A GENERAL INCLUSION THEOREM FOR $l-l$ NÖRLUND SUMMABILITY

BY
J. DEFRANZA

Abstract

Nörlund methods of summability are studied as mappings from l_{1} into l_{1}. Conditions are given for an arbitrary $l-l$ method to include a Nörlund method. In particular necessary and sufficient conditions are given for a row finite $l-l$ method to include a Nörlund mean.

As in [2], let p be a complex sequence, $p_{0} \neq 0$, and let $P_{n}=\sum_{k=0}^{n} p_{k}$, $n=0,1,2, \ldots$ Suppose P_{n} is eventually non-zero. If K is the least positive integer so that $P_{n} \neq 0$ for all $n \geq K$, define the Nörlund method of summability N_{p} by $N_{\mathrm{p}}[n, k]=p_{n-k} / P_{0}$ if $0 \leq n<K, k \leq n, p_{n-k} / P_{n}$ if $n \geq K, k \leq n$, and 0 otherwise. Let \mathcal{N} denote the collection of all such Nörlund means. If we let $\hat{P}_{n}=P_{0}$ for $0 \leq n<K$ and $\hat{P}_{n}=P_{n}$ for $n \geq K$, then the N_{p} transform of the sequence x is given by $N_{p} x$, where

$$
\left(N_{p} x\right)_{n}=\left(1 / \hat{P}_{n}\right) \sum_{k=0}^{n} p_{n-k} x_{k}
$$

for all $n \geq 0$. Throughout we write the sequence $\left\{\hat{P}_{n}\right\}$ as $\left\{P_{n}\right\}$.
Let $l \equiv l_{1}=\left\{x\left|\sum_{k}\right| x_{k} \mid<\infty\right\}$. A matrix mapping A is called $l-l$ if and only if $l \subseteq A^{-1}[l] \equiv l(A)$. In [6], Knopp and Lorentz proved that the matrix method A is $l-l$ if and only if there exists some $M>0$ such that

$$
\sup _{k}\left\{\sum_{n=0}^{\infty}\left|a_{n k}\right|\right\}<M .
$$

In [2] it is shown that for any $N_{p} \in \mathcal{N}, N_{p}$ is $l-l$ if and only if (i) $p \in l$, and (ii) $P_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let \mathcal{N}_{l} denote the collection of all l-l Nörlund methods.

In [2] it is shown that given $N_{p}, N_{q} \in \mathcal{N}_{l}, l\left(N_{p}\right) \subseteq l\left(N_{q}\right)$ if and only if $b \in l$, where $b(z)=p(z) / q(z)=\sum_{n} b_{n} z^{n}$. The main theorem of this paper gives conditions to ensure that $l\left(N_{p}\right) \subseteq l(A), A$ an arbitrary $l-l$ matrix.
2. Definition. The matrix A is absolutely translative for the sequence $\left\{x_{k}\right\}$ provided for $j=0,1,2, \ldots$

[^0](i) there exists some $M_{1}>0$ such that
$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} a_{n k} x_{k+j}\right|\right\}<M_{1}, \text { and }
$$
(ii) there exists some $M_{2}>0$ such that
$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} a_{n k} x_{k-j}\right|\right\}<M_{2},
$$
where $x_{i}=0$ for $i<0$.
The matrix A is absolutely left translative (a.l.t) for the sequence $\left\{x_{k}\right\}$ provided (ii) holds and absolutely right translative for $\left\{x_{k}\right\}$ provided (i) holds. The matrix A is absolutely translative provided (i) and (ii) hold for each sequence in $l(A)$, with similar definitions for absolutely left and right translative.

We remark here that if A is an $l-l$ matrix, then A is absolutely translative for each $x \in l$. The first theorem gives a class of l-l Nörlund methods that are absolutely right translative for bounded sequences in their summability fields.

Theorem 1. Suppose N_{p} has as its generating function the polynomial $p(z)=$ $p_{0}+p_{1} z+\cdots+p_{\nu} z^{\nu}$ with $P_{n} \neq 0$ for all $n \geq 0$. Then N_{p} is absolutely right translative for each bounded sequence in $l\left(N_{p}\right)$.

