A GENERAL INCLUSION THEOREM FOR *l-l* NÖRLUND SUMMABILITY

BY

J. DEFRANZA

ABSTRACT. Nörlund methods of summability are studied as mappings from l_1 into l_1 . Conditions are given for an arbitrary l-l method to include a Nörlund method. In particular necessary and sufficient conditions are given for a row finite l-l method to include a Nörlund mean.

As in [2], let p be a complex sequence, $p_0 \neq 0$, and let $P_n = \sum_{k=0}^n p_k$, $n = 0, 1, 2, \ldots$ Suppose P_n is eventually non-zero. If K is the least positive integer so that $P_n \neq 0$ for all $n \geq K$, define the Nörlund method of summability N_p by $N_p[n, k] = p_{n-k}/P_0$ if $0 \leq n < K$, $k \leq n$, p_{n-k}/P_n if $n \geq K$, $k \leq n$, and 0 otherwise. Let \mathcal{N} denote the collection of all such Nörlund means. If we let $\hat{P}_n = P_0$ for $0 \leq n < K$ and $\hat{P}_n = P_n$ for $n \geq K$, then the N_p transform of the sequence x is given by $N_p x$, where

$$(N_p x)_n = (1/\hat{P}_n) \sum_{k=0}^n p_{n-k} x_k$$

for all $n \ge 0$. Throughout we write the sequence $\{\hat{P}_n\}$ as $\{P_n\}$.

Let $l \equiv l_1 = \{x \mid \sum_k |x_k| < \infty\}$. A matrix mapping A is called *l-l* if and only if $l \subseteq A^{-1}[l] \equiv l(A)$. In [6], Knopp and Lorentz proved that the matrix method A is *l-l* if and only if there exists some M > 0 such that

$$\sup_{k}\left\{\sum_{n=0}^{\infty}|a_{nk}|\right\} < M.$$

In [2] it is shown that for any $N_p \in \mathcal{N}$, N_p is *l*-*l* if and only if (i) $p \in l$, and (ii) $P_n \rightarrow 0$ as $n \rightarrow \infty$. Let \mathcal{N}_l denote the collection of all *l*-*l* Nörlund methods.

In [2] it is shown that given N_p , $N_q \in \mathcal{N}_l$, $l(N_p) \subseteq l(N_q)$ if and only if $b \in l$, where $b(z) = p(z)/q(z) = \sum_n b_n z^n$. The main theorem of this paper gives conditions to ensure that $l(N_p) \subseteq l(A)$, A an arbitrary *l*-*l* matrix.

2. DEFINITION. The matrix A is absolutely translative for the sequence $\{x_k\}$ provided for j = 0, 1, 2, ...

Received by the editors September 23, 1980 and, in revised form, December 21, 1980 and May 21, 1981.

AMS classification numbers. Primary-40D25, 40G05

Key Words and Phrases. Inclusion Theorem, l-l method, Nörlund method.

(i) there exists some $M_1 > 0$ such that

$$\sup_{j} \left\{ \sum_{n=0}^{\infty} \left| \sum_{k=0}^{\infty} a_{nk} x_{k+j} \right| \right\} < M_1, \text{ and}$$

(ii) there exists some $M_2 > 0$ such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty}a_{nk}x_{k-j}\right|\right\} < M_2,$$

where $x_i = 0$ for i < 0.

The matrix A is absolutely left translative (a.l.t) for the sequence $\{x_k\}$ provided (ii) holds and absolutely right translative for $\{x_k\}$ provided (i) holds. The matrix A is absolutely translative provided (i) and (ii) hold for each sequence in l(A), with similar definitions for absolutely left and right translative.

We remark here that if A is an l-l matrix, then A is absolutely translative for each $x \in l$. The first theorem gives a class of l-l Nörlund methods that are absolutely right translative for bounded sequences in their summability fields.

THEOREM 1. Suppose N_p has as its generating function the polynomial $p(z) = p_0 + p_1 z + \cdots + p_{\nu} z^{\nu}$ with $P_n \neq 0$ for all $n \ge 0$. Then N_p is absolutely right translative for each bounded sequence in $l(N_p)$.

