As a direct consequence that will be useful to estimate error terms, we find

Corollary 3.6. Given the same assumptions as in Lemma 3.5, for every 𝑛 ∈ N0 there exist constants
𝑑, 𝐶𝑛 > 0 such that ∫

|𝑦 |𝑛𝑔(𝑦)𝑛𝛿,𝜂 (𝑦)d𝑦 ≤ 𝐶𝑛
||𝑔 ||𝐿∞

𝛼 (3+𝑛) (1−𝛿) + 𝑒−𝑑𝛼
−2𝛿+1 || | · |𝑛𝑔 ||𝐿1 (3.35)

for all nonnegative functions 𝑔 ∈ 𝐿∞(R3) ∩ 𝐿1 (R3), 𝜂 ≥ 𝜂0, 𝛿 ∈ [0, 1), |𝑃 |/𝛼 ≤ 𝑐 and all 𝐾, 𝛼 large
enough.

Proof of Corollary 3.6. Since∫
d𝑦 |𝑦 |𝑛𝑒−𝜂𝜆𝛼2(1−𝛿) 𝑦2

= (𝜂𝜆𝛼2(1−𝛿) )−
3+𝑛

2

∫
d𝑦 |𝑦 |𝑛𝑒−𝑦2

= 𝐶𝑛𝛼
−(3+𝑛) (1−𝛿) , (3.36)

the statement follows immediately from Lemma 3.5. �

3.4. Further preliminaries

3.4.1. Estimates involving the Pekar minimizers
Lemma 3.7. Let𝜓 > 0 be the (normalized) rotational invariant unique minimizer of the Pekar functional
(1.12), and let

𝐻 (𝑥) :=
〈
𝜓 |𝑇𝑥𝜓

〉
𝐿2 = (𝜓 ∗ 𝜓) (𝑥). (3.37)

We have that 𝜓, |∇𝜓 | and H are 𝐿 𝑝 (R3, (1 + |𝑥 |𝑛)d𝑥) functions for all 1 ≤ 𝑝 ≤ ∞ and all 𝑛 ≥ 0.
Moreover, there exists a constant 𝐶 > 0 such that for all x we have

|𝐻 (𝑥) − 1| ≤ 𝐶𝑥2. (3.38)

Proof. As follows from [36], 𝜓(𝑥) is monotone decreasing in |𝑥 |; moreover, it is smooth and bounded
and vanishes exponentially at infinity, that is, there exists a constant 𝐶 > 0 such that 𝜓(𝑥) ≤ 𝐶𝑒−|𝑥 |/𝐶

for all |𝑥 | large enough (for the precise asymptotics see [46]). This clearly implies the statement for 𝜓.
It further implies that all the derivatives of 𝜓 are bounded. Hence, in order to show the desired result
for |∇𝜓 |, it suffices to show that

∫
d𝑥 |𝑥 |𝑛 |∇𝜓(𝑥) | is finite for all 𝑛 ≥ 0. Since 𝜓 is radial, that is, there

is a function 𝜓rad : [0,∞) → (0,∞) such that 𝜓(𝑥) = 𝜓rad (|𝑥 |), and monotone decreasing, we have∫
d𝑥 |𝑥 |𝑛 |∇𝜓(𝑥) | = −4𝜋

∫ ∞

0

d𝜓rad(𝑟)
d𝑟

𝑟𝑛+2d𝑟 = (𝑛 + 2)
∫ |𝜓(𝑥) |

|𝑥 | |𝑥 |𝑛d𝑥

≤ 4𝜋
(
𝑅𝑛+2

0 ||𝜓 ||𝐿∞ + 𝑛 + 2
𝑅0

|| | · |𝑛𝜓 ||𝐿1

)
(3.39)

for all 𝑅0 > 0. Clearly, H is bounded, and hence, by |𝑥 + 𝑦 |𝑛 ≤ 2𝑛−1 (|𝑥 |𝑛 + |𝑦 |𝑛), we can easily bound∫
|𝑥 |𝑛𝐻 (𝑥)d𝑥 ≤ 2𝑛−2 ||𝜓 ||𝐿1 || | · |𝑛𝜓 ||𝐿1 (3.40)
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from which the statement follows also for H. To show (3.38), use the Fourier representation

𝐻 (𝑥) =
∫

|𝜓(𝑘) |2 cos(𝑘𝑥)d𝑘, (3.41)

together with 𝐻 (𝑥) ≤ 1, cos(2𝜋𝑘𝑥) ≥ 1 − (𝑘𝑥)2

2 , ‖𝜓‖𝐿2 = 1 and ∇𝜓 ∈ 𝐿2. �

The next lemma contains suitable bounds for the potential 𝑉 𝜑 and the resolvent R introduced in
equations (1.11), (1.14) and (1.18).

Lemma 3.8. There is a constant 𝐶 > 0 such that

(𝑉 𝜑)2 ≤ 𝐶 (1 − Δ), ±𝑉 𝜑 ≤ 1
2
(−Δ) + 𝐶 and ||∇𝑅1/2 ||op ≤ 𝐶. (3.42)

Proof. For the proof of the first two inequalities, we refer to [35, Lemma III.2]. The bound for the
resolvent is obtained through

0 ≤ 𝑅
1
2 (−Δ)𝑅

1
2 ≤ 𝑅

1
2 ℎPek𝑅

1
2 − 𝑅

1
2 (𝑉 𝜑 − 𝜆Pek)𝑅

1
2 ≤ 𝐶𝑅 + 1

2
𝑅

1
2 (−Δ)𝑅

1
2 , (3.43)

where we made use of the second inequality in equation (3.42). �

3.4.2. The commutator method
In the course of the proof, we are frequently faced with bounding field operators like 𝜙(ℎ𝑥). From the
standard estimates for creation and annihilation operators, we would obtain

||𝑎( 𝑓 )Ψ||ℋ ≤ || 𝑓 ||𝐿2 ||N1/2Ψ||ℋ , ||𝑎†( 𝑓 )Ψ||ℋ ≤ || 𝑓 ||𝐿2 || (N + 1)1/2Ψ||ℋ, Ψ ∈ ℋ, (3.44)

which is not sufficient since ℎ0 (𝑦) is not square-integrable. With the aid of the commutator method
introduced by Lieb and Yamazaki [40] one obtains suitable upper bounds by using in addition some
regularity in the electron variable of the wave function Ψ. For our purpose, the version summarized in
the following lemma will be sufficient.

Lemma 3.9. Let ℎ𝐾, · for 𝐾 ∈ (1,∞] as defined in equation (2.5), let A denote a bounded operator in
𝐿2 (R3) (acting on the field variable) and 𝑎• ∈ {𝑎, 𝑎†}. Further, let 𝑋,𝑌 be bounded symmetric operators
in 𝐿2 (R3) (acting on the electron variable) that satisfy 𝐷0 := ||𝑋 ||op ||𝑌 ||op+ ||∇𝑋 ||op ||𝑌 ||op+ ||𝑋 ||op ||∇𝑌 ||op <
∞. There exists a constant 𝐶 > 0 such that

||𝑋𝑎•(𝐴ℎ𝐾, ·+𝑦)𝑌Ψ||ℋ ≤ 𝐶𝐷0 || (N + 1)1/2Ψ||ℋ (3.45a)

||𝑋𝑎•(𝐴ℎΛ, ·+𝑦 − 𝐴ℎ𝐾, ·+𝑦)𝑌Ψ||ℋ ≤ 𝐶𝐷0√
𝐾

|| (N + 1)1/2Ψ||ℋ (3.45b)

for all 𝑦 ∈ R3, Ψ ∈ ℋ and 1 ≤ 𝐾 ≤ Λ ≤ ∞.

Remark 3.10. Note that 𝐴ℎ𝐾, ·+𝑦 = 𝑇𝑦 (𝐴ℎ𝐾, ·) and in case that A has an integral kernel,

(𝐴ℎ𝐾,𝑥) (𝑧) =
∫

d𝑢 𝐴(𝑧, 𝑢)ℎ𝐾,𝑥 (𝑢). (3.46)

Proof of Lemma 3.9. To obtain the first inequality, write ℎ𝐾, · = (ℎ𝐾, · − ℎ1, ·) + ℎ1, · and apply the second
inequality (with Λ and K interchanged) to the term in parenthesis. The bound for the term involving ℎ1, ·
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follows from equation (3.44), as

||𝑎•(𝐴ℎ1, ·+𝑦)𝑌Ψ||2ℋ =
∫

d𝑥 ||𝑎•(𝐴ℎ1,𝑥+𝑦) (𝑌Ψ) (𝑥) ||2F (3.47)

≤
∫

d𝑥 ||𝐴ℎ1,𝑥+𝑦 ||2𝐿2 || (N + 1)1/2(𝑌Ψ) (𝑥) ||2F ≤ ||𝐴||2op ||ℎ1,0 ||2𝐿2 ||𝑌 ||2op || (N + 1)1/2Ψ||2ℋ .

To verify the second inequality, write the difference as a commutator

ℎΛ,𝑥 (𝑧) − ℎ𝐾,𝑥 (𝑧) = [−𝑖∇𝑥 , 𝑗𝐾,Λ,𝑥 (𝑧)], 𝑗𝐾,Λ,𝑥 (𝑧) =
1

(2𝜋)3

∫
𝐾 ≤ |𝑘 | ≤Λ

d𝑘
𝑘𝑒𝑖𝑘 (𝑥−𝑧)

|𝑘 |3
(3.48)

and use that ∇ and A commute (they act on different variables). Then similarly as in equation (3.47) we
obtain

||𝑋𝑎•([∇, 𝐴 𝑗𝐾,Λ, ·+𝑦])𝑌Ψ||ℋ ≤ ||𝑋∇𝑎•(𝐴 𝑗𝐾,Λ, ·+𝑦)𝑌Ψ||ℋ + ||𝑋𝑎•(𝐴 𝑗𝐾,Λ, ·+𝑦)∇𝑌Ψ||ℋ
≤ ||𝑋∇||op ||𝑎•(𝐴 𝑗𝐾,Λ, ·+𝑦)𝑌Ψ||ℋ + ||𝑋 ||op ||𝑎•(𝐴 𝑗𝐾,Λ, ·+𝑦)∇𝑌Ψ||ℋ

≤ ||𝐴||op
(
||𝑋∇||op ||𝑌 ||op + ||𝑋 ||op ||∇𝑌 ||op

)
|| 𝑗𝐾,Λ,0 ||𝐿2 || (N + 1)1/2Ψ||ℋ .

(3.49)

The desired bound now follows from supΛ>𝐾 || 𝑗𝐾,Λ,0 ||2
𝐿2 ≤ 𝐶/𝐾 . �

A simple but useful corollary is given by

Corollary 3.11. Under the same conditions as in Lemma 3.9, with the additional assumption that Y is
a rank-one operator, there exists a constant 𝐶 > 0 such that∫

d𝑧 ||𝑋 (𝐴ℎ𝐾, ·+𝑦) (𝑧)𝑌 ||2op ≤ 𝐶𝐷2
0 (3.50a)

∫
d𝑧 ||𝑋

(
(𝐴ℎ𝐾, ·+𝑦) (𝑧) − (𝐴ℎΛ, ·+𝑦) (𝑧)

)
𝑌 ||2op ≤

𝐶𝐷2
0

𝐾
(3.50b)

for all 𝑦 ∈ R3 and 1 ≤ 𝐾 ≤ Λ ≤ ∞.

Proof. Since Y has rank one, we can use∫
d𝑧 ||𝑋 (𝐴ℎ𝐾, ·+𝑦) (𝑧)𝑤 ||2

𝐿2 = ||𝑋𝑎†(𝐴ℎ𝐾, ·+𝑦)𝑤 ⊗ Ω||2ℋ , (3.51)

for any 𝑤 ∈ 𝐿2 (R3), and similarly for equation (3.50b), and apply Lemma 3.9. �

3.4.3. Transformation properties of U𝐾
The next lemma collects some useful relations for the Bogoliubov transformationU𝐾 . The proof follows
directly from the definition (2.11) and the properties explained in Remark 2.4. We omit the details.

Lemma 3.12. Let 𝑓 ∈ 𝐿2 (R3), 𝑓 0 = Π0 𝑓 , 𝑓 1 = Π1 𝑓 with Π𝑖 defined in equation (2.2), and set

𝑓 = 𝑓 0 + Θ−1
𝐾 Re( 𝑓 1) + 𝑖Θ𝐾 Im( 𝑓 1) (3.52a)

�̃� = 𝑓 0 + Θ.
𝐾 Re( 𝑓 1) + 𝑖Θ−1

𝐾 Im( 𝑓 1). (3.52b)
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The unitary operator U𝐾 defined in equation (2.11) satisfies the relations

U𝐾 𝑎( 𝑓 )U†
𝐾 = 𝑎( 𝑓 0) + 𝑎(𝐴𝐾 𝑓 1) + 𝑎†(𝐵𝐾 𝑓 1) (3.53a)

U
†
𝐾 𝑎( 𝑓 )U.𝐾 = 𝑎( 𝑓 0) + 𝑎(𝐴𝐾 𝑓 1) − 𝑎†(𝐵𝐾 𝑓 1) (3.53b)

U
.
𝐾 𝜙( 𝑓 )U†

𝐾 = 𝜙( 𝑓 ), U
.
𝐾 𝜋( 𝑓 )U†

𝐾 = 𝜋( �̃� ) (3.53c)

U𝐾𝑊 ( 𝑓 )U†
𝐾 = 𝑊 ( �̃� ). (3.53d)

Note that equation (3.31d) is consistent with the general notation introduced in equation (3.52b). The
following statements provide helpful bounds involving the number operator when transformed with the
Bogoliubov transformation.

Lemma 3.13. There exists a constant 𝑏 > 0 such that

U
.
𝐾 (N + 1)𝑛U†

𝐾 ≤ 𝑏𝑛𝑛𝑛 (N + 1)𝑛, U
†
𝐾 (N + 1)𝑛U.𝐾 ≤ 𝑏𝑛𝑛𝑛 (N + 1)𝑛 (3.54)

for all 𝑛 ∈ N.

Proof. With b replaced by 𝑏𝐾 = 2||𝐵𝐾 ||2HS + ||𝐴𝐾 ||2op + 1, both estimates follow from [7, Lemma 4.4]
together with equations (3.53a) and (3.53b). That 𝑏𝐾 ≤ 𝑏 for some K-independent 𝑏 > 0 is inferred
from Lemma 2.3. �

In the next two statements, we denote by 1(N > 𝑐) (resp. 1(N ≤ 𝑐)) the orthogonal projector in F
to all states with phonon number larger than (resp. less or equal to) c.

Corollary 3.14. Let Υ𝐾 = U†
𝐾Ω and Υ>

𝐾 := 1(N > 𝛼𝛿)Υ𝐾 for 𝛿 > 0. There exist constants 𝑏, 𝐶𝛿,𝑛 > 0
such that 〈

Υ𝐾 | (N + 1)𝑛Υ𝐾

〉
F

≤ 𝑏𝑛𝑛𝑛 (3.55a)

〈
Υ>
𝐾 | (N + 1)𝑛Υ>

𝐾

〉
F

≤ 𝐶𝛿,𝑛 𝛼
−20 (3.55b)

for all 𝑛 ∈ N0.

Proof. The first bound follows directly from Lemma 3.13. The second one is obtained from〈
Υ>
𝐾 | (N + 1)𝑛Υ>

𝐾

〉
F

≤ ||N𝑚 (N + 1)𝑛Υ>
𝐾 ||F ||N−𝑚Υ>

𝐾 ||F

≤ ||(N + 1)𝑛+𝑚Υ𝐾 ||F 𝛼−𝑚𝛿 ≤ (2(𝑛 + 𝑚)𝑏)𝑛+𝑚𝛼−𝑚𝛿 (3.56)

with 𝑚 ≥ 20/𝛿. �

Lemma 3.15. For 𝛿 > 0 and 𝜅 = 1/(16𝑒𝑏𝛼𝛿) with 𝑏 > 0 the constant from Lemma 3.13, the operator
inequality

1(N ≤ 2𝛼𝛿)U†
𝐾 exp(2𝜅N)U†

𝐾1(N ≤ 2𝛼𝛿) ≤ 2 (3.57)

holds for all 𝛼 large enough.
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Proof. We write out the Taylor series for the exponential and invoke Lemma 3.13,

1(N ≤ 2𝛼𝛿)U†
𝐾 𝑒2𝜅N

U
†
𝐾1(N ≤ 2𝛼𝛿) =

∞∑
𝑛=0

(2𝜅)𝑛
𝑛!

1(N ≤ 2𝛼𝛿)U†
𝐾 (N + 1)𝑛U†

𝐾1(N ≤ 2𝛼𝛿)

≤
∞∑
𝑛=0

(2𝜅𝑏𝑛)𝑛
𝑛!

1(N ≤ 2𝛼𝛿) (N + 1)𝑛1(N ≤ 2𝛼𝛿)

≤
∞∑
𝑛=0

(8𝛼𝛿𝜅𝑏𝑛)𝑛
𝑛!

, (3.58)

where we used 1 ≤ 2𝛼𝛿 in the last step. The stated bound now follows from the elementary inequality
𝑛! ≥ ( 𝑛𝑒 )

𝑛. �

The reason for introducing the momentum cutoff inH𝐾 is to obtain a finite upper bound for the norm
of the state 𝑃 𝑓 Υ𝐾 . This is the content of the next lemma, whose proof is given in Section 4.

Lemma 3.16. Let 𝑃 𝑓 =
∫

d𝑘 𝑘 𝑎†𝑘𝑎𝑘 and 𝐾0 large enough. There is a 𝐶 > 0 such that〈
Ω|U.𝐾 (𝑃 𝑓 )2

U
†
𝐾Ω

〉
F

≤ 𝐶𝐾 (3.59)

for all 𝐾 ∈ (𝐾0,∞).

3.5. Norm of the trial state

In this section, we provide the computation of the norm N = ||Ψ𝐾,𝛼 (𝑃) ||2F .

Proposition 3.17. Let 𝜆 = 1
6 ||∇𝜑||

2
𝐿2 and 𝑐 > 0. For every 𝜀 > 0, there exist a constant 𝐶𝜀 > 0 (we omit

the dependence on c) such that 				N −
(

𝜋

𝜆𝛼2

)3/2				 ≤ 𝐶𝜀

√
𝐾𝛼−4+𝜀 (3.60)

for all |𝑃 |/𝛼 ≤ 𝑐 and all 𝛼 large enough.