Proof. It suffices to show that if $x \in l\left(N_{p}\right) \cap m$, then the sequence $x^{(j)}=$ $\left(x_{j}, x_{i+1}, \ldots\right) \in l\left(N_{p}\right)$ for each $j \geq 1$ and there exists some $M>0$ such that

$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|\left(N_{p} x^{(j)}\right)_{n}\right|\right\}<M .
$$

Now for any $j \geq 1$ we have for all $n \geq \nu$,

$$
\sum_{n=\nu}^{\infty}\left|\left(N_{p} x^{(j)}\right)_{n}\right| \leq \sum_{n=\nu}^{\infty}\left|\left(N_{p} x\right)_{n}\right| .
$$

If $0 \leq n<\nu$, then

$$
\left(N_{p} x^{(j)}\right)_{n}=\left[\left(N_{p} x\right)_{n+j}\right]\left[P_{n+j} / P_{n}\right]-\left(p_{n+j} x_{0}+\cdots+p_{n+1} x_{j-1}\right) / P_{n} .
$$

Moreover, $p(z)$ being a polynomial implies $p \in l$. Hence there exists numbers $\varepsilon>0$ and $T>0$ such that $\left|P_{n}\right|>\varepsilon>0$ for all $n \geq 0$ and $\sum_{n}\left|p_{n}\right|<T$. Consequently, if $x \in l\left(N_{p}\right) \cap m$, we have independent of j,

$$
\begin{aligned}
\sum_{n=0}^{\nu-1}\left|\left(N_{p} x^{(j)}\right)_{n}\right| \leq & \sum_{n=0}^{\nu-1}\left|\left(N_{p} x\right)_{n+j}\right|\left|P_{n+j} / P_{n}\right| \\
& +\sum_{n=0}^{\nu-1}\left[\left(\left|p_{n+j}\right|\left|x_{0}\right|+\cdots+\left|p_{n+1}\right|\left|x_{j-1}\right|\right) /\left|P_{n}\right|\right] \\
& <(T / \varepsilon) \sum_{n=0}^{\nu-1}\left|\left(N_{p} x\right)_{n+j}\right|+\left[\left(\sup _{k}\left|x_{k}\right|\right) / \varepsilon\right]\left[\nu \sum_{k=0}^{\infty}\left|p_{k}\right|\right]<\infty
\end{aligned}
$$

We remark here that x being bounded in the preceding theorem is necessary. To demonstrate this define the sequence p as follows: $p_{0}=1, p_{1}=-2, p_{n}=0$ for all $n \geq 2$. So that $P_{0}=1, P_{n}=-1$ for all $n \geq 1$. Define the sequence x by $x_{n}=2^{n}, n \geq 0$. Hence $x^{(j)}=\left(2^{j}, 2^{i+1}, \ldots\right)$. It then follows that $\left(N_{p} x^{(j)}\right)_{0}=2^{j}$ and $\left(N_{p} x^{(i)}\right)_{n}=0, n \geq 1$. Thus $\sum_{n=0}^{\infty}\left|\left(N_{p} x^{(j)}\right)_{n}\right|=2^{j}$ and hence N_{p} is not absolutely right translative for the sequence x.

Moreover, we assert there exist $l-l$ Nörlund means whose generating functions are not polynomials and which are absolutely right translative for bounded sequences in their summability field. In particular we have the following:

Theorem 2. Suppose N_{s} and N_{q} are l-l Nörlund means with $s(z)$ a polynomial and $q(z)$ not a polynomial. If $p(z)=s(z) q(z)$, then $l\left(N_{s}\right) \subseteq l\left(N_{p}\right)$. Moreover, if $l\left(N_{q}\right)=l$, then $l\left(N_{p}\right)=l\left(N_{s}\right)$.

Proof. Let

$$
\sum_{n} b_{n} z^{n} \equiv p(z) / s(z)=\sum_{n} q_{n} z^{n}
$$

Since $b \in l$, by [2, Theorem 2] we have $l\left(N_{s}\right) \subseteq l\left(N_{p}\right)$.
Now let $h(z)=1 / q(z) \equiv \sum_{n} h_{n} z^{n}$. If $l\left(N_{q}\right)=l$, then by [2, Corollary 3], $h \in l$. Thus if $a(z)=s(z) / p(z) \equiv \sum_{n} a_{n} z^{n}$, by [2, Theorem 2], $l\left(N_{p}\right) \subseteq l\left(N_{s}\right)$. Thus $l\left(N_{p}\right)=l\left(N_{s}\right)$.