Proof. It suffices to show that if $x \in l(N_p) \cap m$, then the sequence $x^{(j)} = (x_i, x_{i+1}, \ldots) \in l(N_p)$ for each $j \ge 1$ and there exists some M > 0 such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}|(N_{p}x^{(j)})_{n}|\right\} < M.$$

Now for any $j \ge 1$ we have for all $n \ge \nu$,

$$\sum_{n=\nu}^{\infty} |(N_p x^{(j)})_n| \leq \sum_{n=\nu}^{\infty} |(N_p x)_n|.$$

If $0 \le n < \nu$, then

$$(N_p x^{(j)})_n = [(N_p x)_{n+j}][P_{n+j}/P_n] - (p_{n+j} x_0 + \dots + p_{n+1} x_{j-1})/P_n.$$

Moreover, p(z) being a polynomial implies $p \in l$. Hence there exists numbers $\varepsilon > 0$ and T > 0 such that $|P_n| > \varepsilon > 0$ for all $n \ge 0$ and $\sum_n |p_n| < T$. Consequently, if $x \in l(N_p) \cap m$, we have independent of j,

$$\sum_{n=0}^{\nu-1} |(N_p x^{(j)})_n| \le \sum_{n=0}^{\nu-1} |(N_p x)_{n+j}| |P_{n+j}/P_n|$$

$$+ \sum_{n=0}^{\nu-1} [(|p_{n+j}| |x_0| + \dots + |p_{n+1}| |x_{j-1}|)/|P_n|]$$

$$< (T/\varepsilon) \sum_{n=0}^{\nu-1} |(N_p x)_{n+j}| + \left[\left(\sup_k |x_k| \right) / \varepsilon \right] \left[\nu \sum_{k=0}^{\infty} |p_k| \right] < \infty$$

448

[December

We remark here that x being bounded in the preceding theorem is necessary. To demonstrate this define the sequence p as follows: $p_0 = 1$, $p_1 = -2$, $p_n = 0$ for all $n \ge 2$. So that $P_0 = 1$, $P_n = -1$ for all $n \ge 1$. Define the sequence x by $x_n = 2^n$, $n \ge 0$. Hence $x^{(j)} = (2^j, 2^{j+1}, ...)$. It then follows that $(N_p x^{(j)})_0 = 2^j$ and $(N_p x^{(j)})_n = 0$, $n \ge 1$. Thus $\sum_{n=0}^{\infty} |(N_p x^{(j)})_n| = 2^j$ and hence N_p is not absolutely right translative for the sequence x.

Moreover, we assert there exist l-l Nörlund means whose generating functions are not polynomials and which are absolutely right translative for bounded sequences in their summability field. In particular we have the following:

THEOREM 2. Suppose N_s and N_q are l-l Nörlund means with s(z) a polynomial and q(z) not a polynomial. If p(z) = s(z)q(z), then $l(N_s) \subseteq l(N_p)$. Moreover, if $l(N_q) = l$, then $l(N_p) = l(N_s)$.

Proof. Let

$$\sum_{n} b_{n} z^{n} \equiv p(z)/s(z) = \sum_{n} q_{n} z^{n}.$$

Since $b \in l$, by [2, Theorem 2] we have $l(N_s) \subseteq l(N_p)$.

Now let $h(z) = 1/q(z) \equiv \sum_n h_n z^n$. If $l(N_q) = l$, then by [2, Corollary 3], $h \in l$. Thus if $a(z) = s(z)/p(z) \equiv \sum_n a_n z^n$, by [2, Theorem 2], $l(N_p) \subseteq l(N_s)$. Thus $l(N_p) = l(N_s)$.

Consider the following example. Let s(z) = 1 + z. Then N_s is the *l*-*l* Nörlund mean defined by $s_0 = s_1 = 1$, $s_n = 0$ for $n \ge 2$. Moreover, by [2, Corollary 3], $l \subseteq l(N_s)$. It will also follow from Theorem 6 that $l(N_s) \subseteq m$. Now let $q(z) = \sum_n (1/2^n)z^n$. By [2, Corollary 3] it follows that $l(N_q) = l$. If we now let p(z) = (1+z)q(z), by Theorem 2, $l(N_p) = l(N_s)$.

Let $x \in m \cap l(N_p)$. Then $x \in m \cap l(N_s)$, since $l(N_p) = l(N_s)$. By Theorem 1, $x^{(i)} \in l(N_s) = l(N_p)$, and N_p is absolutely right translative for bounded sequences.

THEOREM 3. If $N_p \in \mathcal{N}_l$, then N_p is absolutely left translative for each $x \in l(N_p)$.