Proof. It follows from equations (3.18a) and (3.19a) that N = N0 +N1 +N2 with

N0 =
∫

d𝑦
〈
𝐺0
𝐾

		𝑇𝑦𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺0
𝐾

〉
ℋ

(3.61a)

N1 = − 2
𝛼

∫
d𝑦 Re

〈
𝐺0
𝐾

		𝑇𝑦𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ

(3.61b)

N2 =
1
𝛼2

∫
d𝑦

〈
𝐺1
𝐾

		𝑇𝑦𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ
. (3.61c)

Term N0. This part contains the leading order contribution ( 𝜋
𝜆𝛼2 )3/2. With H defined in equation (3.37),

let us write

N0 =
∫

d𝑦 𝐻 (𝑦)
〈
Υ𝐾

		𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

+
∫

d𝑦 𝐻 (𝑦)
〈
Υ𝐾

		(𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F
= N01 +N02. (3.62)
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In the first term, we use Υ𝐾 = U†
𝐾Ω and apply equation (3.53d) to transform the Weyl operator with the

Bogoliubov transformation. This gives

U𝐾𝑊 (𝛼𝑤𝑃,𝑦)U†
𝐾 = 𝑊 (𝛼𝑤𝑃,𝑦) (3.63)

with 𝑤𝑃,𝑦 defined in equation (3.31d). From equations (3.2) and (3.33), we thus obtain

N01 =
∫

d𝑦 𝐻 (𝑦)
〈
Ω
		𝑊 (𝛼𝑤𝑃,𝑦)Ω

〉
F

=
∫

d𝑦 𝐻 (𝑦)𝑛0,1 (𝑦). (3.64)

Since ||𝐻 ||𝐿1 + ||𝐻 ||𝐿∞ ≤ 𝐶, cf. Lemma 3.7, we can apply Lemma 3.5 in order to replace the weight
function 𝑛0,1 (𝑦) by the Gaussian 𝑒−𝜆𝛼

2𝑦2 . More precisely,				 ∫ d𝑦 𝐻 (𝑦)𝑛0,1 (𝑦) −
∫

d𝑦 𝐻 (𝑦)𝑒−𝜆𝛼2𝑦2
				 ≤ 𝐶𝛼−4 (3.65)

for all |𝑃 |/𝛼 ≤ 𝑐 and all 𝐾, 𝛼 large enough. Then we use |𝐻 (𝑦) − 1| ≤ 𝐶𝑦2 in order to obtain				N01 −
(

𝜋

𝜆𝛼2

)3/2				 ≤ 𝐶𝛼−4. (3.66)

To treat N02, it is convenient to decompose the state Υ𝐾 into a part with bounded particle number
and a remainder. To this end, we choose a small 𝛿 > 0 and write

Υ𝐾 = Υ<
𝐾 + Υ>

𝐾 = 1(N ≤ 𝛼𝛿)Υ𝐾 + 1(N > 𝛼𝛿)Υ𝐾 . (3.67)

Inserting this into N02 and using unitarity of 𝑒𝐴𝑃,𝑦 and ||𝐻 ||𝐿1 ≤ 𝐶, we can estimate

|N02 | ≤
∫

d𝑦 𝐻 (𝑦)
		〈Υ<

𝐾

		(𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

		 + 𝐶 ||Υ>
𝐾 ||F . (3.68)

By Corollary 3.14 for 𝑛 = 0, ||Υ>
𝐾 || ≤ 𝐶𝛿 𝛼

−10. In the remaining expression, we use equation (3.63),〈
Υ<
𝐾

		(𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

=
〈
Υ<
𝐾

		(𝑒𝐴𝑃,𝑦 − 1)U†
𝐾𝑊 (𝛼𝑤𝑃,𝑦)Ω

〉
F
, (3.69)

and insert the identity

1 = 𝑒𝜅N𝑒−𝜅N with 𝜅 =
1

16𝑒𝑏𝛼𝛿
(3.70)

on the left of the Weyl operator (where 𝑏 > 0 is the constant from Lemma 3.13). After applying the
Cauchy–Schwarz inequality, this leads to		〈Υ<

𝐾

		(𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

		 ≤ ||𝑒𝜅NU𝐾 (𝑒−𝐴𝑃,𝑦 − 1)Υ<
𝐾 ||F ||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F . (3.71)

In the second factor, we then employ

||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F = 𝑒
− 𝛼2

2 ||𝑤𝑃,𝑦 ||2
𝐿2 ||𝑒−𝜅N𝑒𝑎† (𝛼𝑤𝑃,𝑦 )𝑒𝜅NΩ||F (3.72)

and use 𝑒−𝜅N𝑎†( 𝑓 )𝑒𝜅N = 𝑎†(𝑒−𝜅 𝑓 ) to write

𝑒−𝜅N𝑒𝑎
† (𝛼𝑤𝑃,𝑦 )𝑒𝜅NΩ = 𝑒𝑎

† (𝑒−𝜅 𝛼𝑤𝑃,𝑦 )Ω = 𝑒
𝛼2𝑒−2𝜅

2 ||𝑤𝑃,𝑦 ||2
𝐿2𝑊 (𝑒−𝜅𝛼𝑤𝑃,𝑦)Ω. (3.73)
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Combining the previous two lines, we obtain

||𝑒−𝜅N𝑊 (𝛼𝑤.
𝑃,𝑦)Ω||F = exp

(
− 𝛼2

2
(1 − 𝑒−2𝜅 ) ||𝑤𝑃,𝑦 ||2𝐿2

)
≤ 𝑛𝛿,𝜂 (𝑦) (3.74)

for some 𝛼-independent 𝜂 > 0 and 𝛼 large enough. To estimate the first factor in equation (3.71), we
apply Lemma 3.15 (note that (𝑒𝐴𝑃,𝑦 − 1)Υ<

𝐾 ∈ Ran(1(N ≤ 2𝛼𝛿)))

||𝑒𝜅NU𝐾 (𝑒−𝐴𝑃,𝑦 − 1)Υ<
𝐾 ||F ≤

√
2|| (𝑒−𝐴𝑃,𝑦 − 1)Υ𝐾 ||F . (3.75)

On the right side, we use the functional calculus for self-adjoint operators

|| (𝑒−𝐴𝑃,𝑦 − 1)Υ𝐾 ||F ≤ ||𝐴𝑃,𝑦Υ𝐾 ||F ≤ ||(𝑦𝑃 𝑓 )Υ𝐾 ||F + |𝑔𝑃 (𝑦) | ≤ 𝐶
(√

𝐾 |𝑦 | + 𝛼 |𝑦 |3
)
, (3.76)

where in the last step we applied Lemma 3.16 and used

|𝑔𝑃 (𝑦) | ≤ 𝐶𝛼 |𝑦 |3, (3.77)

which is inferred from equation (3.5) using ||Δ𝜑||𝐿2 < ∞. Returning to equation (3.71), we have shown
that

|N02 | ≤ 𝐶

∫
d𝑦 𝐻 (𝑦)

(√
𝐾 |𝑦 | + 𝛼 |𝑦 |3

)
𝑛𝛿,𝜂 (𝑦) + 𝐶𝛿 𝛼

−10, (3.78)

and hence we are in a position to apply Corollary 3.6. This implies for all 𝛼 large

|N02 | ≤ 𝐶
(√

𝐾𝛼−4(1−𝛿) + 𝛼−6(1−𝛿)+1) + 𝐶𝛿 𝛼
−10 ≤ 𝐶𝛿

√
𝐾𝛼−4(1−𝛿) . (3.79)

Term N1. We start by inserting equation (2.22) for 𝐺1
𝐾 in expression (3.61b). Since the Weyl operator

commutes with 𝑢𝛼, R and 𝑃𝜓 = |𝜓〉〈𝜓 |, we can apply equation (3.10a) to obtain

𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾 = 𝑢𝛼𝑅

(
𝜙(ℎ1

𝐾, ·) + 2𝛼〈ℎ𝐾, · | Re(𝑤1
𝑃,𝑦)〉𝐿2

)
𝑃𝜓𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾 , (3.80)

where we used that ℎ𝐾,𝑥 is real-valued. Note that 〈ℎ𝐾, · | Re(𝑤1
𝑃,𝑦)〉𝐿2 is a y-dependent multiplication

operator in the electron variable. With (𝑇𝑦𝑒𝐴𝑃,𝑦 )† = 𝑇−𝑦𝑒
−𝐴𝑃,𝑦 and equation (3.67), we can thus write

N1 = − 2
𝛼

∫
d𝑦 Re

〈
𝑅1,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

) 		𝑊 (𝛼𝑤𝑃,𝑦)𝐺0
𝐾

〉
ℋ
= N <

1 +N >
1 , (3.81)

where we introduced the operator 𝑅1,𝑦 = 𝑅1
1,𝑦 + 𝑅2

1,𝑦 with

𝑅1
1,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼𝑇−𝑦𝑃𝜓𝑒
−𝐴𝑃,𝑦 , (3.82a)

𝑅2
1,𝑦 = 2𝛼𝑃𝜓

〈
ℎ𝐾, · | Re(𝑤1

𝑃,𝑦)
〉
𝐿2𝑅𝑢𝛼𝑇−𝑦𝑃𝜓𝑒

−𝐴𝑃,𝑦 . (3.82b)

Using Lemma 3.9 in combination with ||∇𝑃𝜓 ||op + ||∇𝑅1/2 ||op < ∞ (see Lemmas 3.7 and 3.8), we can
bound the first operator, for any Ψ ∈ ℋ, by

||𝑅1
1,𝑦Ψ||ℋ ≤ 𝐶 || (N + 1)1/2𝑢𝛼𝑇−𝑦𝑃𝜓𝑒

−𝐴𝑃,𝑦Ψ||ℋ ≤ 𝐶 ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op || (N + 1)1/2Ψ||ℋ . (3.83)
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To estimate the second operator, we write out the inner product, use Cauchy–Schwarz twice, apply
Corollary 3.11 (with 𝐴 = 1, 𝑋 = 𝑅 and 𝑌 = 𝑃𝜓) and use equation (3.32a),

||𝑅2
1,𝑦Ψ||2ℋ = 4𝛼2 ||

∫
d𝑧 Re(𝑤1

𝑃,𝑦 (𝑧))𝑃𝜓ℎ𝐾, · (𝑧)𝑅𝑢𝛼𝑇−𝑦𝑃𝜓𝑒
−𝐴𝑃,𝑦Ψ||2ℋ

≤ 4𝛼2
∫

d𝑢 |𝑤1
𝑃,𝑦 (𝑢) |

2
∫

d𝑧 ||𝑃𝜓ℎ𝐾, · (𝑧)𝑅 ||2op ||𝑢𝛼𝑇−𝑦𝑃𝜓𝑒
−𝐴𝑃,𝑦Ψ||2ℋ

≤ 𝐶𝛼2 ||𝑤1
𝑃,𝑦 ||

2
𝐿2 ||𝑢𝛼𝑇−𝑦𝑃𝜓𝑒

−𝐴𝑃,𝑦Ψ||2ℋ

≤ 𝐶𝛼2(𝑦4 + 𝛼−4) ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||2op ||Ψ||2ℋ . (3.84)

Combining the above estimates we arrive at

||𝑅1,𝑦Ψ||ℋ ≤ 𝐶 ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op (1 + 𝛼𝑦2) || (N + 1)1/2Ψ||ℋ . (3.85)

Since 𝜓(𝑥) decays exponentially for large |𝑥 |, the function 𝑓𝛼 (𝑦) := ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op satisfies

|| | · |𝑛 𝑓𝛼 ||𝐿1 ≤
∫

d𝑦 |𝑦 |𝑛
( ∫

d𝑥 𝜓(𝑥 + 𝑦)2𝑢𝛼 (𝑥)2
)1/2

≤ 𝐶𝑛𝛼
3+𝑛 for all 𝑛 ∈ N0. (3.86)

With this at hand, we can estimate the part containing the tail. Invoking Corollary 3.14

|N >
1 | ≤ 𝐶

𝛼
|| (N + 1)1/2Υ>

𝐾 ||F
∫

d𝑦 𝑓𝛼 (𝑦) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼
−5. (3.87)

To estimate the first term in equation (3.81), we proceed similarly as in the bound for N02. We insert the
identity (3.70), apply Cauchy–Schwarz and employ equation (3.74). This leads to

|N <
1 | ≤ 2

𝛼

∫
d𝑦 ||𝑒𝜅NU.𝐾 (𝑒−𝐴𝑃,𝑦𝑅1,𝑦𝜓 ⊗ Υ<

𝐾 ) ||F ||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F

≤ 2
𝛼

∫
d𝑦 ||𝑒𝜅NU.𝐾 (𝑒−𝐴𝑃,𝑦𝑅1,𝑦𝜓 ⊗ Υ<

𝐾 ) ||F 𝑛𝛿,𝜂 (𝑦). (3.88)

In the remaining norm, we use the fact that 𝑅1,𝑦 changes the number of phonons at most by one, and
thus we can apply Lemma 3.15 and equation (3.85), together with equation (3.55a), to get

||𝑒𝜅NU.𝐾 (𝑒−𝐴𝑃,𝑦𝑅1,𝑦𝜓 ⊗ Υ<
𝐾 ) ||F ≤

√
2||𝑅1,𝑦𝜓 ⊗ Υ<

𝐾 ||F ≤ 𝐶 𝑓𝛼 (𝑦)
(
1 + 𝛼𝑦2) . (3.89)

With Corollary 3.6, equation (3.86) and || 𝑓𝛼 ||𝐿∞ ≤ 1, this leads to

|N <
1 | ≤ 𝐶

𝛼

∫
d𝑦 𝑓𝛼 (𝑦)

(
1 + 𝛼𝑦2) 𝑛𝛿,𝜂 (𝑦) ≤ 𝐶𝛼−1−3(1−𝛿) . (3.90)

Term N2. The strategy for estimating this term is similar to the one for N1. Proceeding as described
before equation (3.81), one obtains

N2 =
1
𝛼2

∫
d𝑦

〈
𝑅2,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

) 		𝑊 (𝛼𝑤𝑃,𝑦)𝐺0
𝐾

〉
ℋ

= N <
2 +N >

2 (3.91)
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with 𝑅2,𝑦 = 𝑅1
2,𝑦 + 𝑅2

2,𝑦 and

𝑅1
2,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑒
−𝐴𝑃,𝑦𝑢𝛼𝑇−𝑦𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓, (3.92a)

𝑅2
2,𝑦 = 2𝛼𝑃𝜓 〈ℎ𝐾, · | Re(𝑤1

𝑃,𝑦)〉𝐿2𝑅𝑒−𝐴𝑃,𝑦𝑢𝛼𝑇−𝑦𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝑃𝜓 . (3.92b)

It follows in close analogy as for 𝑅1,𝑦 in equations (3.82a) and (3.82b) that given any Ψ ∈ ℋ,

||𝑅2,𝑦Ψ||ℋ ≤ 𝐶 ||𝑢𝛼𝑇−𝑦𝑢𝛼 ||op (1 + 𝛼𝑦2) || (N + 1)Ψ||ℋ, (3.93)

and since ||𝑢𝛼𝑇−𝑦𝑢𝛼 ||op ≤ 1(|𝑦 | ≤ 4𝛼), we can use Corollary 3.14 to estimate

|N >
2 | ≤ 𝐶

𝛼2 || (N + 1)Υ>
𝐾 ||F

∫
d𝑦 1(|𝑦 | ≤ 4𝛼) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼

−6. (3.94)

To bound the first term in equation (3.91), we proceed similarly as for N01,

|N <
2 | ≤ 𝛼−2

∫
d𝑦 ||𝑒𝜅NU𝐾 (𝑅2,𝑦𝜓 ⊗ Υ<

𝐾 ) ||F ||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F

≤
√

2
𝛼2

∫
d𝑦 ||𝑅2,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦) ≤
𝐶

𝛼2

∫
d𝑦 1(|𝑦 | ≤ 4𝛼) (1 + 𝛼𝑦2) 𝑛𝛿,𝜂 (𝑦). (3.95)

The last integral is estimated again via Corollary 3.6, and thus |N <
2 | ≤ 𝐶𝛼−5+3𝛿 .

Collecting all relevant estimates and choosing 𝛿 > 0 small enough completes the proof of the
proposition. �

3.6. Energy contribution E
In this section, we prove the following estimate for the energy contribution E defined in equation (3.8a).

Proposition 3.18. Let N1 = dΓ(Π1) and choose 𝑐 > 0. For every 𝜀 > 0, there is a constant 𝐶𝜀 > 0 (we
omit the dependence on c) such that				 E − 1

𝛼2

(〈
Υ𝐾 |N1Υ𝐾

〉
F
− 3

2

)
N

				 ≤ 𝐶𝜀

√
𝐾𝛼−6+𝜀 (3.96)

for all |𝑃 |/𝛼 ≤ 𝑐 and 𝛼 large enough.