Proof. Since $N_p \in \mathcal{N}_l$ there exists some T > 0 such that $|P_{n-j}/P_n| < T$ for all $n \ge j$, independent of j. If $(x_{(j)})_n = 0$, if $0 \le n \le j-1$ and x_{n-j} if $n \ge j$, then

$$(N_{p}x_{(j)})_{n} = [(N_{p}x)_{n-j}][P_{n-j}/P_{n}]$$

where $(N_p x_{(j)})_n = 0$ for $0 \le n < j$. It now follows that N_p is a.l.t for each $x \in l(N_p)$.

The next theorem gives sufficient conditions for an arbitrary l-l method A to include an l-l Nörlund method N_p .

THEOREM 4. Suppose N_p is an l-l Nörlund method and A is an arbitrary l-l

[December

summability method. Let $p(z) \equiv \sum_{n} p_{n} z^{n}$ and $1/p(z) \equiv \sum_{n} \beta_{n} z^{n}$. If (i) there exists some M > 0 such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=j}^{\infty}a_{nk}\beta_{k-j}\right|\right\} < M,$$

and

$$\lim_{\lambda\to\infty}\sum_{j=0}^{\infty}\left|\sum_{k=j+\lambda}^{\infty}a_{nk}\beta_{k-j}\right|=0,$$

then $l(N_p) \subseteq l(A)$.

Proof. Suppose $s \in l(N_p)$ and let

$$t_n = (1/p_n) \sum_{k=0}^n p_{n-k} s_k.$$

Then for small |z|,

$$\sum_{n=0}^{\infty} t_n P_n z^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n p_{n-k} s_k \right) z^n = p(z) s(z),$$

where $s(z) \equiv \sum_{n=0}^{\infty} s_n z^n$. Then

$$s(z) = (1/p(z)) \sum_{n=0}^{\infty} t_n P_n z^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n P_k t_k \beta_{n-k} \right) z^n,$$

and it follows that $s_n = \sum_{k=0}^n P_k t_k \beta_{n-k}$ for $n \ge 0$. Let

$$\sigma_n \equiv (As)_n \equiv \sum_{k=0}^{\infty} a_{nk} s_k = \sum_{k=0}^{\infty} \left[a_{nk} \left(\sum_{j=0}^k P_j t_j \beta_{k-j} \right) \right].$$

We now assert that

$$\sigma_n = \sum_{j=0}^{\infty} \bigg[t_j P_j \sum_{k=j}^{\infty} a_{nk} \beta_{k-j} \bigg].$$

Consider the following array:

Then by [5, Theorem 10] it suffices to show that for any $n \ge 0$,

- (a) $\sum_{j=0}^{\infty} |t_j P_j \sum_{k=j}^{\infty} a_{nk} \beta_{k-j}| < \infty$,
- (b) $\left|\sum_{j=0}^{\infty} t_j P_j a_{nj} \beta_k\right| < \infty$ for each fixed k, and
- (c) $\lim_{\lambda\to\infty} \left[\sum_{j=0}^{\infty} t_j P_j \sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j}\right] = 0.$

Now, since N_p is l-l, $p \in l$ which implies $\sup_j |P_j| < \infty$. The sequence s being in $l(N_p)$ implies $\{t_j\} \in l$. By (i), $|\sum_{k=j}^{\infty} a_{nk}\beta_{k-j}| < M$ for all $j \ge 0$, and some M. Then

$$\sum_{j=0}^{\infty} \left| t_j P_j \sum_{k=j}^{\infty} a_{nk} \beta_{k-j} \right| < M \sum_{j=0}^{\infty} |t_j| |P_j|$$
$$< M \left(\sup_j |P_j| \right) \sum_{j=0}^{\infty} |t_j|$$
$$< \infty.$$

Now for each fixed k,

$$\left|\sum_{j=0}^{\infty} t_j P_j a_{nj} \beta_k\right| \leq |\beta_k| \left(\sup_j \sum_{n=0}^{\infty} |a_{nj}|\right) \sum_{j=0}^{\infty} |t_j| |P_j|.$$

Since A is an l-l method it follows that (b) holds. Finally

$$\left|\sum_{j=0}^{\infty} t_j P_j \sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j}\right| \leq \sum_{j=0}^{\infty} |t_j| |P_j| \left|\sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j}\right|$$
$$< \left(\sup_j |t_j|\right) \left(\sup_j |P_j|\right) \sum_{j=0}^{\infty} \left|\sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j}\right|.$$

We see that the right hand member tends to zero by appealing to (ii). This completes the proof of the assertion.

We can now write

$$\sigma_n = \sum_{j=0}^{\infty} t_j \left(P_j \sum_{k=j}^{\infty} a_{nk} \beta_{k-j} \right)$$
$$= \sum_{j=0}^{\infty} t_j e_{nj},$$

where $e_{nj} = P_j \sum_{k=j}^{\infty} a_{nk} \beta_{k-j}$. Then in order to show $l(N_p) \subseteq l(A)$ it suffices to show that the matrix (e_{nj}) defines an *l*-*l* method.

Combining (i) with the fact that $\{P_n\}$ is bounded, we have there exists some M' > 0 such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}\left|P_{j}\sum_{k=j}^{\infty}a_{nk}\beta_{k-j}\right|\right\} < M',$$

which is

$$\sup_{j}\left\{\sum_{n=0}^{\infty}|e_{nj}|\right\} < M'.$$

Thus by the Knopp-Lorentz Theorem, (e_{nj}) is an *l*-*l* matrix. This completes the proof.

It is an open question as to whether (i) and/or (ii) are necessary conditions in Theorem 4. However if we now assume that A is row-finite and l-l, we have that $l(N_p) \subseteq l(A)$ if and only if A is absolutely left translative on the sequence β . That is,

THEOREM 5. Suppose N_p is an *l*-*l* Nörlund method and A is an arbitrary row-finite *l*-*l* matrix. Let $1/p(z) = \sum_n \beta_n z^n$. Then $l(N_p) \subseteq l(A)$ if and only if there exists some M > 0 such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=j}^{m_{n}}a_{nk}\beta_{k-j}\right|\right\} < M,$$

where m_n is the column index of the last non-zero term in the nth row of A.

Proof. Since the summability methods N_p and A are both row-finite, following the proof of Theorem 4, we can write

$$\sigma_n = \sum_{k=0}^{\infty} a_{nk} s_k = \sum_{k=0}^{m_n} a_{nk} s_k$$
$$= \sum_{k=0}^{m_n} a_{nk} \left(\sum_{j=0}^k t_j P_j \beta_{k-j} \right)$$
$$= \sum_{j=0}^{m_n} t_j P_j \left(\sum_{k=j}^{m_n} a_{nk} \beta_{k-j} \right).$$

Hence, if $\sigma_n = \sum_{j=0}^{m} t_j e_{nj}$, where $e_{nj} = P_j \sum_{k=j}^{m} a_{nk} \beta_{k-j}$ and $l(N_p) \subseteq l(A)$, then the matrix (e_{nj}) defines and *l*-*l* summability method, and therefore there exists some M > 0 such that

$$\sup_{j}\left\{\sum_{n=0}^{\infty}|P_{j}|\left|\sum_{k=j}^{m_{n}}a_{nk}\beta_{k-j}\right|\right\} < M.$$

Since N_p is l-l the result follows.

Conversely, if there exists such an M, then the matrix (e_{nj}) defines an l-l summability method and hence, $l(N_p) \subseteq l(A)$.

COROLLARY 1. Suppose $N_p, N_q \in \mathcal{N}_l$, and let $1/p(z) = \sum_n \beta_n z^n$. Then $l(N_p) \subseteq l(N_q)$ if and only if $\beta \in l(N_q)$.

Proof. This follows immediately from Theorem 3 and Theorem 5.

We remark here that if $N_p, N_q \in \mathcal{N}_l, l(N_q) \subseteq l(N_p)$ if and only if $h \in l(N_p)$, where $h(z) = 1/q(z) = \sum_n h_n z^n$.

The next theorem follows from the proof of Theorem 5. In it we show that under certain rather broad conditions, N_p maps only bounded sequences into *l*.

452

THEOREM 6. Suppose N_p is an l-l method. Let $1/p(z) = \beta(z) = \sum_n \beta_n z^n$. If β is a bounded sequence, then $l(N_p)$ is contained in the space of bounded sequences.