Proof. Since 𝐺0
𝐾 = 𝜓 ⊗ Υ𝐾 , ℎPek𝜓 = 0 and NΥ𝐾 = N1Υ𝐾 , one has

E =
∫

d𝑦
〈
𝐺0
𝐾 |

(
𝛼−2
N1 + 𝛼−1𝜙(ℎ · + 𝜑𝑃)

)
𝑇𝑦𝑒

𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦) |𝐺0
𝐾

〉
ℋ

= E1 + E2, (3.97)

where both terms provide contributions to the energy of order 𝛼−2.
Term E1. Recall that 𝐻 (𝑦) = 〈𝜓 |𝑇𝑦𝜓〉𝐿2 , and use this to write

E1 =
1
𝛼2

∫
d𝑦 𝐻 (𝑦)

〈
Υ𝐾 |N1𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

+ 1
𝛼2

∫
d𝑦 𝐻 (𝑦)

〈
Υ𝐾 |N1 (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

= E11 + E12. (3.98)

With equations (3.63), (3.3) and (3.33), it follows that

𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾 = U†
𝐾𝑊 (𝛼𝑤𝑃,𝑦)Ω = 𝑛0,1 (𝑦)U†

𝐾 𝑒𝑎
† (𝛼𝑤0

𝑃,𝑦 )𝑒𝑎
† (𝛼𝑤1

𝑃,𝑦 )Ω, (3.99)
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and since 𝑒𝑎
† (𝛼𝑤0

𝑃,𝑦 ) commutes withU𝐾N1U
†
𝐾 and 𝑒𝑎 (𝛼𝑤

0
𝑃,𝑦 )Υ𝐾 = Υ𝐾 (we useU𝐾 𝑎†( 𝑓 0)U†

𝐾 = 𝑎†( 𝑓 0)
for 𝑓 0 ∈ Ran(Π0)), this leads to

E11 =
1
𝛼2

∫
d𝑦 𝐻 (𝑦)𝑛0,1 (𝑦)

〈
Ω|U𝐾N1U

†
𝐾 𝑒𝑎

† (𝛼𝑤1
𝑃,𝑦 )Ω

〉
F
. (3.100)

Because U𝐾N1U
†
𝐾 is quadratic in creation and annihilation operators, we can expand the exponential in

the inner product and use that only the zeroth- and second-order terms give a nonvanishing contribution,

E11 =
1
𝛼2

∫
d𝑦 𝐻 (𝑦)𝑛0,1 (𝑦)

〈
Υ𝐾 |N1Υ𝐾

〉
F

+ 1
2𝛼2

∫
d𝑦 𝐻 (𝑦)𝑛0,1 (𝑦)

〈
Υ𝐾 |N1U

†
𝐾 𝑎†(𝛼𝑤1

𝑃,𝑦)𝑎
†(𝛼𝑤1

𝑃,𝑦)Ω
〉
F
= E111 + E112. (3.101)

Next, we add and subtract the Gaussian to separate the leading-order term,

E111 =
1
𝛼2

∫
d𝑦 𝐻 (𝑦) 𝑒−𝜆𝛼2𝑦2 〈

Υ𝐾 |N1Υ𝐾

〉
F

+ 1
𝛼2

∫
d𝑦 𝐻 (𝑦)

(
𝑛0,1 (𝑦) − 𝑒−𝜆𝛼

2𝑦2 ) 〈
Υ𝐾 |N1Υ𝐾

〉
F

= E lo
111 + Eerr

111. (3.102)

In E lo
111, we use |𝐻 (𝑦) − 1| ≤ 𝐶𝑦2 and Corollary 3.14 to replace 𝐻 (𝑦) by unity at the cost of an error

of order 𝛼−7. In the term where 𝐻 (𝑦) is replaced by unity, we perform the Gaussian integral and use
Proposition 3.17 and again Corollary 3.14. This leads to

			 E lo
111 −N 1

𝛼2

〈
Υ𝐾 |N1Υ𝐾

〉
F

			 ≤ 𝐶𝜀

√
𝐾𝛼−6+𝜀 . (3.103)

The error in equation (3.102) is bounded with the help of Lemma 3.5,

|Eerr
111 | ≤

𝐶

𝛼2

∫
d𝑦 𝐻 (𝑦) |𝑛0,1 (𝑦) − 𝑒−𝜆𝛼

2𝑦2 | ≤ 𝐶𝛼−6. (3.104)

In E112, we use the Cauchy–Schwarz inequality, Corollary 3.14 and Lemma 3.4, to obtain		〈Υ𝐾 |N1U
†
𝐾 𝑎†(𝛼𝑤1

𝑃,𝑦)𝑎
†(𝛼𝑤1

𝑃,𝑦)Ω
〉
F

		
≤ ||N1Υ𝐾 ||F ||𝑎†(𝛼𝑤1

𝑃,𝑦)𝑎
†(𝛼𝑤1

𝑃,𝑦)Ω||F ≤ 2𝛼2 ||𝑤1
𝑃,𝑦 ||

2
𝐿2 ≤ 𝐶𝛼2 (𝑦4 + 𝛼−4). (3.105)

With || | · |𝑛𝐻 ||𝐿1 ≤ 𝐶𝑛, we can now apply Corollary 3.6 to obtain

|E112 | ≤ 𝐶

∫
d𝑦 𝐻 (𝑦) (𝑦4 + 𝛼−4)𝑛0,1(𝑦) ≤ 𝐶𝛼−7. (3.106)

In order to bound E12 in equation (3.98), we decompose Υ𝐾 = Υ<
𝐾 +Υ>

𝐾 for some 𝛿 > 0 (see equation
(3.67)) and then follow similar steps as described below equation (3.69). This way we can estimate

|E12 | ≤
1
𝛼2

∫
d𝑦 𝐻 (𝑦) ||𝑒𝜅NU𝐾 (𝑒−𝐴𝑃,𝑦 − 1)N1Υ

<
𝐾 ||F 𝑛𝛿,𝜂 (𝑦) +

2
𝛼2 ||N1Υ

>
𝐾 ||F

∫
d𝑦 𝐻 (𝑦). (3.107)
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While the second term is bounded via equation (3.55b) by 𝐶𝛿 𝛼
−12, in the first term we apply Lemma

3.15 and use the functional calculus for self-adjoint operators,

||𝑒𝜅NU𝐾 (𝑒−𝐴𝑃,𝑦 − 1)N1Υ
<
𝐾 ||F ≤

√
2|| (𝑒−𝐴𝑃,𝑦 − 1)N1Υ

<
𝐾 ||F

≤
√

2|| (𝑃 𝑓 𝑦 + 𝑔𝑃 (𝑦))N1Υ
<
𝐾 ||F . (3.108)

Since 𝑃 𝑓 changes the number of phonons in F1 at most by one, we can proceed by

|| (𝑃 𝑓 𝑦 + 𝑔𝑃 (𝑦))N1Υ
<
𝐾 ||F ≤ (𝛼𝛿 + 1) || (𝑃 𝑓 𝑦 + 𝑔𝑃 (𝑦))Υ𝐾 ||F ≤ 𝐶𝛼𝛿 (

√
𝐾 |𝑦 | + 𝛼 |𝑦 |3), (3.109)

where we used 1 ≤ 𝛼𝛿 , Lemma 3.16 and equation (3.77) in the second step. We conclude via Corollary
3.6 that

|E12 | ≤
𝐶

𝛼2

∫
d𝑦 𝐻 (𝑦) (

√
𝐾 |𝑦 | + 𝛼 |𝑦 |3)𝑛𝛿,𝜂 (𝑦) + 𝐶𝛿 𝛼

−12 ≤ 𝐶𝛿

√
𝐾𝛼−6+4𝛿 . (3.110)

Term E2. Here, we start with

E2 = 𝛼−1
∫

d𝑦
〈
Υ𝐾 |𝐿1,𝑦𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

+ 𝛼−1
∫

d𝑦
〈
Υ𝐾 |𝐿1,𝑦 (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

= E21 + E22, (3.111)

where

𝐿1,𝑦 =
〈
𝜓 |𝜙(ℎ · + 𝜑𝑃)𝑇𝑦𝜓

〉
𝐿2 = 𝜙(𝑙𝑦) + 𝜋( 𝑗𝑦) (3.112)

with

𝑙𝑦 = 𝐻 (𝑦)𝜑 +
〈
𝜓 |ℎ ·𝑇𝑦𝜓

〉
𝐿2 , 𝑗𝑦 = 𝐻 (𝑦)𝜉𝑃 , (3.113)

and 𝜉𝑃 defined in equation (2.18). We record the following properties of 𝑙𝑦 and its derivative. The proof
of the lemma is postponed until the end of the present section.

Lemma 3.19. For 𝑘 = 0, 1 and for all 𝑛 ∈ N0,

sup
𝑦

‖∇𝑘 𝑙𝑦 ‖𝐿2 < ∞,

∫
|𝑦 |𝑛‖∇𝑘 𝑙𝑦 ‖𝐿2 d𝑦 < ∞. (3.114)

Note that, by Lemma 3.7, 𝑗𝑦 clearly has these properties as well. We proceed by writing E21 = E0
21+E𝑃

21
with

E0
21 = 𝛼−1

∫
d𝑦

〈
Υ𝐾 |𝜙(𝑙𝑦)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

(3.115a)

E𝑃
21 = 𝛼−1

∫
d𝑦

〈
Υ𝐾 |𝜋( 𝑗𝑦)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F
, (3.115b)

and estimate the two parts separately. Using the canonical commutation relations and (3.53c), we
evaluate

E0
21 =

∫ 〈
𝑙𝑦 |𝑤𝑃,𝑦

〉
𝐿2𝑛0,1 (𝑦)d𝑦

=
∫ (〈

𝑙0𝑦 |𝑤0
𝑃,𝑦

〉
𝐿2 +

〈
𝑙1𝑦 |Re(𝑤1

𝑃,𝑦)
〉
𝐿2 + 𝑖

〈
𝑙1𝑦 |Θ−2

𝐾 Im(𝑤1
𝑃,𝑦)

〉
𝐿2

)
𝑛0,1 (𝑦)d𝑦, (3.116)
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where we used that 𝑙𝑦 is real-valued. Note that 𝑙−𝑦 (−𝑧) = 𝑙𝑦 (𝑧). As discussed in Remark 3.3, 𝑛0,1 (𝑦)
is even, and using the arguments therein one can conclude that Θ−2

𝐾 Im(𝑤1
𝑃,𝑦) and Im(𝑤0

𝑃,𝑦) are odd
functions on R6 since (𝑦, 𝑧) ↦→ Im(𝑤𝑃,𝑦) (𝑧) is odd on this space, and hence∫ 〈

𝑙0𝑦 |Im(𝑤0
𝑃,𝑦)

〉
𝐿2𝑛0,1 (𝑦)d𝑦 =

∫ 〈
𝑙1𝑦 |Θ−2

𝐾 Im(𝑤1
𝑃,𝑦)

〉
𝐿2𝑛0,1 (𝑦)d𝑦 = 0. (3.117)

Thus, with Re(𝑤𝑃,𝑦) = 𝑤0,𝑦 , and with

𝑣(𝑦) :=
〈
𝑙𝑦 |𝑤0,𝑦

〉
𝐿2 (3.118)

we finally have

E0
21 =

∫ 〈
𝑙0𝑦 + 𝑙1𝑦 | Re(𝑤0

𝑃,𝑦) + Re(𝑤1
𝑃,𝑦)

〉
𝐿2𝑛0,1 (𝑦)d𝑦 =

∫
𝑣(𝑦)𝑛0,1 (𝑦)d𝑦. (3.119)

Note that 𝑣 ∈ 𝐿1 ∩ 𝐿∞ since 𝑦 ↦→ ||𝑙𝑦 ||𝐿2 is, while ||𝑤0,𝑦 ||𝐿2 is uniformly bounded in y. Because of
𝜑(𝑧) = −〈𝜓 |ℎ · (𝑧)𝜓〉𝐿2 and ∇𝑧ℎ(𝑥 − 𝑧) = −∇𝑥ℎ(𝑥 − 𝑧), we have by integration by parts

∇𝜑 = −2
〈
∇𝜓 |ℎ ·𝜓

〉
𝐿2 . (3.120)

Thus,

𝑙𝑦 = −1
2
𝑦∇𝜑 + 𝜑(𝐻 (𝑦) − 1) +

〈
𝜓 |ℎ · (𝑇𝑦𝜓 − 𝜓 − 𝑦∇𝜓)

〉
𝐿2 . (3.121)

Since 𝜓 is a smooth function with uniformly bounded derivatives, there exists a 𝐶 > 0 such that for all y

||𝑇𝑦𝜓 − 𝜓 − 𝑦∇𝜓 ||𝐿∞ ≤ 𝐶𝑦2. (3.122)

Moreover, for 𝑘 = 0, 1 and every 𝑧 ∈ R3,

𝑥 ↦→ (ℎ · (𝑧)∇𝑘𝜓) (𝑥) ∈ 𝐿1 (R3, d𝑥) and 𝑧 ↦→ ||ℎ · (𝑧)∇𝑘𝜓 ||𝐿1 ∈ 𝐿2 (R3, d𝑧). (3.123)

The first statement follows easily from Lemma 3.7; to show the second one, use∫
d𝑧

1
|𝑢 − 𝑧 |2 |𝑣 − 𝑧 |2

=
1

𝜋3 |𝑢 − 𝑣 |
(3.124)

and apply the Hardy–Littlewood–Sobolev inequality. This, together with equation (3.38), shows that
there exists a function f in 𝐿2 (R3, d𝑧) such that

|𝑙𝑦 (𝑧) +
1
2
𝑦∇𝜑(𝑧) | ≤ 𝑓 (𝑧)𝑦2. (3.125)

Now, let

𝑏𝑦 (𝑧) := 𝑤0,𝑦 (𝑧) − 𝑦∇𝜑(𝑧) =
∫ 1

0
d𝑠

∫ 𝑠

0
d𝑡 (𝑦∇)2𝜑(𝑧 − 𝑡𝑦) (3.126)

and note that ||𝑏𝑦 ||2
𝐿2 ≤ 1

4 𝑦
4 ||Δ𝜑||2

𝐿2 which is finite since Δ𝜑 ∈ 𝐿2. This equation, together with equation
(3.125), implies 				𝑣(𝑦) + 1

2
||𝑦∇𝜑||2

𝐿2

				 ≤ 𝐶 (|𝑦 |3 + |𝑦 |4). (3.127)
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From this and from 𝑣 ∈ 𝐿1 ∩ 𝐿∞, it is also easy to deduce that | · |−2𝑣 ∈ 𝐿1 ∩ 𝐿∞. We can thus write∫
d𝑦 𝑣(𝑦)𝑛0,1 (𝑦) =

∫
d𝑦 𝑣(𝑦)𝑒−𝛼2𝜆𝑦2 +

∫
d𝑦 |𝑦 |−2𝑣(𝑦)𝑦2 (𝑛0,1 (𝑦) − 𝑒−𝛼

2𝜆𝑦2 )
(3.128)

and use Lemma 3.5 for 𝑔 = | · |−2 |𝑣 | to bound				∫ d𝑦 |𝑦 |−2𝑣(𝑦)𝑦2 (𝑛0,1 (𝑦) − 𝑒−𝛼
2𝜆𝑦2)

				 ≤ 𝐶𝛼−6. (3.129)

Using equation (3.127), the definition of 𝜆 = 1
6 ||∇𝜑||

2
𝐿2 as well as

∫
𝑦2𝑒−𝑦

2 d𝑦 = 3
2𝜋

3/2, we further have
that 				 ∫ d𝑦 𝑣(𝑦)𝑒−𝛼2𝜆𝑦2 + 3

2𝛼2

( 𝜋

𝜆𝛼2

)3/2
				 ≤ 𝐶𝛼−6 (3.130)

which finally gives the estimate 				E0
21 +

(
3

2𝛼2

)
N

				 ≤ 𝐶𝜀

√
𝐾𝛼−6+𝜀 (3.131)

using Proposition 3.17.
In a similar fashion as for E0

21, we obtain

E𝑃
21 =

1
𝛼2𝑀LP

∫ 〈
𝑖𝑃∇𝜑|𝑤0

𝑃,𝑦

〉
𝐿2𝐻 (𝑦)𝑛0,1 (𝑦)d𝑦. (3.132)

Explicit computation, using Π0 = 3
||∇𝜑 ||2

𝐿2

∑3
𝑖=1 |𝜕𝑖𝜑〉〈𝜕𝑖𝜑| and 〈𝜑|∇𝜑〉𝐿2 = 0, gives

1
3
𝑤0
𝑃,𝑦 (𝑧) = − (𝜑 ∗ ∇𝜑) (𝑦)

||∇𝜑||2
𝐿2

∇𝜑(𝑧) + 𝑖𝑃

𝛼2𝑀LP

(
||∇𝜑||2

𝐿2 − (∇𝜑 ∗ ∇𝜑) (𝑦)
) ∇𝜑(𝑧)
||∇𝜑||2

𝐿2

. (3.133)

Note that the real part of the above is odd as a function of y and hence∫ 〈
∇𝜑|Re(𝑤0

𝑃,𝑦)
〉
𝐿2𝑛0,1 (𝑦)𝐻 (𝑦)d𝑦 = 0, (3.134)

and, taking rotational invariance of 𝜑 into account, we arrive at

E𝑃
21 =

𝑃2

𝛼4(𝑀LP)2

∫ (
‖∇𝜑‖2

2 − (∇𝜑 ∗ ∇𝜑)(𝑦)
)
𝑛0,1 (𝑦)𝐻 (𝑦)d𝑦. (3.135)

Further, note that | ||∇𝜑||2
𝐿2 − (∇𝜑 ∗ ∇𝜑)(𝑦) | ≤ 𝐶𝑦2 and thus, by Lemma 3.7 and Corollary 3.6, one

obtains

|E𝑃
21 | ≤ 𝐶

𝑃2

𝛼9 ≤ 𝐶

𝛼7 . (3.136)

This completes the analysis of E21.
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In order to estimate the term E22, we proceed as before by splitting Υ𝐾 = Υ<
𝐾 + Υ>

𝐾 . Using equation
(3.44), we can estimate				𝛼−1

∫
d𝑦

〈
Υ>
𝐾 | (𝜙(𝑙𝑦) + 𝜋( 𝑗𝑦)) (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

				
≤ 𝐶𝛼−1

∫
d𝑦 (||𝑙𝑦 ||𝐿2 + || 𝑗𝑦 ||𝐿2 )‖(N + 1)1/2Υ>

𝐾 ‖F ≤ 𝐶𝛿 𝛼
−11 (3.137)

where we used Corollary 3.14 and Lemmas 3.7 and 3.19. The term involving Υ<
𝐾 is split again into two

contributions,

E0
22 = 𝛼−1

∫
d𝑦

〈
Υ<
𝐾 |𝜙(𝑙𝑦) (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F

(3.138a)

E𝑃
22 = 𝛼−1

∫
d𝑦

〈
Υ<
𝐾 |𝜋( 𝑗𝑦) (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)Υ𝐾

〉
F
. (3.138b)

To bound the first one, we proceed as in equation (3.107), that is, use Lemma 3.15 and the fact that
𝜙(𝑙𝑦) changes the number of phonons at most by one. This leads to

|E0
22 | ≤ 𝛼−1

∫
d𝑦 ‖𝑒𝜅NU𝐾 (𝑒−𝐴𝑃,𝑦 − 1)𝜙(𝑙𝑦)Υ<

𝐾 ‖F 𝑛𝛿,𝜂 (𝑦)

≤
√

2𝛼−1
∫

d𝑦 ‖(𝑒−𝐴𝑃,𝑦 − 1)𝜙(𝑙𝑦)Υ<
𝐾 ‖F 𝑛𝛿,𝜂 (𝑦). (3.139)