Proof. Let $s \in l(N_p)$. From the proof of Theorem 5, we have that for each $n \ge 0$,

$$s_n = \sum_{k=0}^n P_k t_k \beta_{n-k}.$$

Let $\sup_k |P_k| < T$ and $\sup_k |\beta_k| < B$. Then

$$|s_n| \leq \sum_{k=0}^n |P_k t_k \beta_{n-k}|$$
$$< TB \sum_{k=0}^\infty |t_k|$$
$$< TBM$$

say, where $\sum_k |t_k| < M$.

EXAMPLE. Consider the Binary method of summability: that is the *l-l* Nörlund method generated by the sequence p given by $p_0 = p_1 = 1$, $p_n = 0$ for all $n \ge 2$. Therefore p(z) = 1 + z and

$$\beta(z) = \sum_{n} (-1)^{n} z^{n} \quad \text{for} \quad |z| < 1.$$

Thus β is bounded and hence by Theorem 6, $l(N_p)$ is contained in the space of bounded sequences.

3. In [2, Theorem2], it was shown that for N_p , $N_q \in \mathcal{N}_l$, $l(N_p) \subseteq l(N_q)$ if and only if the sequence $b \in l$, $b(z) = q(z)/p(z) = \sum_n b_n z^n$. The next lemma says that Theorem 2 of [2] and Corollary 1 are equivalent.

LEMMA 1. Suppose N_p , $N_q \in \mathcal{N}_l$. Then $\beta \in l(N_q)$ if and only if $b \in l$.

Proof. The proof is straight forward.

We remark here that if N_p , $N_q \in \mathcal{N}_l$ and r = p * q (i.e., $r_n = p_0 q_n + \cdots + p_n q_0$ for $n \ge 0$), then $N_r \in \mathcal{N}_l$ (see Lemma 3 of [2]). Moreover

$$(N_r\beta)_n = (1/\hat{R}_n) \sum_{k=0}^n r_{n-k}\beta_k$$
$$= q_n/\hat{R}_n$$

since $p(z)\beta(z) \equiv 1$. Thus $\beta \in l(N_r)$ and $l(N_p) \subseteq l(N_r)$ by Corollary 1. Similarly $l(N_a) \subseteq l(N_r)$.

Now suppose that N_p , N_q , $N_s \in \mathcal{N}_l$. Let $\nu = q * s$ and $\mu = p * s$. We need the following notation.

(i) $p(z) = \sum_{n} p_{n} z^{n}, q(z) = \sum_{n} q_{n} z^{n}, s(z) = \sum_{n} s_{n} z^{n},$

https://doi.org/10.4153/CMB-1982-064-4 Published online by Cambridge University Press

J. DEFRANZA

- (ii) $1/p(z) = \beta(z), 1/s(z) = \gamma(z), 1/\mu(z) = \sum_{n} c_{n} z^{n}$, and
- (iii) $\hat{V}_n = \sum_{k=0}^n \nu_n$ if $V_n \neq 0$ and $\hat{V}_n = V_0$ if $V_n = 0$.

If $l(N_p) \subseteq l(N_q)$, then by Corollary 1, $\beta \in l(N_q)$. We assert that $l(N_\mu) \subseteq l(N_\nu)$. It suffices to show $c \in l(N_\nu)$. Since $1/\mu(z) = \{1/p(z)\}\{1/s(z)\}$ for small |z|, it implies $c = \beta * \gamma$. Also

$$\hat{V}_n(N_\nu c)_n = \sum_{k=0}^n \nu_{n-k} c_k.$$

Therefore the sequence $\{\hat{V}_n(N_\nu c)_n\}$ is given by,

 $(\boldsymbol{\beta} \ast \boldsymbol{\gamma}) \ast (\boldsymbol{q} \ast \boldsymbol{s}) = (\boldsymbol{\beta} \ast \boldsymbol{q}) \ast (\boldsymbol{\gamma} \ast \boldsymbol{s}) = \boldsymbol{\beta} \ast \boldsymbol{q}.$

But $\beta \in l(N_q)$ and hence $c \in l(N_{\nu})$. Thus $l(N_{\mu}) \subseteq l(N_{\nu})$. By the remark immediately after Corollary 1 and a similar argument as above it follows that if $l(N_p) \subseteq l(N_q)$ then $l(N_{\mu}) \subseteq (N_{\nu})$. We now have,

THEOREM 7 [2, Theorem 6]. With "strictly l-weaker than" as order relation and "*" as the binary operation, \mathcal{N}_l is an ordered abelian semigroup.