Furthermore, we have

|| (𝑒−𝐴𝑃,𝑦 − 1)𝜙(𝑙𝑦)Υ<
𝐾 ||F ≤ ||𝐴𝑃,𝑦𝜙(𝑙𝑦)Υ<

𝐾 ||F ≤ ||𝜙(𝑙𝑦)𝐴𝑃,𝑦Υ
<
𝐾 ||F + || [𝐴𝑃,𝑦 , 𝜙(𝑙𝑦)]Υ<

𝐾 ||F
≤ 𝐶𝛼𝛿/2 (||𝑙𝑦 ||𝐿2 ||𝐴𝑃,𝑦Υ𝐾 ||F + ||𝑦∇𝑙𝑦 ||𝐿2

)
, (3.140)

where we used [𝑖𝑃 𝑓 𝑦, 𝜙( 𝑓 )] = 𝜋(𝑦∇ 𝑓 ) and Υ<
𝐾 = 1(N ≤ 𝛼𝛿)Υ𝐾 . Note that in order to estimate the

remaining expression, it is not sufficient to directly apply Corollary 3.6. To obtain a better bound, we
first replace 𝑛𝛿,𝜂 (𝑦) by 𝑒−𝜂𝜆𝛼

2(1−𝛿) 𝑦2 and then, for the part containing the Gaussian, we use that ||𝑙𝑦 ||𝐿2

and ||∇𝑙𝑦 ||𝐿2 provide additional factors of |𝑦 |, as is shown below. More precisely, with Lemma 3.19 and
the aid of Lemmas 3.5 and 3.16, we bound

𝛼
𝛿
2 −1

∫
d𝑦 ||𝑙𝑦 ||𝐿2 ||𝐴𝑃,𝑦Υ𝐾 ||F 𝑛𝛿,𝜂 (𝑦) (3.141)

≤ 𝐶𝛼
𝛿
2 −1

∫
d𝑦 ||𝑙𝑦 ||𝐿2 (

√
𝐾 |𝑦 | + 𝛼 |𝑦 |3)𝑛𝛿,𝜂 (𝑦)

≤ 𝐶𝛼
𝛿
2 −1

∫
d𝑦 ||𝑙𝑦 ||𝐿2 (

√
𝐾 |𝑦 | + 𝛼 |𝑦 |3)𝑒−𝜂𝜆𝛼2(1−𝛿) 𝑦2 + 𝐶

√
𝐾𝛼−6+ 9𝛿

2 . (3.142)

Next, we use that by equation (3.125) there exists an 𝐿2 function f such that

|𝑙𝑦 (𝑧) | ≤
1
2
|𝑦∇𝜑(𝑧) | + 𝑓 (𝑧)𝑦2. (3.143)

Hence, by integration

𝛼𝛿/2−1
∫

d𝑦 ||𝑙𝑦 ||𝐿2

(√
𝐾 |𝑦 | + 𝛼 |𝑦 |3

)
𝑒−𝜆𝜂𝛼

2(1−𝛿) 𝑦2 ≤ 𝐶
√
𝐾𝛼−6+11/2𝛿 . (3.144)
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Regarding the second term in equation (3.140), we need to bound

𝛼𝛿/2−1
∫

d𝑦 |𝑦 | ||∇𝑙𝑦 ||𝐿2𝑛𝛿,𝜂 (𝑦), (3.145)

where we proceed in a similar way as above, using that

||∇𝑙𝑦 ||𝐿2 ≤ 𝐶 (|𝑦 | + 𝑦2). (3.146)

In fact, since ∇𝜑(𝑧) = −〈𝜓 |ℎ · (𝑧)∇𝜓〉𝐿2 − 〈∇𝜓 |ℎ · (𝑧)𝜓〉𝐿2 , we have the identity

∇𝑙𝑦 (𝑧) = 𝐻 (𝑦)∇𝜑(𝑧) +
〈
∇𝜓 |ℎ · (𝑧)𝑇𝑦𝜓

〉
𝐿2 +

〈
𝜓 |ℎ · (𝑧)∇𝑇𝑦𝜓

〉
𝐿2 (3.147)

= (𝐻 (𝑦) − 1)∇𝜑(𝑧) +
〈
∇𝜓 |ℎ · (𝑧) (𝑇𝑦 − 1)𝜓

〉
𝐿2 +

〈
𝜓 |ℎ · (𝑧) (𝑇𝑦 − 1)∇𝜓

〉
𝐿2 .

Again, using that 𝜓 has bounded derivatives, we have

|| (𝑇𝑦 − 1)𝜓 ||𝐿∞ + ||(𝑇𝑦 − 1)∇𝜓 ||𝐿∞ ≤ 𝐶 |𝑦 |, (3.148)

and the desired inequality now follows from |𝐻 (𝑦) − 1| ≤ 𝐶𝑦2 and equation (3.123). Given equation
(3.114), we can use Lemma 3.5 to replace 𝑛𝛿,𝜂 (𝑦) in equation (3.145) with 𝑒−𝜆𝜂𝛼

2(1−𝛿 )𝑦2 at the energy
penalty𝐶𝛼−6+9𝛿/2, and then use equation (3.146) to bound the remaining integral involving the Gaussian
factor, which yields an error of the same order. Altogether, this gives the estimate

|E0
22 | ≤ 𝐶

√
𝐾𝛼−6+ 11

2 𝛿 . (3.149)

For the term E𝑃
22, we proceed in exactly the same way as in equation (3.139):

|E𝑃
22 | ≤

√
2𝛼−1

∫
d𝑦 ‖

(
𝑒−𝐴𝑃,𝑦 − 1

)
𝜋( 𝑗𝑦)Υ<

𝐾 ‖F 𝑛𝛿,𝜂 (𝑦)

≤ 𝐶𝛼𝛿/2−1
∫

d𝑦 ‖ 𝑗𝑦 ‖𝐿2 ‖𝐴𝑃,𝑦Υ𝐾 ‖F 𝑛𝛿,𝜂 (𝑦) + 𝐶𝛼𝛿/2−1
∫

d𝑦 ‖𝑦∇ 𝑗𝑦 ‖𝐿2𝑛𝛿,𝜂 (𝑦)

≤ 𝐶𝛼𝛿/2−1 |𝑃 |
𝛼2

∫
d𝑦 𝐻 (𝑦) (

√
𝐾 |𝑦 | + 𝛼 |𝑦 |3)𝑛𝛿,𝜂 (𝑦)

+ 𝐶𝛼𝛿/2−1 |𝑃 |
𝛼2

∫
d𝑦 |𝑦 |𝐻 (𝑦) 𝑛𝛿,𝜂 (𝑦)

≤ 𝐶𝛼−6+ 9
2 𝛿
√
𝐾, (3.150)

where the last estimate follows from Corollary 3.6 and the assumption |𝑃 | ≤ 𝑐𝛼.
Combining the relevant estimates, that is, equations (3.103), (3.104), (3.106) and (3.110) for E1 as

well as equations (3.131), (3.136), (3.137), (3.149) and (3.150) for E2, we arrive at the statement of
Proposition 3.18, thus providing an appropriate bound for E . �

Proof of Lemma 3.19. Since H has the desired properties, we need to show them for

𝑙 (1)𝑦 =
〈
𝜓 |ℎ ·𝑇𝑦𝜓

〉
𝐿2 . (3.151)

To this end, we introduce

S = { 𝑓 ∈ 𝐿𝑝 (R3, (1 + |𝑦 |𝑛)d𝑦) ∀1 ≤ 𝑝 ≤ ∞, ∀𝑛 ≥ 0} (3.152)
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and start with the following observation: Suppose 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are functions in S . Then

𝑆(𝑦) :=
∬

d𝑢d𝑣
𝑓1 (𝑢) 𝑓2 (𝑣) 𝑓3(𝑢 + 𝑦) 𝑓4 (𝑣 + 𝑦)

|𝑢 − 𝑣 | ∈ S . (3.153)

In fact, |𝑆(𝑦) | ≤ 𝐶‖ 𝑓4‖𝐿∞ ‖ 𝑓3‖𝐿∞ ‖ 𝑓1‖𝐿𝑝 ‖ 𝑓2‖𝐿𝑞 for all 1 < 𝑝 < 3/2, 𝑞 = 3𝑝/(5𝑝 − 3) by the Hardy–
Littlewood–Sobolev inequality. Since

∫
d𝑦 |𝑦 |𝑛 𝑓3(𝑢+𝑦) ≤ 2𝑛−1 ( |𝑢 |𝑛‖ 𝑓3‖𝐿1 + ‖| · |𝑛 𝑓3‖𝐿1 ), we have also∫

d𝑦 |𝑦 |𝑛𝑆(𝑦) ≤ 𝐶‖ 𝑓4‖𝐿∞ (‖| · |𝑛 𝑓1‖𝐿𝑝 ‖ 𝑓2‖𝐿𝑞 ‖ 𝑓3‖𝐿1 + ‖ 𝑓1‖𝐿𝑝 ‖ 𝑓2‖𝐿𝑞 ‖| · |𝑛 𝑓3‖𝐿1 ) (3.154)

from which (3.153) follows. Moreover,

𝑓 ∈ S =⇒
√
| 𝑓 | ∈ S . (3.155)

Indeed, we have for all 𝑛 ≥ 0,∫
|𝑦 |𝑛

√
| 𝑓 |d𝑦 ≤

√
‖ 𝑓 ‖𝐿∞

∫
|𝑦 | ≤1

|𝑦 |𝑛d𝑦 + 1
2

∫
|𝑦 |𝑛+𝑚 | 𝑓 |d𝑦 + 1

2

∫
|𝑦 |>1

|𝑦 |𝑛−𝑚d𝑦 < ∞ (3.156)

since m can be chosen arbitrarily large by assumption. Thus, it suffices to prove the desired statement
for the functions ‖∇𝑘 𝑙 (1)𝑦 ‖2

𝐿2 . For 𝑘 = 0, we use equation (3.124) to compute

‖𝑙 (1)𝑦 ‖2
𝐿2 =

1
4𝜋

∬
d𝑢d𝑣

𝜓(𝑢)𝜓(𝑣)𝜓(𝑦 + 𝑢)𝜓(𝑣 + 𝑦)
|𝑢 − 𝑣 | . (3.157)

The statement now follows easily from equation (3.153) and Lemma 3.7. Arguing again via equation
(3.155), for 𝑘 = 1 it suffices to show the statement for

‖∇𝑙 (1)𝑦 ‖2
𝐿2 = ‖〈∇𝜓 |ℎ ·𝑇𝑦𝜓〉𝐿2 +

〈
𝜓 |ℎ ·∇𝑇𝑦𝜓〉𝐿2 ‖2

𝐿2

≤ 2‖〈∇𝜓 |ℎ ·𝑇𝑦𝜓〉𝐿2 ‖2
𝐿2 + 2‖〈𝜓 |ℎ ·∇𝑇𝑦𝜓〉𝐿2 ‖2

𝐿2 (3.158)

(the first equality follows from ∇𝑧ℎ𝑥 (𝑧) = −∇𝑥ℎ𝑥 (𝑧) and integration by parts). Using (3.124), we find

‖〈∇𝜓 |ℎ ·𝑇𝑦𝜓〉𝐿2 ‖2
𝐿2 ≤ 𝐶

∬
d𝑢d𝑣

|∇𝜓(𝑢) | |∇𝜓(𝑣) |𝜓(𝑣 + 𝑦)𝜓(𝑢 + 𝑦)
|𝑢 − 𝑣 | , (3.159a)

‖〈𝜓 |ℎ ·∇𝑇𝑦𝜓〉𝐿2 ‖2
𝐿2 ≤ 𝐶

∬
d𝑢d𝑣

|∇𝜓(𝑢 + 𝑦) | |∇𝜓(𝑣 + 𝑦) |𝜓(𝑣)𝜓(𝑢)
|𝑢 − 𝑣 | . (3.159b)

We arrive at the desired conclusion by Lemma 3.7 and equation (3.153). �

3.7. Energy contribution G
The energy contribution G, defined in equation (3.8b), is evaluated by the following proposition.

Proposition 3.20. Let H𝐾 as in equation (2.4), N1 = dΓ(Π1) and choose 𝑐 > 0. For every 𝜀 > 0, there
exists a constant 𝐶𝜀 > 0 (we omit the dependence on c) such that				G −N 2

𝛼2

〈
Υ𝐾 | (H𝐾 − N1)Υ𝐾

〉
F

				 ≤ 𝐶𝜀 𝛼
𝜀 (√𝐾𝛼−6 + 𝐾−1/2𝛼−5) (3.160)

for all |𝑃 |/𝛼 ≤ 𝑐 and all 𝛼 large enough.
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Proof. Using ℎPek𝐺0
𝐾 = 0 and N𝐺0

𝐾 = N1𝐺
0
𝐾 , we can decompose G into two terms

G = − 2
𝛼

∫
d𝑦 Re

〈
𝐺0
𝐾 | (𝛼−2

N1 + 𝛼−1𝜙(ℎ · + 𝜑𝑃))𝑇𝑦𝑒𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ

= G1 + G2, (3.161)

where the first term will contribute to the error while the second one provides an energy contribution of
order 𝛼−2. We proceed for each one separately.
Term G1. With the aid of equations (3.67) and (3.80) and (𝑇𝑦𝑒𝐴𝑃,𝑦 )† = 𝑇−𝑦𝑒

−𝐴𝑃,𝑦 , one finds

G1 = − 2
𝛼3

∫
d𝑦 Re

〈
𝑅3,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

)
|𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ

= G<
1 + G>

1 , (3.162)

where we introduced the operator 𝑅3,𝑦 = 𝑅1
3,𝑦 + 𝑅2

3,𝑦 with

𝑅1
3,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼𝑇−𝑦𝑃𝜓𝑒
−𝐴𝑃,𝑦N1 (3.163a)

𝑅2
3,𝑦 = 2𝛼𝑃𝜓

〈
ℎ𝐾, · | Re(𝑤1

𝑃,𝑦)
〉
𝐿2𝑅𝑢𝛼𝑇−𝑦𝑃𝜓𝑒

−𝐴𝑃,𝑦N1. (3.163b)

Proceeding similarly as for 𝑅1
1,𝑦 and 𝑅2

2,𝑦 in equations (3.82a) and (3.82b), one further verifies

||𝑅3,𝑦Ψ||ℋ ≤ 𝐶 ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op
(
1 + 𝛼𝑦2) || (N + 1)3/2Ψ||ℋ . (3.164)

Recalling the definition 𝑓𝛼 (𝑦) = ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op and equation (3.86), we can use Corollary 3.14 to find

|G>
1 | ≤ 𝐶

𝛼3 || (N + 1)3/2Υ>
𝐾 ||F

∫
d𝑦 𝑓𝛼 (𝑦) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼

−7. (3.165)

In the first term, we proceed with equation (3.74) and Lemma 3.15 to obtain

|G<
1 | ≤ 2

𝛼3

∫
d𝑦 ||𝑒𝜅NU𝐾 (𝑅3,𝑦𝜓 ⊗ Υ<

𝐾 ) ||ℋ ||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F

≤ 2
√

2
𝛼3

∫
d𝑦 ||𝑅3,𝑦𝜓 ⊗ Υ𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦) ≤ 𝐶

𝛼3

∫
d𝑦 𝑓𝛼 (𝑦) (1 + 𝛼𝑦2) 𝑛𝛿,𝜂 (𝑦), (3.166)

which brings us again into a position to apply Corollary 3.6. Hence,

|G<
1 | ≤ 𝐶𝛼−6+3𝛿 . (3.167)

Term G2. Here, we have

G2 = − 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝜙(ℎ · + 𝜑𝑃)𝑇𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1

𝐾

〉
ℋ

− 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝜙(ℎ · + 𝜑𝑃)𝑇𝑦 (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)𝐺1

𝐾

〉
ℋ
= G21 + G22. (3.168)

To separate the leading order contribution in G21, we insert 1 = U†
𝐾U𝐾 next to 𝐺0

𝐾 and bring U†
𝐾 to the

right side of the inner product. With U𝐾Υ𝐾 = Ω, equation (3.53c) and equation (3.63) this gives

G21 = − 2
𝛼2

∫
d𝑦 Re

〈
𝜓 ⊗ Ω|𝑎(ℎ · + 𝜑𝑃)𝑇𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑢𝛼𝑅𝑎†(ℎ1

𝐾, ·)𝜓 ⊗ Ω
〉
ℋ
, (3.169)
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where · is defined in equation (3.52a). Next, we write 𝑊 (𝛼𝑤𝑃,𝑦) = 𝑛0,1 (𝑦)𝑒𝑎
† (𝛼𝑤𝑃,𝑦 )𝑒−𝑎 (𝛼𝑤𝑃,𝑦 ) and

move the first exponential to the left side and the second exponential to the right side until they act both
on the Fock space vacuum. Using 𝑒−𝑎 ( 𝑓 )𝑎†(𝑔)𝑒𝑎 ( 𝑓 ) = 𝑎†(𝑔) − 〈 𝑓 |𝑔〉, we find this way

G21 = − 2
𝛼2

∫
d𝑦 𝑛0,1 (𝑦) Re

〈
𝜓 ⊗ Ω|𝑎(ℎ · + 𝜑𝑃)𝑇𝑦𝑢𝛼𝑅𝑎†(ℎ1

𝐾, ·)𝜓 ⊗ Ω
〉
ℋ

(3.170a)

+ 2
∫

d𝑦 𝑛0,1 (𝑦) Re
〈
𝜓 ⊗ Ω|〈ℎ · + 𝜑𝑃 |𝑤𝑃,𝑦〉𝐿2𝑇𝑦𝑢𝛼𝑅〈𝑤𝑃,𝑦 |ℎ1

𝐾, ·〉𝐿2𝜓 ⊗ Ω
〉
ℋ
. (3.170b)

In the first line, we write ℎ · + 𝜑𝑃 = ℎ0
· + ℎ1

· + 𝜑 + 𝑖𝜉𝑃 , with ℎ𝑖· = (Π𝑖ℎ)·, and use that〈
𝜓 ⊗ Ω|𝑎(ℎ0

· + 𝑖𝜉𝑃)𝑇𝑦𝑢𝛼𝑅𝑎†(ℎ1
𝐾, ·)𝜓 ⊗ Ω

〉
ℋ
= 0 (3.171)

since ℎ0
𝑥 + 𝑖𝜉𝑃 ∈ Ran(Π0) whereas ℎ1

𝐾,𝑥 ∈ Ran(Π1). Finally, we can replace a and 𝑎† by 𝜙, and then
transform back with U𝐾 , using equation (3.53c), in order to obtain

(3.170a) = − 2
𝛼2

∫
d𝑦 𝑛0,1 (𝑦) Re

〈
𝜓 ⊗ Υ𝐾 |𝜙(ℎ1

· + 𝜑)𝑇𝑦𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝜓 ⊗ Υ𝐾

〉
ℋ
. (3.172)

To summarize, we have shown that

G21 = − 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝐿2,𝑦𝐺

0
𝐾

〉
ℋ
𝑛0,1 (𝑦) +

∫
d𝑦 ℓ2 (𝑦)𝑛0,1 (𝑦) = G211 + G212 (3.173)

with

𝐿2,𝑦 = 𝑃𝜓𝜙(ℎ1
· + 𝜑)𝑇𝑦𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 (3.174a)

ℓ2(𝑦) = 2 Re
〈
𝜓 |〈ℎ · + 𝜑𝑃 |𝑤𝑃,𝑦〉𝐿2𝑇𝑦𝑢𝛼𝑅〈𝑤1

𝑃,𝑦 |ℎ
1
𝐾, ·〉𝐿2𝜓

〉
𝐿2 . (3.174b)

In the first term, we add and subtract the Gaussian,

G211 = − 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝐿2,𝑦𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

− 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝐿2,𝑦𝐺

0
𝐾

〉
ℋ

(
𝑛0,1 (𝑦) − 𝑒−𝜆𝛼

2𝑦2 )
= Glo

211 + Gerr
211, (3.175)

and proceed with Glo
211 by inserting ℎ1

· = ℎ1
𝐾, · + (ℎ1

· − ℎ1
𝐾, ·), 𝑇𝑦 = 1 + (𝑇𝑦 − 1) and 𝑢𝛼 = 1 + (𝑢𝛼 − 1),

Glo
211 = − 2

𝛼2 Re
〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, · + 𝜑)𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

− 2
𝛼2 Re

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, · + 𝜑) (𝑢𝛼 − 1)𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

− 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, · + 𝜑) (𝑇𝑦 − 1)𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

− 2
𝛼2

∫
d𝑦 Re

〈
𝐺0
𝐾 |𝜙(ℎ1

· − ℎ1
𝐾, ·)𝑇𝑦𝑢𝛼𝑅𝜙(ℎ

1
𝐾, ·)𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

=
4∑

𝑛=1
Glo,𝑛

211 . (3.176)
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Since 𝑃𝜓𝜙(𝜑)𝑅 = 0, we have Glo,1
211 = 2

𝛼2

〈
Υ𝐾 | (H𝐾 − N1)Υ𝐾

〉
F
( 𝜋
𝜆𝛼2 )3/2, cf. (2.4), and hence we can

use Proposition 3.17 to conclude that				Glo,1
211 −N 2

𝛼2

〈
Υ𝐾 | (H𝐾 − N1)Υ𝐾

〉
F

				 ≤ 𝐶𝜀

√
𝐾𝛼−6+𝜀 . (3.177)

For the other terms, we shall show the combined error estimate

|Glo,2
211 | + |Glo,3

211 | + |Glo,4
211 | ≤ 𝐶

(√
𝐾𝛼−6 + 𝐾−1/2𝛼−5) . (3.178)

In the last term, we recall ℎ · (𝑦) = ℎ𝐾=∞, · (𝑦), and apply Lemma 3.9 in combination with
||𝑅1/2𝑢𝛼𝑇−𝑦∇||op ≤ 𝐶. This gives

|Glo,4
211 | ≤

2
𝛼2

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2 ||𝑅1/2𝑢𝛼𝑇−𝑦𝜙(ℎ1
· − ℎ1

𝐾, ·)𝑃𝜓𝐺
0
𝐾 ||ℋ ||𝑅1/2𝜙(ℎ1

𝐾, ·)𝑃𝜓𝐺
0
𝐾 ||ℋ

≤ 𝐶𝛼−5𝐾−1/2. (3.179)

Next, we write 𝑇𝑦 − 1 =
∫ 1

0 d𝑠𝑇𝑠𝑦 (𝑦∇) in the third term to obtain an additional |𝑦 |,

|Glo,3
211 | ≤

2
𝛼2

( ∫
d𝑦 |𝑦 |𝑒−𝜆𝛼2𝑦2

)
||∇𝑢𝛼𝑅1/2 ||op ||𝜙(ℎ1

𝐾, · + 𝜑)𝐺0
𝐾 ||ℋ ||𝑅1/2𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾 ||ℋ

≤ 𝐶𝛼−6√𝐾, (3.180)

where the factor
√
𝐾 comes from the 𝐿2 norm of ℎ1

𝐾,0 in the bound on the first field operator (since
Δ𝑅1/2 is unbounded, we cannot apply the commutator method to this part). In the second term, we use
𝜓(𝑥) ≤ 𝐶𝑒−|𝑥 |/𝐶 for some 𝐶 > 0, and thus || (𝑢𝛼 − 1)𝜓 ||𝐿2 ≤ 𝐶𝑒−𝛼/𝐶 , to estimate

|Glo,2
211 | ≤

𝐶

𝛼5 || (𝑢𝛼 − 1)𝜓 ||𝐿2 ||𝜙(ℎ1
𝐾, · + 𝜑)𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾 ||ℋ ≤ 𝐶

√
𝐾𝑒−𝛼/𝐶 . (3.181)

This proves equation (3.178).
To bound the remaining contributions in Gerr

211 and G212, we shall use		〈𝐺0
𝐾 |𝐿2,𝑦𝐺

0
𝐾

〉		 ≤ 𝐶 𝑓2,𝛼 (𝑦) (3.182a)

|ℓ2(𝑦) | ≤ 𝐶 𝑓2,𝛼 (𝑦) (𝑦2 + 𝛼−2) (|𝑦 | + |𝑦 |3 + 𝛼−2), (3.182b)

where

𝑓2,𝛼 (𝑦) = ||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op + ||∇𝑢𝛼𝑇−𝑦𝑃𝜓 ||op. (3.183)

Using the exponential decay of 𝜓 and |∇𝑘𝑢𝛼 | (𝑦) ≤ 1(|𝑦 | ≤ 2𝛼), for 𝑘 = 0, 1, it is easy to show that

|| 𝑓2,𝛼 ||𝐿∞ ≤ 𝐶 and || | · |𝑛 𝑓2,𝛼 ||𝐿1 ≤ 𝐶𝑛𝛼
3+𝑛 for all 𝑛 ∈ N0. (3.184)

To verify equations (3.182a) and (3.182b), use 𝑢𝛼𝑇−𝑦𝜙(ℎ ·) = 𝜙(ℎ ·−𝑦)𝑢𝛼𝑇−𝑦 and Cauchy–Schwarz to
bound 		〈𝐺0

𝐾 |𝐿2,𝑦𝐺
0
𝐾

〉
ℋ

		 ≤ ||𝑅1/2𝜙(ℎ1
·−𝑦 + 𝜑)𝑢𝛼𝑇−𝑦𝑃𝜓𝐺

0
𝐾 ||ℋ ||𝑅1/2𝜙(ℎ1

𝐾, ·)𝑃𝜓𝐺
0
𝐾 ||ℋ . (3.185)
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Now, we can use equation (3.44) and Lemma 3.9 to obtain equation (3.182a). To estimate ℓ2(𝑦), defined
in equation (3.174b), we proceed with

|ℓ2(𝑦) | ≤ 2
		〈𝜓 |𝑇𝑦𝑢𝛼〈ℎ ·−𝑦 |𝑤𝑃,𝑦〉𝐿2𝑅〈𝑤1

𝑃,𝑦 |ℎ
1
𝐾, ·〉𝐿2𝜓

〉
𝐿2

		 (3.186a)

+ 2
		〈𝜓 |𝑇𝑦𝑢𝛼〈𝜑𝑃 |𝑤𝑃,𝑦〉𝐿2𝑅〈𝑤1

𝑃,𝑦 |ℎ
1
𝐾, ·〉𝐿2𝜓

〉
𝐿2

		, (3.186b)

and considering the first line, we use Cauchy–Schwarz, write out the two inner products (in the phonon
variable) and then use Cauchy–Schwarz again,

| ((3.186a) | ≤ 2
∫

d𝑢 |𝑤𝑃,𝑦 (𝑢) | ||𝑃𝜓𝑇𝑦𝑢𝛼ℎ ·−𝑦 (𝑢)𝑅1/2 ||op

∫
d𝑧 |𝑤1

𝑃,𝑦 (𝑧) | ||𝑅
1/2ℎ1

𝐾, · (𝑧)𝜓 ||

≤ 2||𝑤𝑃,𝑦 ||𝐿2 ||𝑤1
𝑃,𝑦 ||𝐿2

( ∫
d𝑢 ||𝑃𝜓𝑇𝑦𝑢𝛼ℎ ·−𝑦 (𝑢)𝑅1/2 ||2op

∫
d𝑧 ||𝑅1/2ℎ1

𝐾, · (𝑧)𝜓 ||
2
𝐿2

)1/2

≤ 𝐶 𝑓2,𝛼 (𝑦) (|𝑦 | + 𝑦3 + 𝛼−2) (𝑦2 + 𝛼−2), (3.187)

where the last step follows from Lemma 3.4 and Corollary 3.11 together with ℎ𝐾, · = ℎ0
𝐾, · + Θ−1

𝐾 ℎ1
𝐾, ·.

Since the second line is estimated similarly, we arrive at equation (3.182b). With equation (3.182a) at
hand, we can apply Lemma 3.5 and equation (3.184) to get

|Gerr
211 | ≤

2
𝛼2

∫
d𝑦

		〈𝐺0
𝐾 |𝐿2,𝑦𝐺

0
𝐾

〉
ℋ

		 		𝑛0,1 (𝑦) − 𝑒−𝜆𝛼
2𝑦2 		 ≤ 𝐶𝛼−6, (3.188)

and further, using equation (3.182b) and Corollary 3.6, we obtain

|G212 | ≤ 𝐶

∫
d𝑦 |ℓ2 (𝑦) | 𝑛0,1 (𝑦) ≤ 𝐶𝛼−6. (3.189)

This completes the analysis of G21.
Next, we introduce 𝑅4,𝑦 = 𝑅1

4,𝑦 + 𝑅2
4,𝑦 with

𝑅1
4,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅
1
2 (𝑒−𝐴𝑃,𝑦 − 1)𝑅

1
2 𝜙(ℎ ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝑃𝜓 (3.190a)

𝑅2
4,𝑦 = 2𝛼𝑃𝜓

〈
ℎ𝐾, · | Re(𝑤1

𝑃,𝑦)
〉
𝐿2𝑅

1
2 (𝑒−𝐴𝑃,𝑦 − 1)𝑅

1
2 𝜙(ℎ ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝑃𝜓 . (3.190b)

Inserting equations (3.67) and (3.80) into equation (3.168) it follows that

G22 = − 2
𝛼2

∫
d𝑦 Re

〈
𝑅4,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

)
|𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ

= G<
22 + G>

22. (3.191)

With the aid of Lemma 3.9, we obtain

||𝑅1
4,𝑦Ψ||ℋ ≤ 𝐶 || (𝑒−𝐴𝑃,𝑦 − 1) (N + 1)1/2𝑅1/2𝜙(ℎ ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝑃𝜓Ψ||ℋ , (3.192)

and proceeding similarly as in equation (3.84), we find

||𝑅2
4,𝑦Ψ||ℋ ≤ 𝐶𝛼(𝑦2 + 𝛼−2) || (𝑒−𝐴𝑃,𝑦 − 1)𝑅1/2𝜙(ℎ ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝑃𝜓Ψ||ℋ . (3.193)
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For Ψ = 𝜓 ⊗ Υ>
𝐾 , a second application of Lemma 3.9 (after using unitarity of 𝑒−𝐴𝑃,𝑦 ) together with

||𝜑𝑃 ||2
𝐿2 ≤ 𝐶 for |𝑃 |/𝛼 ≤ 𝑐 and Corollary 3.14 is sufficient to find

||𝑅4,𝑦𝜓 ⊗ Υ>
𝐾 ||ℋ ≤ 𝐶

(
||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op + ||∇𝑢𝛼𝑇−𝑦𝑃𝜓 ||op

)
(1 + 𝛼𝑦2) || (N + 1)Υ>

𝐾 ||F

≤ 𝐶𝛿 𝛼
−10 𝑓2,𝛼 (𝑦) (1 + 𝛼𝑦2) (3.194)

with 𝑓2,𝛼 defined in equation (3.183). Using this bound in 𝐺>
22 and recalling Corollary 3.14 and equation

(3.184) we thus obtain

|G>
22 | ≤ 𝐶𝛿 𝛼

−6. (3.195)

In G<
22, we proceed by inserting equation (3.70) and use equation (3.74) and Lemma 3.15. This gives

|G<
22 | ≤

2
√

2
𝛼2

∫
d𝑦 ||𝑅4,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦). (3.196)

The derivation of a suitable bound for the norm in the integrand is more cumbersome, so we go through
it step by step. To shorten the notation let 𝐺0<

𝐾 = 𝜓 ⊗ Υ<
𝐾 . We start from equations (3.192) and (3.193)

where we insert ℎ · = ℎ𝐾, · + (ℎ · − ℎ𝐾, ·) and use the triangle inequality,

||𝑅1
4,𝑦𝐺

0<
𝐾 ||ℋ ≤ 𝐶 || (𝑒−𝐴𝑃,𝑦 − 1) (N + 1)1/2𝑅

1
2 𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ (3.197a)

+ 𝐶 || (𝑒−𝐴𝑃,𝑦 − 1) (N + 1)1/2𝑅
1
2 𝜙(ℎ ·−𝑦 − ℎ𝐾, ·−𝑦)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ , (3.197b)

||𝑅2
4,𝑦𝐺

0<
𝐾 ||ℋ ≤ 𝐶𝛼(𝑦2 + 𝛼−2) || (𝑒−𝐴𝑃,𝑦 − 1)𝑅

1
2 𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ (3.197c)

+ 𝐶𝛼(𝑦2 + 𝛼−2) || (𝑒−𝐴𝑃,𝑦 − 1)𝑅
1
2 𝑢𝛼𝜙(ℎ ·−𝑦 − ℎ𝐾, ·−𝑦)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ . (3.197d)

For the second and fourth line, we apply Lemma 3.9 a second time (after bringing (N + 1)1/2 to the
right of a and 𝑎†) to find

(3.197b) + (3.197d) ≤ 𝐶𝐾−1/2(1 + 𝛼𝑦2) (||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op + ||∇𝑢𝛼𝑇−𝑦𝑃𝜓 ||op) || (N + 1)Υ<
𝐾 ||F

≤ 𝐶𝐾−1/2(1 + 𝛼𝑦2) 𝑓2,𝛼 (𝑦). (3.198)

In the first and third line, we use the functional calculus and write out 𝐴𝑃,𝑦 = 𝑖𝑃 𝑓 𝑦 + 𝑖𝑔𝑃 (𝑦),

(3.197a) + (3.197c) ≤ 𝐶 || (𝑃 𝑓 𝑦) (N + 1)1/2𝑅
1
2 𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ (3.199a)

+ 𝐶𝛼(𝑦2 + 𝛼−2) || (𝑃 𝑓 𝑦)𝑅
1
2 𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ (3.199b)

+ 𝐶 |𝑔𝑃 (𝑦) | || (N + 1)1/2𝑅1/2𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<
𝐾 ||ℋ (3.199c)

+ 𝐶𝛼(𝑦2 + 𝛼−2) |𝑔𝑃 (𝑦) | ||𝑅
1
2 𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ . (3.199d)

Now, we use [𝑖𝑃 𝑓 𝑦, 𝜙( 𝑓 )] = 𝜋(𝑦∇ 𝑓 ) such that we can estimate the first line by

(3.199a) ≤ 𝐶
(
|| (N + 1)1/2𝑅1/2𝜙(ℎ𝐾, ·−𝑦 + 𝜑𝑃) (𝑃 𝑓 𝑦)𝑢𝛼𝑇−𝑦𝐺0<

𝐾 ||ℋ

+ ||(N + 1)1/2𝑅1/2𝜋(𝑦∇ℎ𝐾, ·−𝑦 + 𝑦∇𝜑𝑃)𝑢𝛼𝑇−𝑦𝐺0<
𝐾 ||ℋ

)
. (3.200)
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To bound the first line, we use again Lemma 3.9, while in the second line we use (∇ℎ𝐾 )· = −∇(ℎ𝐾, ·) =
−[∇, ℎ𝐾, ·] and (3.44) together with ||∇𝜑𝑃 ||𝐿2 ≤ 𝐶 for |𝑃 |/𝛼 ≤ 𝑐. Together, we obtain

(3.199a) ≤ 𝐶 |𝑦 |
(
||𝑢𝛼𝑇−𝑦𝑃𝜓 ||op + ||∇𝑢𝛼𝑇−𝑦𝑃𝜓 ||op

) (
|| (N + 1)𝑃 𝑓 Υ

<
𝐾 ||F +

√
𝐾 || (N + 1)Υ<

𝐾 ||F
)

≤ 𝐶𝛼𝛿 |𝑦 | 𝑓2,𝛼 (𝑦)
(
||𝑃 𝑓 Υ

<
𝐾 ||F +

√
𝐾
)

≤ 𝐶𝛼𝛿
√
𝐾 |𝑦 | 𝑓2,𝛼 (𝑦), (3.201)

where the factor
√
𝐾 in the first step comes from the 𝐿2-norm of ℎ𝐾,0, and the last step follows from

Lemma 3.16. In a similar fashion, one shows

(3.199b) ≤ 𝐶𝛼𝛿
√
𝐾 |𝑦 | (1 + 𝛼𝑦2) 𝑓2,𝛼 (𝑦), (3.202)

and, with equation (3.77), one also verifies

(3.199c) + (3.199d) ≤ 𝐶𝛼𝛿 (𝛼2 |𝑦 |5 + 𝛼 |𝑦 |3) 𝑓2,𝛼 (𝑦). (3.203)