4. This section was suggested by J. Fridy. We give a class of matrix summability methods that include certain Nörlund methods. In [3] J. Fridy introduced the following class of methods.

Let t be a sequence such that $0 < t_n < 1$ for all $n \ge 0$. Define $A_t = (a_{nk})$ by $a_{nk} = t_n (1-t_n)^k$. It is easy to see that A_t is an *l*-*l* method if and only if $t \in l$. We now have,

THEOREM 8. Suppose p is a non-negative sequence in l, $p_0 > 0$, and let $1/p(z) = \sum_n \beta_n z^n$. If $\limsup_k |\beta|^{1/k} \le 1$ and $t \in l$, then $l(N_p) \subseteq l(A_t)$.

Proof. We need to verify that the two conditions of Theorem 4 hold. First consider

$$\sum_{k=j}^{\infty} a_{nk} \beta_{k-j} = \sum_{k=j}^{\infty} t_n (1-t_n)^k \beta_{k-j}$$
$$= t_n (1-t_n)^j \sum_{k=j}^{\infty} (1-t_n)^{k-j} \beta_{k-j}$$
$$= t_n (1-t_n)^j \sum_{i=0}^{\infty} (1-t_n)^i \beta_i$$
$$= \{t_n (1-t_n)^j \} \{1/p(1-t_n)\}$$

since $\beta(z) = 1/p(z)$ and $\limsup_k |\beta_k|^{1/k} \le 1$. Now

$$\sum_{n=0}^{\infty} [t_n(1-t_n)]/p(1-t_n) \le \sum_{n=0}^{\infty} [t_n/p(1-t_n)] < \infty$$

[December

454

provided $p(1-t_n)$ is bounded away from zero. Since $p_n \ge 0$, $p_0 > 0$ we have $p(z) = \sum_{n=0}^{\infty} p_n z^n \ge p_0$ for every sequence z such that $z_n \ge 0$. Then $1/p(1-t_n) \le 1/p_0$ for all n. Moreover

$$\sum_{n=0}^{\infty} |t_n(1-t_n)^j/p(1-t_n)| \le \sum_{n=0}^{\infty} |t_n(1-t_n)/p(1-t_n)|$$

and thus condition (i) of Theorem 4 holds.

To verify the second condition consider

$$\sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j} = \sum_{k=j+\lambda}^{\infty} t_n (1-t_n)^k \beta_{k-j}$$
$$= t_n (1-t_n)^j \sum_{i=\lambda}^{\infty} (1-t_n)^i \beta_i.$$

Therefore

$$\sum_{j=0}^{\infty} \left| \sum_{k=j+\lambda}^{\infty} a_{nk} \beta_{k-j} \right| = t_n \left| \sum_{i=\lambda}^{\infty} (1-t_n)^i \beta_i \right| \sum_{j=0}^{\infty} (1-t_n)^j$$
$$= \left| \sum_{i=\lambda}^{\infty} (1-t_n)^i \beta_i \right|.$$

But the series $\sum_{i} (1-t_n)^i \beta_i$ converges and hence $\sum_{i=\lambda}^{\infty} (1-t_n)^i \beta_i \to 0$ as $\lambda \to \infty$. Thus by Theorem 4 we have $l(N_n) \subseteq l(A_i)$.

The author is indebted to the referee whose suggestions improved the exposition of these results.

References

1. B. Choudhary and P. Vermes, Semi-Translative Summability Methods, Studia Scientiarum Mathematicarum Hungarica, 1 (1966), 403-410.

2. J. DeFranza, An Ordered Set of Nörlund Means, International Journal of Math. and Math. Sci., (To appear in Vol. 3 (1980)).

3. J. Fridy, Tauberian theorems via Block Dominated Matrices, Pacific Journal of Math., Vol. 81, 1 (1979), 81-91.

4. G. H. Hardy, Divergent Series, Oxford University Press, (1949).

5. K. Knopp, Infinite Sequences and Series, Dover Publications Inc., (1956).

6. K. Knopp and G. G. Lorentz, Beiträge Zur Absoluten Limitierung, Arch. Math. 2 (1949), 10-16.

7. R. E. Powell and S. M. Shah, Summability Theory and Applications, Van Nostrand Reinhold Co., (1972).

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES YOUNGSTOWN STATE UNIVERSITY YOUNGSTOWN, OHIO 44555

1982]