Collecting the estimates (3.198), (3.201), (3.202) and (3.203), we arrive at

||𝑅4,𝑦𝜓 ⊗ Υ<
𝐾 ||ℋ ≤ 𝐶 𝑓2,𝛼 (𝑦)𝛼𝛿

(
𝐾− 1

2 (1 + 𝛼𝑦2) + 𝛼2 |𝑦 |5 +
√
𝐾 (|𝑦 | + 𝛼 |𝑦 |3)

)
. (3.204)

Now, we can apply Corollary 3.6 together with equation (3.184) to bound the right side of equation
(3.196). The result is

|G<
22 | ≤ 𝐶𝛼−2+𝛿 (𝐾−1/2𝛼−3 +

√
𝐾𝛼−4+4𝛿 ) . (3.205)

In view of the estimates (3.165), (3.167), (3.177), (3.178), (3.188), (3.189), (3.195) and (3.205), the
proof of Proposition 3.20 is now complete. �

3.8. Energy contribution K
Recall that K was defined in (3.8c).
Proposition 3.21. Let H𝐾 as in equation (2.4), N1 = dΓ(Π1) and choose 𝑐 > 0. For every 𝜀 > 0, there
exists a constant 𝐶𝜀 > 0 (we omit the dependence on c) such that				K +N 1

𝛼2

〈
Υ𝐾 | (H𝐾 − N1)Υ𝐾

〉
F

				 ≤ 𝐶𝜀 𝛼
𝜀 (√𝐾𝛼−6 + 𝐾−1/2𝛼−5) (3.206)

for all |𝑃 |/𝛼 ≤ 𝑐 and all 𝛼 large enough.
Proof. We split this contribution into three terms

K =
1
𝛼2

∫
d𝑦

〈
𝐺1
𝐾 |

(
ℎPek + 𝛼−2

N + 𝛼−1𝜙(ℎ · + 𝜑𝑃)
)
𝑇𝑦𝑒

𝐴𝑃,𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1
𝐾

〉
ℋ

= K1 +K2 +K3, (3.207)

and note that K1 provides the energy contribution of order 𝛼−2.
Term K1. We start again by writing

K1 =
1
𝛼2

∫
d𝑦

〈
𝐺1
𝐾 |ℎPek𝑇𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝐺1

𝐾

〉
ℋ

+ 1
𝛼2

∫
d𝑦

〈
𝐺1
𝐾 |ℎPek𝑇𝑦 (𝑒𝐴𝑃,𝑦 − 1)𝑊 (𝛼𝑤𝑃,𝑦)𝐺1

𝐾

〉
ℋ

= K11 +K12, (3.208)

https://doi.org/10.1017/fms.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.45


40 David Mitrouskas et al.

and proceed for the first term similarly as in the computation of G2; see equation (3.168). This leads to

K11 =
1
𝛼2

∫
d𝑦

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼ℎ
Pek𝑇𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ

=
1
𝛼2

∫
d𝑦

〈
𝜓 ⊗ Ω|𝑎(ℎ1

𝐾, ·)𝑅𝑢𝛼ℎ
Pek𝑇𝑦𝑊 (𝛼𝑤𝑃,𝑦)𝑢𝛼𝑅𝑎†(ℎ1

𝐾, ·)𝜓 ⊗ Ω
〉
ℋ

=
1
𝛼2

∫
d𝑦

〈
𝐺0
𝐾 |𝐿3,𝑦𝐺

0
𝐾

〉
ℋ
𝑛0,1 (𝑦) −

∫
d𝑦 ℓ3 (𝑦)𝑛0,1 (𝑦) = K111 +K112, (3.209)

where

𝐿3,𝑦 = 𝑃𝜓𝜙(ℎ1
𝐾, ·)𝑅𝑢𝛼ℎ

Pek𝑇𝑦𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝑃𝜓 (3.210a)

ℓ3(𝑦) =
〈
𝜓 |〈ℎ1

𝐾, · |𝑤
1
𝑃,𝑦〉𝐿2𝑅𝑢𝛼ℎ

Pek𝑇𝑦𝑢𝛼𝑅〈𝑤1
𝑃,𝑦 |ℎ

1
𝐾, ·〉𝐿2𝜓

〉
𝐿2 . (3.210b)

We go on with

K111 =
1
𝛼2

∫
d𝑦

〈
𝐺0
𝐾 |𝐿3,𝑦𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

+ 1
𝛼2

∫
d𝑦

〈
𝐺0
𝐾 |𝐿3,𝑦𝐺

0
𝐾

〉
ℋ

(
𝑛0,1 (𝑦) − 𝑒−𝜆𝛼

2𝑦2 )
= Klo

111 +Kerr
111, (3.211)

and in the leading-order term, we insert 𝑇𝑦 = 1 + (𝑇𝑦 − 1) and 𝑢𝛼 = 1 + (𝑢𝛼 − 1),

Klo
111 =

1
𝛼2

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅ℎ
Pek𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

+ 1
𝛼2

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅(𝑢𝛼 − 1)ℎPek𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

+ 1
𝛼2

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼ℎ
Pek (𝑢𝛼 − 1)𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ

∫
d𝑦 𝑒−𝜆𝛼

2𝑦2

+ 1
𝛼2

∫
d𝑦

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼ℎ
Pek (𝑇𝑦 − 1)𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

=
4∑

𝑛=1
Klo,n

111 . (3.212)

Since 𝑅ℎPek𝑅 = 𝑅, one finds Klo,1
111 = − 1

𝛼2

〈
Υ𝐾 | (H𝐾 −N1)Υ𝐾

〉
F
( 𝜋
𝜆𝛼2 )3, cf. equation (2.4), and with the

aid of Proposition 3.17, this gives the leading-order contribution				Klo,1
111 +N 1

𝛼2

〈
Υ𝐾 | (H𝐾 − N1)Υ𝐾

〉
F

				 ≤ 𝐶𝜀

√
𝐾𝛼−6+𝜀 . (3.213)

For the other terms, we shall show that

|Klo,2
111 | + |Klo,3

111 | + |Klo,4
111 | ≤ 𝐶

√
𝐾𝛼−6. (3.214)

In the second term, we use ℎPek𝑅 = 𝑄𝜓 = 1 − 𝑃𝜓 to write

𝐾 lo,2
111 = 𝛼−2〈𝐺0

𝐾 |𝜙(ℎ1
𝐾, ·)𝑅(𝑢𝛼 − 1) (1 − 𝑃𝜓)𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ

(
𝜋

𝜆𝛼2

)3/2
(3.215)
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which is exponentially small in 𝛼, since || (𝑢𝛼−1)𝜓 ||𝐿2 ≤ 𝐶𝑒−𝛼/𝐶 , and thus with Lemma 3.9 one obtains
|Klo,2

111 | ≤ 𝐶
√
𝐾𝑒−𝛼/𝐶 . In the next term, we use [ℎPek, 𝑢𝛼 − 1] = −[Δ , 𝑢𝛼] and again ℎPek𝑅 = 1 − 𝑃𝜓 to

get

Klo,3
111 = 𝛼−2〈𝐺0

𝐾 |𝜙(ℎ1
𝐾, ·)𝑅𝑢𝛼 (𝑢𝛼 − 1) (1 − 𝑃𝜓)𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾

〉
ℋ

(
𝜋

𝜆𝛼2

)3/2

− 𝛼−2〈𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅[Δ , 𝑢𝛼]𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ

(
𝜋

𝜆𝛼2

)3/2
. (3.216)

Here, the first line is bounded again exponentially in 𝛼, whereas in the second line we use [Δ , 𝑢𝛼] =
2(∇𝑢𝛼)∇ + (Δ𝑢𝛼) and ||∇𝑢𝛼 ||𝐿∞ + ||Δ𝑢𝛼 ||𝐿∞ ≤ 𝐶𝛼−1, see (2.20). Together with Lemmas 3.8 and 3.9,
this implies |Klo,3

111 | ≤ 𝐶𝛼−6. In the last term, we employ 𝑇𝑦 − 1 =
∫ 1

0 d𝑠𝑇𝑠𝑦 (𝑦∇), [ℎPek, 𝑢𝛼] = −[Δ , 𝑢𝛼]
and ℎPek𝑅 = 𝑄𝜓 to find

Klo,4
111 = 𝛼−2

∫
d𝑦

∫ 1

0
d𝑠

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑄𝜓𝑢𝛼𝑇𝑠𝑦 (𝑦∇)𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2

+ 𝛼−2
∫

d𝑦
∫ 1

0
d𝑠

〈
𝐺0
𝐾 |𝜙(ℎ1

𝐾, ·)𝑅[Δ , 𝑢𝛼]𝑇𝑠𝑦 (𝑦∇)𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾

〉
ℋ
𝑒−𝜆𝛼

2𝑦2
. (3.217)

In both lines, there is an additional factor y, and together with equation (2.20), we thus obtain

|Klo,4
111 | ≤ 𝐶𝛼−6 ||𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾 ||ℋ ||∇𝑢𝛼𝑅1/2 ||op ||𝑅1/2𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾 ||ℋ

+ 𝐶𝛼−6 ||𝑅1/2𝜙(ℎ1
𝐾, ·)𝐺

0
𝐾 ||ℋ ||𝑅1/2 [Δ , 𝑢𝛼] ||op ||∇𝑢𝛼𝑅1/2 ||op ||𝑅𝜙(ℎ1

𝐾, ·)𝐺
0
𝐾 ||ℋ

≤ 𝐶 (𝛼−6√𝐾 + 𝛼−7). (3.218)

This proves (3.214).
To estimate K112 and Kerr

111, we make use of		〈𝐺0
𝐾 |𝐿3,𝑦𝐺

0
𝐾

〉
ℋ

		 ≤ 𝐶 𝑓3,𝛼 (𝑦) (3.219a)

|ℓ3 (𝑦) | ≤ 𝐶 𝑓3,𝛼 (𝑦) (𝑦4 + 𝛼−4), (3.219b)

where

𝑓3,𝛼 (𝑦) = ||𝑢𝛼𝑇𝑦𝑢𝛼 ||op + ||(∇𝑢𝛼)𝑇𝑦𝑢𝛼 ||op + ||𝑢𝛼𝑇𝑦 (∇𝑢𝛼) ||op + ||(∇𝑢𝛼)𝑇𝑦 (∇𝑢𝛼) ||op. (3.220)

Recalling that by definition |∇𝑘𝑢𝛼 (𝑦) | ≤ 1(|𝑦 | ≤ 2𝛼) for 𝑘 = 0, 1, it follows that 𝑓3,𝛼 (𝑦) ≤ 41(|𝑦 | ≤
4𝛼) and thus

|| 𝑓3,𝛼 ||𝐿∞ ≤ 4 and || | · |𝑛 𝑓3,𝛼 ||𝐿1 ≤ 𝐶𝑛𝛼
3+𝑛 for all 𝑛 ∈ N0. (3.221)

In order to verify equation (3.219a), use ℎPek = −Δ +𝑉 𝜑 − 𝜆Pek to write

𝑅
1
2 𝑢𝛼𝑇𝑦ℎ

Pek𝑢𝛼𝑅
1
2 = 𝑅

1
2 𝑢𝛼

(
(−𝑖∇)𝑇𝑦 (−𝑖∇) + 𝑇𝑦 (𝑉 𝜑 − 𝜆Pek)

)
𝑢𝛼𝑅

1
2

= −𝑅
1
2 (−𝑖∇𝑢𝛼)𝑇𝑦 (−𝑖∇𝑢𝛼)𝑅

1
2 + 𝑅

1
2 (−𝑖∇)𝑢𝛼𝑇𝑦𝑢𝛼 (−𝑖∇)𝑅

1
2

+ 𝑅
1
2 (−𝑖∇)𝑢𝛼𝑇𝑦 (−𝑖∇𝑢𝛼)𝑅

1
2 − 𝑅

1
2 (−𝑖∇𝑢𝛼)𝑇𝑦𝑢𝛼 (−𝑖∇)𝑅

1
2

+ 𝑅
1
2 𝑢𝛼𝑇𝑦𝑢𝛼 (𝑉 𝜑 − 𝜆Pek)𝑅

1
2 . (3.222)
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Since ||𝑉 𝜑𝑅1/2 ||op ≤ 𝐶 (||𝑅 ||op + ||∇𝑅1/2 ||op) ≤ 𝐶 (see Lemma 3.8), it thus follows that

||𝑅
1
2 𝑢𝛼𝑇𝑦ℎ

Pek𝑢𝛼𝑅
1
2 ||op ≤ 𝐶 𝑓3,𝛼 (𝑦), (3.223)

With this at hand, one applies Lemma 3.9 to conclude the bound stated in equation (3.219a). For ℓ3(𝑦),
we proceed similarly as in equation (3.187), that is,

|ℓ3(𝑦) | ≤ ||𝑅1/2𝑢𝛼ℎ
Pek𝑇𝑦𝑢𝛼𝑅

1/2 ||op ||𝑅1/2〈𝑤1
𝑃,𝑦 |ℎ

1
𝐾, ·〉𝐿2𝜓 ||2

𝐿2

≤ 𝑓3,𝛼 (𝑦) ||𝑤1
𝑃,𝑦 ||

2
𝐿2

∫
d𝑧 ||𝑃𝜓ℎ

1
𝐾, · (𝑧)𝑅

1/2 ||2op ≤ 𝐶 𝑓3,𝛼 (𝑦) (𝑦4 + 𝛼−4). (3.224)

Now, we can apply Lemma 3.5 and (3.221) to estimate

|Kerr
111 | ≤

𝐶

𝛼2

∫
d𝑦 𝑓3,𝛼 (𝑦) |𝑛0,1 (𝑦) − 𝑒−𝜆𝛼

2𝑦2 | ≤ 𝐶𝛼−6, (3.225)

and further invoke Corollary 3.6 to obtain

|K112 | ≤
∫

d𝑦 𝑓3,𝛼 (𝑦) (|𝑦 |4 + 𝛼−4)𝑛0,1(𝑦) ≤ 𝐶𝛼−7. (3.226)

Next, we come to K12 which we rewrite with the aid of equations (3.67) and (3.80) as

K12 =
1
𝛼2

∫
d𝑦

〈
𝑅5,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

)
|𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ
= K<

12 +K>
12 (3.227)

with the operator 𝑅5,𝑦 = 𝑅1
5,𝑦 + 𝑅2

5,𝑦 and

𝑅1
5,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼 (𝑒
−𝐴𝑃,𝑦 − 1)𝑇−𝑦ℎPek𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 (3.228a)

𝑅2
5,𝑦 = 2𝛼𝑃𝜓

〈
ℎ𝐾, · | Re(𝑤1

𝑃,𝑦)
〉
𝐿2𝑅𝑢𝛼 (𝑒−𝐴𝑃,𝑦 − 1)𝑇−𝑦ℎPek𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 . (3.228b)

Utilizing Lemma 3.9 and (3.32a), we have

||𝑅1
5,𝑦Ψ||ℋ ≤ 𝐶 || (𝑒−𝐴𝑃,𝑦 − 1) (N + 1)1/2𝑅

1
2 𝑢𝛼𝑇−𝑦ℎ

Pek𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝑃𝜓Ψ||ℋ , (3.229)

and following the same steps as in equation (3.84),

||𝑅2
5,𝑦Ψ|| ≤ 𝐶𝛼(𝑦2 + 𝛼−2) || (𝑒−𝐴𝑃,𝑦 − 1)𝑅

1
2 𝑢𝛼𝑇−𝑦ℎ

Pek𝑢𝛼𝑅𝜙(ℎ1
𝐾, ·)𝑃𝜓Ψ||ℋ . (3.230)

After using unitarity of 𝑒−𝐴𝑃,𝑦 and equation (3.221), we can apply Lemma 3.9 another time to obtain

||𝑅5,𝑦𝜓 ⊗ Υ>
𝐾 ||ℋ ≤ 𝐶 𝑓3,𝛼 (−𝑦) (1 + 𝛼𝑦2) || (N + 1)Υ>

𝐾 ||F . (3.231)

Thus, we can estimate the tail with the aid of Corollary 3.14 and equation (3.221),

|K>
12 | ≤

𝐶

𝛼2 || (N + 1)Υ>
𝐾 ||F

∫
d𝑦 𝑓3,𝛼 (−𝑦) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼

−6. (3.232)
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Then we use equation (3.63), equaiton (3.74) and apply Lemma 3.15 to get

|K<
12 | ≤

1
𝛼2

∫
d𝑦 ||U𝐾 𝑒𝜅N𝑅5,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ ||𝑒−𝜅N𝑊 (𝛼𝑤𝑃,𝑦)Ω||F

≤
√

2
𝛼2

∫
d𝑦 ||𝑅5,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦). (3.233)

To bound the norm in the integral, we proceed in close analogy to the steps following equation (3.196).
We abbreviate again 𝐺0<

𝐾 = 𝜓⊗Υ<
𝐾 and start from equations (3.229) and (3.230). With equation (3.221),

the functional calculus and 𝐴𝑃,𝑦 = 𝑖𝑃 𝑓 𝑦 + 𝑖𝑔𝑃 (𝑦), one finds

||𝑅5,𝑦𝐺
0<
𝐾 ||ℋ ≤ 𝐶

(
𝑓3,𝛼 (−𝑦) || (𝑒−𝐴𝑃,𝑦 − 1) (N + 1)1/2𝑅

1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ

+ 𝛼(𝑦2 + 𝛼−2) 𝑓3,𝛼 (−𝑦) || (𝑒−𝐴𝑃,𝑦 − 1)𝑅
1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ

)
≤ 𝐶

(
𝑓3,𝛼 (−𝑦)

(
|| (𝑦𝑃 𝑓 ) (N + 1)1/2𝑅

1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ (3.234a)

+ 𝑓3,𝛼 (−𝑦) |𝑔𝑃 (𝑦) |(N + 1)1/2𝑅
1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ (3.234b)

+ 𝑓3,𝛼 (−𝑦) (𝛼𝑦2 + 𝛼−1) || (𝑃 𝑓 𝑦)𝑅
1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ (3.234c)

+ 𝑓3,𝛼 (−𝑦) (𝛼𝑦2 + 𝛼−1) |𝑔𝑃 (𝑦) | ||𝑅
1
2 𝜙(ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ

)
. (3.234d)

In the second and fourth line, we use |𝑔𝑃 (𝑦) | ≤ 𝐶𝛼 |𝑦 |3 and Lemma 3.9,

(3.234b) + (3.234d) ≤ 𝐶 (𝛼2 |𝑦 |5 + 𝛼 |𝑦 |3) 𝑓3,𝛼 (−𝑦) || (N + 1)Υ<
𝐾 ||F

≤ 𝐶 (𝛼2 |𝑦 |5 + 𝛼 |𝑦 |3) 𝑓3,𝛼 (−𝑦). (3.235)

In the first and third line, we employ the commutator [𝑖𝑃 𝑓 𝑦, 𝜙( 𝑓 )] = 𝜋(𝑦∇ 𝑓 ) to get

(3.234a) + (3.234c) ≤ 𝐶
(
𝑓3,𝛼 (−𝑦) || (N + 1)1/2𝑅

1
2 𝜙(ℎ1

𝐾, ·) (𝑦𝑃 𝑓 )𝐺0<
𝐾 ||ℋ (3.236a)

+ 𝑓3,𝛼 (−𝑦) || (N + 1)1/2𝑅
1
2 𝜋(𝑦∇ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ (3.236b)

+ 𝑓3,𝛼 (−𝑦) (𝛼𝑦2 + 𝛼−1) ||𝑅
1
2 𝜙(ℎ1

𝐾, ·) (𝑦𝑃 𝑓 )𝐺0<
𝐾 ||ℋ (3.236c)

+ 𝑓3,𝛼 (−𝑦) (𝛼𝑦2 + 𝛼−1) ||𝑅
1
2 𝜋(𝑦∇ℎ1

𝐾, ·)𝐺
0<
𝐾 ||ℋ

)
. (3.236d)

After another application of Lemma 3.9, we can use equation (3.67) and then Lemma 3.16 for the
terms involving 𝑃 𝑓 ,

(3.236a) + (3.236c) ≤ 𝐶 𝑓3,𝛼 (−𝑦) (𝛼𝑦2 + 1) |𝑦 | || (N + 1)𝑃 𝑓 Υ
<
𝐾 ||F

≤ 𝐶 𝑓3,𝛼 (−𝑦) (𝛼 |𝑦 |3 + |𝑦 |)𝛼𝛿
√
𝐾, , (3.237)

while in the other two lines, we use (∇ℎ𝐾 )· = −[∇, ℎ𝐾, ·], to obtain

(3.236b) + (3.236d) ≤ 𝐶 𝑓3,𝛼 (−𝑦) |𝑦 | (𝛼𝑦2 + 1) ||ℎ𝐾,0 ||𝐿2 || (N + 1)Υ<
𝐾 ||F

≤ 𝐶 𝑓3,𝛼 (−𝑦) (𝛼 |𝑦 |3 + |𝑦 |)
√
𝐾. (3.238)
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Collecting all estimates we have thus shown that

||𝑅5,𝑦𝜓 ⊗ Υ<
𝐾 ||ℋ ≤ 𝐶 𝑓3,𝛼 (−𝑦)𝛼𝛿

(
𝛼2 |𝑦 |5 +

√
𝐾 (𝛼 |𝑦 |3 + |𝑦 |)

)
. (3.239)

Using this bound in equation (3.233), we can invoke Corollary 3.6 together with equation (3.221) in
order to obtain

|K<
12 | ≤ 𝐶

√
𝐾𝛼−6+5𝛿 . (3.240)

Term K2. Using equations (3.67) and (3.80), one finds

K2 =
1
𝛼4

∫
d𝑦

〈
𝑅6,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

)
|𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ

= K<
2 +K>

2 (3.241)

with the operator 𝑅6,𝑦 = 𝑅1
6,𝑦 + 𝑅2

6,𝑦 and

𝑅1
6,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼N𝑇−𝑦𝑒
−𝐴𝑃,𝑦𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 (3.242a)

𝑅2
6,𝑦 = 2𝛼𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼N𝑇−𝑦𝑒
−𝐴𝑃,𝑦𝑢𝛼𝑅〈Re(𝑤1

𝑃,𝑦) |ℎ𝐾, ·〉𝐿2𝑃𝜓 . (3.242b)

With Lemma 3.9 and equation (3.32a) it is not difficult to verify

||𝑅6,𝑦Ψ||ℋ ≤ 𝐶 ||𝑢𝛼𝑇−𝑦𝑢𝛼 ||op (1 + 𝛼𝑦2) || (N + 1)2Ψ||ℋ , (3.243)

and since ||𝑢𝛼𝑇−𝑦𝑢𝛼 ||op ≤ 1(|𝑦 | ≤ 4𝛼), we can use Corollary 3.14 to estimate the part with the tail by

|K>
2 | ≤

𝐶

𝛼4 || (N + 1)2Υ>
𝐾 ||F

∫
d𝑦 1(|𝑦 | ≤ 4𝛼) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼

−8. (3.244)

To treat K<
2 we proceed as in (3.233), that is

|K<
2 | ≤

√
2

𝛼4

∫
d𝑦 ||𝑅6,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦) ≤
𝐶

𝛼4

∫
d𝑦 1(|𝑦 | ≤ 𝛼) (1 + 𝛼𝑦2) 𝑛𝛿,𝜂 (𝑦). (3.245)

It now follows from Corollary 3.6 that

|K<
2 | ≤ 𝐶𝛼−7. (3.246)

Term K3. This term is similarly estimated as the previous one. With the aid of equations (3.67) and
(3.80), we have

K3 =
1
𝛼3

∫
d𝑦

〈
𝑅7,𝑦𝜓 ⊗

(
Υ<
𝐾 + Υ>

𝐾

)
|𝑊 (𝛼𝑤𝑃,𝑦)𝐺0

𝐾

〉
ℋ

= K<
3 +K>

3 (3.247)

with the operator 𝑅7,𝑦 = 𝑅1
7,𝑦 + 𝑅2

7,𝑦 and

𝑅1
7,𝑦 = 𝑃𝜓𝜙(ℎ1

𝐾, ·)𝑅𝑢𝛼𝑒
−𝐴𝑃,𝑦𝑇−𝑦𝜙(ℎ · + 𝜑𝑃)𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 (3.248a)

𝑅2
7,𝑦 = 2𝛼𝑃𝜓 〈Re(𝑤1

𝑃,𝑦) |ℎ𝐾, ·〉𝐿2𝑅𝑢𝛼𝑒
−𝐴𝑃,𝑦𝑇−𝑦𝜙(ℎ · + 𝜑𝑃)𝑢𝛼𝑅𝜙(ℎ1

𝐾, ·)𝑃𝜓 . (3.248b)

Utilizing again Lemma 3.9 and equation (3.32a), one shows that

||𝑅7,𝑦Ψ||ℋ ≤ 𝐶 𝑓3,𝛼 (−𝑦) (1 + 𝛼𝑦2) || (N + 1)3/2Ψ||ℋ (3.249)
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with 𝑓3,𝛼 defined in (3.220). Invoking Corollary 3.14 and equation (3.221), we thus find

|K>
3 | ≤

𝐶

𝛼3 || (N + 1)3/2Υ>
𝐾 ||F

∫
d𝑦 𝑓3,𝛼 (−𝑦) (1 + 𝛼𝑦2) ≤ 𝐶𝛿 𝛼

−7. (3.250)

Similarly, as in equation (3.233), we also obtain

|K<
3 | ≤

√
2

𝛼3

∫
d𝑦 ||𝑅7,𝑦𝜓 ⊗ Υ<

𝐾 ||ℋ 𝑛𝛿,𝜂 (𝑦) ≤ 𝐶

𝛼3

∫
d𝑦 𝑓3,𝛼 (−𝑦) (1 + 𝛼𝑦2)𝑛𝛿,𝜂 (𝑦). (3.251)

By Corollary 3.6 and equation (3.220) it follows that

|K<
3 | ≤ 𝐶𝛼−6+3𝛿 . (3.252)

This completes the analysis of K. The proof of Proposition 3.21 follows from combining equations
(3.213), (3.214), (3.225), (3.226), (3.232), (3.240), (3.244), (3.246), (3.250) and (3.252). �

3.9. Concluding the proof of Proposition 2.8

Combining Propositions 3.18, 3.20 and 3.21, we arrive at				E + G +K
N − inf 𝜎(H𝐾 )

𝛼2 + 3
2𝛼2

				 ≤ 𝐶𝜀 𝛼
𝜀

(
𝐾−1/2𝛼−5 +

√
𝐾𝛼−6

N

)
. (3.253)

Now, for 𝐾 ≤ �̃�𝛼 we know from Proposition 3.17 that N ≥ 𝐶𝛼3 for some 𝐶 > 0, such that the right side
is bounded by 𝐶𝜀 𝛼

𝜀𝑟 (𝐾, 𝛼). It remains to show that one can replace 𝛼−2 inf 𝜎(H𝐾 ) by 𝛼−2 inf 𝜎(H∞)
at the cost of an additional error. To this end, recall that inf 𝜎(H𝐾 ) = 〈Υ𝐾 |H𝐾Υ𝐾 〉F and use the
variational principle to find〈

Υ𝐾 | (H𝐾 − H∞)Υ𝐾

〉
F

≤ inf 𝜎(H𝐾 ) − inf 𝜎(H∞) ≤
〈
Υ∞|(H𝐾 − H∞)Υ∞

〉
F
. (3.254)

Writing

H𝐾 − H∞ =
〈
𝜓 |𝜙(ℎ1

𝐾, · − ℎ1
· )𝑅𝜙(ℎ1

𝐾, ·)𝜓
〉
𝐿2 −

〈
𝜓 |𝜙(ℎ1

· )𝑅𝜙(ℎ1
· − ℎ1

𝐾, ·)𝜓
〉
𝐿2 , (3.255)

and using Lemma 3.9, we can infer that for any Ψ ∈ F		〈Ψ| (H𝐾 − H∞)Ψ
〉
F

		 ≤ 𝐶𝐾−1/2〈Ψ| (N1 + 1)Ψ
〉
F
. (3.256)

By Corollary 3.14, we know that
〈
Υ𝐾 | (N1+1)Υ𝐾

〉
F
≤ 𝐶, and thus | inf 𝜎(H𝐾 )−inf 𝜎(H∞)| ≤ 𝐶𝐾−1/2.

In view of equation (3.253) and Lemma 3.1 this completes the proof of Proposition 2.8.

4. Remaining Proofs

Proof of Lemma 1.1. The form of the kernel is readily found using second order perturbation theory (we
omit the details). (i) The lower bound 𝐻Pek ≥ 0 follows from (1.19) whereas 𝐻Pek ≤ 1 is a consequence
of

〈
𝑣 | (1 − 𝐻Pek)𝑣

〉
𝐿2 = 4

���� ∫ d𝑦 𝑣(𝑦)𝑅1/2ℎ · (𝑦)𝜓
����2

𝐿2
. (4.1)

(ii) That Span{𝜕𝑖𝜑 : 𝑖 = 1, 2, 3} ⊆ Ker𝐻Pek follows from translation invariance of the energy functional
F (1.15). To show equality, we argue that there is a 𝜏 > 0 such that 〈𝑣 |𝐻Pek𝑣〉𝐿2 ≥ 𝜏 ||𝑣 ||2

𝐿2 for all
𝑣 ∈ 𝐿2 (R3) with 〈𝑣 |∇𝜑〉𝐿2 = 0 (note that this also implies (iii)). Since 𝐻Pek has real-valued kernel, it
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is sufficient to consider 𝑣 ∈ 𝐿2
R
(R3). We start by quoting [13, Lemma 2.7] stating that there exists a

constant 𝜏 > 0 such that

F (𝑣) − F (𝜑) ≥ 𝜏 inf
𝑦∈R3

||𝑣 − 𝜑(· − 𝑦) ||2
𝐿2 (4.2)

for all 𝑣 ∈ 𝐿2 (R3). (A key ingredient in the proof of this quadratic lower bound are the results about
the Hessian of the Pekar energy functional (1.12) that were obtained in [33]; see [13] for a detailed
derivation). Combined with equation (1.19), and using that for small 𝜀 the infimum over 𝑦 ∈ R3 exists,
this implies

〈𝑣 |𝐻Pek𝑣〉𝐿2 ≥ 𝜏 lim inf
𝜀→0

min
𝑦∈R3

𝑓𝑣 (𝑦, 𝜀), (4.3a)

𝑓𝑣 (𝑦, 𝜀) = ||𝑣 ||2
𝐿2 + 𝜀−2 ||𝜑 − 𝜑(· − 𝑦) ||2

𝐿2 + 2𝜀−1 Re〈𝑣 |𝜑 − 𝜑(· − 𝑦)〉𝐿2 . (4.3b)

Given any v satisfying 〈𝑣 |∇𝜑〉𝐿2 = 0, we choose 𝑦∗ (𝜀) such that 𝑓𝑣 (𝑦∗(𝜀), 𝜀) is minimal. Furthermore,
note that for every zero sequence (𝜀𝑛)𝑛∈N such that

lim inf
𝑛→∞

||𝜑 − 𝜑(· − 𝑦∗(𝜀𝑛)) ||𝐿2 > 0, (4.4)

it follows that lim inf𝑛→∞ 𝑓𝑣 (𝑦∗(𝜀𝑛), 𝜀𝑛) = ∞, and hence, we can conclude that |𝑦∗ (𝜀) | → 0 as 𝜀 → 0.
To proceed, let 𝜂(𝜀) := 𝜑− 𝜑(· − 𝑦∗(𝜀)) and assume |𝑦∗ (𝜀) | > 0 (for if 𝑦∗(𝜀) = 0 it follows directly that
𝑓𝑣 (𝑦∗(𝜀), 𝜀) = ||𝑣 ||2

𝐿2 ). With this, we can estimate

𝑓𝑣 (𝑦∗(𝜀), 𝜀) ≥ ||𝑣 ||2
𝐿2 + 𝜀−2 ||𝜂(𝜀) ||2

𝐿2 − 2𝜀−1 |〈𝑣 |𝜂(𝜀)〉𝐿2 | ≥ ||𝑣 ||2
𝐿2 −

			〈𝑣 | 𝜂(𝜀)
||𝜂(𝜀) ||𝐿2

〉𝐿2

			2. (4.5)

To bound the right side, write

𝜂(𝜀) (𝑧) =
∫ 1

0
d𝑠 (𝑦∗(𝜀)∇)𝜑(𝑧 − 𝑠𝑦∗(𝜀)) (4.6)

and use, by dominated convergence, that

||
∫ 1

0 d𝑠 (𝑦∇)𝜑(· − 𝑠𝑦) − (𝑦∇)𝜑||𝐿2

||
∫ 1

0 d𝑠 (𝑦∇)𝜑(· − 𝑠𝑦) ||𝐿2

→ 0 as |𝑦 | → 0. (4.7)

Combining the last statement with |𝑦∗ (𝜀) | → 0 as 𝜀 → 0 and 〈𝑣 |∇𝜑〉𝐿2 = 0, we conclude that

lim inf
𝜀→0

𝑓𝑣 (𝑦∗(𝜀), 𝜀) ≥ ||𝑣 ||2
𝐿2 . (4.8)

This completes the proof of items (ii) and (iii). Property (iv) follows from 𝐻Pek ≤ (𝐻Pek)1/2 and
Tr𝐿2 (1 − 𝐻Pek) < ∞; see Lemma 2.3 for 𝐾 = ∞. �

Proof of Lemma 2.3. (i) The bound 𝐻Pek
𝐾 � Ran(Π1) ≤ 1 follows analogously to equation (4.1) and

𝐻Pek
𝐾 � Ran(Π0) = 0 holds by definition. The lower bound on Ran(Π1) is a consequence of (𝐻Pek − 𝜏) �

Ran(Π1) ≥ 0 for some 𝜏 > 0; see Lemma 1.1, in combination with

±(𝐻Pek − 𝐻Pek
𝐾 ) ≤ 𝐶𝐾−1/2. (4.9)

https://doi.org/10.1017/fms.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.45


Forum of Mathematics, Sigma 47

To verify the latter, let 𝑣 ∈ Ran(Π1), Π𝑣 = |𝑣〉〈𝑣 | and write

〈
𝑣 | (𝐻Pek

𝐾 − 𝐻Pek)𝑣
〉
𝐿2 = 4

∫
d𝑦 Re

〈
𝜓 |

(
ℎ𝐾, · (𝑦) − ℎ ·) (𝑦)

)
𝑅(Π𝑣ℎ𝐾, ·) (𝑦)𝜓

〉
𝐿2

+ 4
∫

d𝑦 Re
〈
𝜓 | (Π𝑣ℎ ·) (𝑦)𝑅

(
ℎ𝐾, · (𝑦) − ℎ · (𝑦)

)
𝜓
〉
𝐿2 . (4.10)

With Cauchy–Schwarz, it follows that

		〈𝑣 | (𝐻Pek
𝐾 − 𝐻Pek)𝑣

〉
𝐿2

		 ≤ 4𝐾1/2
∫

d𝑦 ||𝑅1/2 (ℎ𝐾, · (𝑦) − ℎ · (𝑦))𝑃𝜓 ||2op

+ 4𝐾−1/2
∫

d𝑦
(
||𝑅1/2 (Π𝑣ℎ𝐾, ·) (𝑦)𝑃𝜓 ||2op + ||𝑅1/2 (Π𝑣ℎ ·) (𝑦)𝑃𝜓 ||2op

)
, (4.11)

and from Corollary 3.11, we obtain		〈𝑣 | (𝐻Pek
𝐾 − 𝐻Pek)𝑣

〉
𝐿2

		 ≤ 𝐶𝐾−1/2. (4.12)

(ii) On Ran(Π0) the inequality holds trivially, whereas on Ran(Π1), it follows from Θ𝐾 ≤ 1, 𝐵2
𝐾 ≤

1
4 (Θ

−2
𝐾 − 1), Θ−2

𝐾 = (1 − (1 − 𝐻Pek
𝐾 ))−1/2 and the elementary inequality (1 − 𝑥)−1/2 ≤ 1 + 𝛽−3/2𝑥 for all

𝑥 ∈ (0, 1 − 𝛽).
(iii) Here, we use TrRan(Π0) (1 − 𝐻Pek

𝐾 ) = 3, write

TrRan(Π1) (1 − 𝐻Pek
𝐾 ) =

∫
d𝑦

〈
𝜓 |ℎ1

𝐾, · (𝑦)𝑅ℎ
1
𝐾, · (𝑦)𝜓

〉
𝐿2 =

∫
d𝑦 ||𝑅1/2ℎ1

𝐾, · (𝑦)𝑃𝜓 ||2op (4.13)

and apply Corollary 3.11.
(iv) Since 1−𝐻Pek

𝐾 = Π0 +Π1 (1−𝐻Pek
𝐾 )Π1 = Π0 +4𝑇𝐾 , cf. equations (2.7a) and (2.7b), we can write

Tr𝐿2 ((−𝑖∇)(1 − 𝐻Pek
𝐾 ) (−𝑖∇)) = Tr𝐿2

(
∇Π0∇

)
+ 4Tr𝐿2

(
∇𝑇𝐾∇). (4.14)

Using the explicit form of Π0, one shows that the first term is given by

Tr𝐿2
(
∇Π0∇) =

3
||∇𝜑||2

𝐿2

3∑
𝑗=1

Tr𝐿2
(
∇|∇ 𝑗𝜑〉〈∇ 𝑗𝜑|∇

)
≤ 3

||Δ𝜑||2
𝐿2

||∇𝜑||2
𝐿2

, (4.15)

which is finite since Δ𝜑 ∈ 𝐿2. For the second term, it follows from a short computation that

Tr𝐿2
(
∇𝑇𝐾∇) =

∫
d𝑦

〈
𝜓 | [∇, ℎ1

𝐾, · (𝑦)]𝑅[∇, ℎ
1
𝐾, · (𝑦)] |𝜓

〉
𝐿2 . (4.16)

Using the Cauchy–Schwarz inequality and ||∇𝜓 ||𝐿2 + ||𝑅1/2 ||op + ||𝑅1/2∇||op < ∞, see Lemmas 3.7 and
3.8, we can estimate the last expression by∫

d𝑦 ||𝑅1/2 [∇, ℎ1
𝐾, · (𝑦)]𝜓 ||

2
𝐿2 ≤ 𝐶

∫
d𝑦

(
||ℎ1

𝐾, · (𝑦)𝜓 ||
2
𝐿2 + ||ℎ1

𝐾, · (𝑦)∇𝜓 ||
2
𝐿2

)
≤ 𝐶

∫
d𝑦 |ℎ1

𝐾,0 (𝑦) |
2 ≤ 𝐶 ||ℎ𝐾,0 ||2𝐿2 = 𝐶𝐾. (4.17)

This completes the proof of the lemma. �

Proof of Lemma 2.5. We recall that 𝐻Pek
𝐾 � Ran(Π0) = 0 and 𝑇𝐾 = 1

4 (𝐻
Pek
𝐾 − Π1), and set 𝑆𝐾 =

1
2 (Π1 + 𝐻Pek

𝐾 ). For (𝑢𝑛)𝑛∈N an orthonormal basis of Ran(Π1), we further set 𝑎𝑛 = 𝑎(𝑢𝑛) and use this to
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write the Bogoliubov Hamiltonian as

H𝐾 =
∞∑

𝑛,𝑚=1

(〈
𝑢𝑛 |𝑆𝐾𝑢𝑚

〉
𝐿2𝑎

†
𝑛𝑎𝑚 +

(〈
𝑢𝑛 |𝑇𝐾𝑢𝑚

〉
𝐿2𝑎

†
𝑛𝑎

†
𝑚 + h.c.

) )
+ Tr𝐿2 (𝑇𝐾 ). (4.18)

Applying the transformation (2.11), a straightforward computation leads to

U𝐾H𝐾U
†
𝐾 =

∞∑
𝑛,𝑚=1

(〈
𝑢𝑛 | (𝐴𝐾 𝑆𝐾 𝐴𝐾 + 𝐵𝐾 𝑆𝐾 𝐵𝐾 + 4𝐴𝐾𝑇𝐾 𝐵𝐾 )𝑢𝑚

〉
𝐿2𝑎

†
𝑛𝑎𝑚

+
(〈
𝑢𝑛 | (𝐴𝐾 𝑆𝐾 𝐵𝐾 + 𝐴𝐾𝑇𝐾 𝐴𝐾 + 𝐵𝐾𝑇𝐾 𝐵𝐾 )𝑢𝑚

〉
𝐿2𝑎

†
𝑛𝑎

†
𝑚 + h.c.

) )
+ TrRan(Π1)

(
𝑇𝐾 + 𝐵𝐾 𝑆𝐾 𝐵𝐾 + 2𝐴𝐾𝑇𝐾 𝐵𝐾 ). (4.19)

The statement of the lemma now follows from

Π1 (𝐴𝐾 𝑆𝐾 𝐴𝐾 + 𝐵𝐾 𝑆𝐾 𝐵𝐾 + 4𝐴𝐾𝑇𝐾 𝐵𝐾 )Π1 =
√
𝐻Pek
𝐾 (4.20a)

Π1 (𝐴𝐾 𝑆𝐾 𝐵𝐾 + 𝐴𝐾𝑇𝐾 𝐴𝐾 + 𝐵𝐾𝑇𝐾 𝐵𝐾 )Π1 = 0 (4.20b)

Π1 (𝑇𝐾 + 𝐵𝐾 𝑆𝐾 𝐵𝐾 + 2𝐴𝐾𝑇𝐾 𝐵𝐾 )Π1 =
1
2
(√

𝐻Pek
𝐾 − Π1

)
. (4.20c)

�

Proof of Lemma 3.4. To bound ||𝑤1
𝑃,𝑦 ||

2
𝐿2 , we expand

𝑤1
𝑃,𝑦 = Π1(1 − 𝑒−𝑦∇)(𝜑 + 𝑖𝜉𝑃) =

∫ 1

0
d𝑠1

∫ 𝑠1

0
d𝑠2 Π1𝑒

−𝑠2𝑦∇(𝑦∇)2𝜑

+ 𝑖

𝛼2𝑀LP

∫ 1

0
d𝑠Π1𝑒

−𝑠𝑦∇(𝑦∇)(𝑃∇)𝜑, (4.21)

where we used Π1(𝑦∇)𝜑 = 0. Thus, since Δ𝜑 ∈ 𝐿2, we easily arrive at

||𝑤1
𝑃,𝑦 ||

2
𝐿2 ≤ 𝐶

(
𝑦4 + 𝛼−4𝑦2𝑃2) (4.22)

for some constant 𝐶 > 0, and with |𝑃 | ≤ 𝛼𝑐 we obtain the stated estimated. The bound for ||𝑤1
𝑃,𝑦 ||

2
𝐿2

follows from

||𝑤1
𝑃,𝑦 ||

2
𝐿2 = ||Θ𝐾 Re(𝑤1

𝑃,𝑦) ||
2
𝐿2 + ||Θ−1

𝐾 Im(𝑤1
𝑃,𝑦) ||

2
𝐿2 ≤ 𝐶 ||𝑤1

𝑃,𝑦 ||
2
𝐿2 , (4.23)

where we used that Θ𝐾 is real-valued and satisfies

0 < 𝛽 ≤ Θ2
𝐾 ≤ 1 (4.24)

when restricted to Ran(Π1); see Lemma 2.3. To bound ||𝑤0
𝑃,𝑦 ||

2
𝐿2 we use

||𝑤0
𝑃,𝑦 ||

2
𝐿2 = ||𝑤0

0,𝑦 ||
2
𝐿2 + ||Π0 (1 − 𝑒−𝑦∇)𝜉𝑃 ||2𝐿2 , (4.25)
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since 𝜑, 𝜉𝑃 and Π0 are all real-valued. Expanding 1 − 𝑒−𝑦∇ as in equation (4.21), it is easy to conclude
that ||Π0 (1 − 𝑒−𝑦∇)𝜉𝑃 ||2

𝐿2 ≤ 𝐶𝑃2𝑦2𝛼−4. Using the explicit form of Π0 and 〈∇𝜑|𝜑〉𝐿2 = 0, we can write

||𝑤0
0,𝑦 ||

2
𝐿2 =

3
||∇𝜑||2

𝐿2

3∑
𝑖=1

		〈∇𝑖𝜑|𝑒−𝑦∇𝜑
〉
𝐿2

		2. (4.26)

Using the Fourier representation and rotation invariance, we have

		〈∇𝑖𝜑|𝑒−𝑦∇𝜑
〉
𝐿2

		 = 				 ∫ 𝑝𝑖 |�̂�(𝑝) |2 sin(𝑝𝑦) d𝑦
				. (4.27)

By the elementary inequality | sin 𝑧 − 𝑧 | ≤ 𝐶𝑧3, the formula || (𝑦∇)𝜑||2
𝐿2 = 2𝜆𝑦2 and the finiteness of

‖Δ𝜑‖𝐿2 , we conclude that 		||𝑤0
𝑃,𝑦 ||

2
𝐿2 − 2𝜆𝑦2		 ≤ 𝐶

(
𝑦4 + 𝑦6 + 𝛼−4𝑦2𝑃2) . (4.28)

To prove the last bound, we use

||𝑤𝑃,𝑦 ||2𝐿2 = ||𝑤0
𝑃,𝑦 ||

2
𝐿2 + ||Θ𝐾 Re(𝑤1

𝑃,𝑦) ||
2
𝐿2 + ||Θ−1

𝐾 Im(𝑤1
𝑃,𝑦) ||

2
𝐿2 , (4.29)

and hence with equation (4.24),

𝛽 ||𝑤1
𝑃,𝑦 ||

2
𝐿2 ≤ ||𝑤𝑃,𝑦 ||2𝐿2 − ||𝑤0

𝑃,𝑦 ||
2
𝐿2 ≤ 𝛽−1 ||𝑤1

𝑃,𝑦 ||
2
𝐿2 . (4.30)

The desired bound now follows from equations (4.22) and (4.28). �

Proof of Lemma 3.5. From Lemma 3.4, we have

		||𝑤𝑃,𝑦 ||2𝐿2 − 2𝜆𝑦2		 ≤ 𝐶 (𝛼−2𝑦2 + 𝑦4 + 𝑦6) ≤ 𝐶
𝑦2

𝛼
for all

|𝑃 |
𝛼

≤ 𝑐, 𝑦2 ≤ 𝛼−1. (4.31)

Hence, there is a constant 𝜇 > 0 such that for all 𝑦2 ≤ 𝛼−1 the weight function (3.33) satisfies

𝑛𝛿,𝜂 (𝑦) ≤ exp(−(𝜆𝜂𝛼2(1−𝛿) − 𝜇𝛼−2𝛿+1)𝑦2) (4.32a)

𝑛𝛿,𝜂 (𝑦) ≥ exp(−(𝜆𝜂𝛼2(1−𝛿) + 𝜇𝛼−2𝛿+1)𝑦2). (4.32b)

In the remainder, let us abbreviate 𝑓𝑛 (𝑦) = |𝑦 |𝑛𝑔(𝑦) and 𝑍 (𝑦) = |𝑛𝛿,𝜂 (𝑦) − 𝑒−𝜆𝜂𝛼
2(1−𝛿) 𝑦2 |. We then

decompose the integral into∫
d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) =

∫
𝐵𝛼

d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) +
∫
𝐵𝑐

𝛼

d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) (4.33)

with 𝐵𝛼 = {𝑦 ∈ R3 : 𝑦2 ≤ 𝛼−1}. The bounds (4.32a) and (4.32b) imply that

|𝑍 (𝑦) | ≤ 𝑒−𝜆𝜂𝛼
2(1−𝛿)

(
𝑒𝜇𝛼

−2𝛿+1𝑦2 − 1
)

∀𝑦 ∈ 𝐵𝛼 (4.34)

and thus by |𝑒𝑧 − 1| ≤ 𝑧𝑒𝑧 for 𝑧 > 0, we obtain∫
𝐵𝛼

d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) ≤ 𝜇𝛼−2𝛿+1
∫

d𝑦 𝑓𝑛 (𝑦)𝑦2𝑒−(𝜂𝜆−𝜇𝛼
−1)𝛼2(1−𝛿) 𝑦2

. (4.35)
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The last expression is further bounded by∫
d𝑦 𝑓𝑛 (𝑦)𝑦2𝑒−(𝜂𝜆−𝜇𝛼

−1)𝛼2(1−𝛿) 𝑦2 ≤ ||𝑔 ||𝐿∞
∫

d𝑦 |𝑦 |𝑛+2𝑒−(𝜂𝜆−𝜇𝛼
−1)𝛼2(1−𝛿) 𝑦2

(4.36)

=
𝐶𝑛 ||𝑔 ||𝐿∞
𝛼 (5+𝑛) (1−𝛿)

(
𝜂𝜆 − 𝜇𝛼−1

)−(𝑛+5)/2

and since the resulting expression is uniformly bounded in 𝜂 ≥ 𝜂0 and 𝛼 large, we get∫
𝐵𝛼

d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) ≤ 𝐶𝑛
||𝑔 ||𝐿∞

𝛼 (4+𝑛) (1−𝛿)+𝛿 . (4.37)

To bound the second term in equation (4.33), we estimate∫
𝐵𝑐

𝛼

d𝑦 𝑓𝑛 (𝑦)𝑍 (𝑦) ≤
∫
𝐵𝑐

𝛼

d𝑦 𝑓𝑛 (𝑦)𝑛𝛿,𝜂 (𝑦) + 𝑒−𝜆𝜂𝛼
−2𝛿+1

∫
d𝑦 𝑓𝑛 (𝑦). (4.38)

To see that the first summand is exponentially small as well, we use equation (4.29), equation (4.24) and
Re(𝑤𝑖

𝑃,𝑦) = Π𝑖 Re(𝑤𝑃,𝑦) = Π𝑖 Re(𝑤0,𝑦) for 𝑖 = 0, 1,

||𝑤𝑃,𝑦 ||2𝐿2 ≥ || Re(𝑤0
𝑃,𝑦) ||

2
𝐿2 + 𝛽 || Re(𝑤1

𝑃,𝑦) ||
2
𝐿2 ≥ 𝛽 ||Re(𝑤0,𝑦) ||2𝐿2 = 𝛽 || (1 − 𝑒−𝑦∇)𝜑||2

𝐿2 , (4.39)

and hence

𝑛𝛿,𝜂 (𝑦) ≤ exp
(
− 𝜂𝛽𝛼2(1−𝛿)𝑞(𝑦)

)
with 𝑞(𝑦) =

1
2
|| (1 − 𝑒−𝑦∇)𝜑||2

𝐿2 . (4.40)

Since 𝜑 is real-valued, we have 〈𝜑|𝑒−𝑦∇|𝜑〉𝐿2 = 〈𝜑|𝑒𝑦∇|𝜑〉𝐿2 = (𝜑 ∗ 𝜑) (𝑦) and thus

𝑞(𝑦) = ||𝜑||2
𝐿2 − (𝜑 ∗ 𝜑) (𝑦). (4.41)

Recall that, as shown in [36], the electronic Pekar minimizer 𝜓 is radial and nonincreasing and hence
𝜑, cf. equation (1.14), is radial and nonincreasing as well, as convolutions of radial nonincreasing
functions are themselves radial nonincreasing functions. Consequently, 𝑞(𝑦) is radial and monotone
nondecreasing, and thus 𝑞(𝑦) ≥ 𝑞(𝑦′) for all 𝑦 ∈ 𝐵𝑐

𝛼, 𝑦′ ∈ 𝐵𝛼. On the other hand, by a simple
computation, using the regularity of 𝜑, one finds that 𝑞(𝑦) ≥ 𝐶0𝑦

2 for some 𝐶0 > 0 and all |𝑦 | small
enough, and thus 𝑞(𝑦) ≥ 𝐶0𝛼

−1 for all 𝑦 ∈ 𝐵𝑐
𝛼 and 𝛼 large. Therefore,∫

𝐵𝑐
𝛼

d𝑦 𝑓𝑛 (𝑦)𝑛𝛿,𝜂 (𝑦) ≤
∫
𝐵𝑐

𝛼

d𝑦 𝑓𝑛 (𝑦)𝑒−𝜂𝛽𝛼
2(1−𝛿)𝑞 (𝑦)

≤ 𝑒−𝐶0𝜂𝛽𝛼
2(1−𝛿)−1

∫
d𝑦 𝑓𝑛 (𝑦) ≤ 𝑒−𝑑𝛼

−2𝛿+1
∫

d𝑦 𝑓𝑛 (𝑦) (4.42)

for some 𝑑 > 0, which completes the proof of the lemma. �

Proof of Lemma 3.16. Let 𝑝 = −𝑖∇. By a straightforward computation using equation (2.11), we arrive
at

U𝐾𝑃 𝑓 U
†
𝐾Ω =

∑
𝑛

𝑎†(𝐴𝐾𝑢𝑛)𝑎†(𝐵𝐾 𝑝𝑢𝑛)Ω + Tr𝐿2 (𝐵𝐾 𝑝𝐵𝐾 )Ω (4.43)

for some orthonormal basis (𝑢𝑛)𝑛∈N of 𝐿2 (R3). That 𝐵𝐾 𝑝𝐵𝐾 is trace-class can be seen via

Tr𝐿2 |𝐵𝐾 𝑝𝐵𝐾 | ≤ ||𝐵𝐾 ||HS ||𝑝𝐵𝐾 ||HS ≤ 𝐶𝐾, (4.44)
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where the second step follows from Lemma 2.3, implying ||𝐵𝐾 ||HS ≤ 𝐶, and

||𝑝𝐵𝐾 ||2HS = Tr𝐿2 (𝑝𝐵𝐾 𝐵𝐾 𝑝) ≤ Tr𝐿2 (𝑝(1 − 𝐻Pek
𝐾 )𝑝) ≤ 𝐶𝐾. (4.45)

By rotation invariance Tr𝐿2 (𝐵𝐾 𝑝𝐵𝐾 ) = 0. The first term in equation (4.43), on the other hand, is seen
to be a two-particle wave function Φ𝐾 given by

Φ𝐾 (𝑥, 𝑦) = 1
√

2
(𝐴𝐾 𝑝𝐵𝐾 + 𝐵𝐾 𝑝𝐴𝐾 )(𝑥, 𝑦). (4.46)

Thus,

〈
Υ𝐾 | (𝑃 𝑓 )2Υ𝐾

〉
F

=
1
2
‖𝐴𝐾 𝑝𝐵𝐾 + 𝐵𝐾 𝑝𝐴𝐾 ‖2

HS ≤ 2||𝐴𝐾 ||2op ||𝑝𝐵𝐾 ||2HS ≤ 𝐶𝐾, (4.47)

where we invoked again equation (4.45). �
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