Consider the following example. Let $s(z)=1+z$. Then N_{s} is the $l-l$ Nörlund mean defined by $s_{0}=s_{1}=1, s_{n}=0$ for $n \geq 2$. Moreover, by [2, Corollary 3], $l \subsetneq l\left(N_{s}\right)$. It will also follow from Theorem 6 that $l\left(N_{s}\right) \subseteq m$. Now let $q(z)=$ $\sum_{n}\left(1 / 2^{n}\right) z^{n}$. By [2, Corollary 3] it follows that $l\left(N_{q}\right)=l$. If we now let $p(z)=$ $(1+z) q(z)$, by Theorem $2, l\left(N_{p}\right)=l\left(N_{s}\right)$.

Let $x \in m \cap l\left(N_{p}\right)$. Then $x \in m \cap l\left(N_{s}\right)$, since $l\left(N_{p}\right)=l\left(N_{s}\right)$. By Theorem 1, $x^{(j)} \in l\left(N_{s}\right)=l\left(N_{p}\right)$, and N_{p} is absolutely right translative for bounded sequences.

Theorem 3. If $N_{p} \in \mathcal{N}_{l}$, then N_{p} is absolutely left translative for each $x \in l\left(N_{p}\right)$.
Proof. Since $N_{p} \in \mathcal{N}_{1}$ there exists some $T>0$ such that $\left|P_{n-j} / P_{n}\right|<T$ for all $n \geq j$, independent of j. If $\left(x_{(j)}\right)_{n}=0$, if $0 \leq n \leq j-1$ and x_{n-j} if $n \geq j$, then

$$
\left(N_{\mathrm{p}} x_{(\mathrm{j}}\right)_{\mathrm{n}}=\left[\left(N_{\mathrm{p}} x\right)_{n-\mathrm{j}}\right]\left[P_{n-\mathrm{j}} / P_{n}\right]
$$

where $\left(N_{p} x_{(j)}\right)_{n}=0$ for $0 \leq n<j$. It now follows that N_{p} is a.l.t for each $x \in l\left(N_{\mathrm{p}}\right)$.

The next theorem gives sufficient conditions for an arbitrary $l-l$ method A to include an $l-l$ Nörlund method N_{p}.

Theorem 4. Suppose N_{p} is an l-l Nörlund method and A is an arbitrary l-l
summability method. Let $p(z) \equiv \sum_{n} p_{n} z^{n}$ and $1 / p(z) \equiv \sum_{n} \beta_{n} z^{n}$. If
(i) there exists some $M>0$ such that

$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right|\right\}<M
$$

and
(ii)

$$
\lim _{\lambda \rightarrow \infty} \sum_{j=0}^{\infty}\left|\sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right|=0
$$

then $l\left(N_{p}\right) \subseteq l(A)$.
Proof. Suppose $s \in l\left(N_{p}\right)$ and let

$$
t_{n}=\left(1 / p_{n}\right) \sum_{k=0}^{n} p_{n-k} s_{k} .
$$

Then for small $|z|$,

$$
\sum_{n=0}^{\infty} t_{n} P_{n} z^{n}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} p_{n-k} s_{k}\right) z^{n}=p(z) s(z),
$$

where $s(z) \equiv \sum_{n=0}^{\infty} s_{n} z^{n}$. Then

$$
\begin{aligned}
s(z) & =(1 / p(z)) \sum_{n=0}^{\infty} t_{n} P_{n} z^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} P_{k} t_{k} \beta_{n-k}\right) z^{n},
\end{aligned}
$$

and it follows that $s_{n}=\sum_{k=0}^{n} P_{k} t_{k} \beta_{n-k}$ for $n \geq 0$. Let

$$
\sigma_{n} \equiv(A s)_{n} \equiv \sum_{k=0}^{\infty} a_{n k} s_{k}=\sum_{k=0}^{\infty}\left[a_{n k}\left(\sum_{j=0}^{k} P_{j} t_{j} \beta_{k-j}\right)\right] .
$$

We now assert that

$$
\sigma_{n}=\sum_{j=0}^{\infty}\left[t_{j} P_{j} \sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right] .
$$

Consider the following array:

$$
\begin{array}{ll}
& t_{0} P_{0} a_{n 0} \beta_{0}+t_{0} P_{0} a_{n 1} \beta_{1}+\cdots \\
+ & \cdot \\
+ & \cdot \\
+ & t_{k} P_{k} a_{n k} \beta_{0}+t_{k} P_{k} a_{n, k+1} \beta_{1}+\cdots
\end{array}
$$

Then by [5, Theorem 10] it suffices to show that for any $n \geq 0$,
(a) $\sum_{j=0}^{\infty}\left|t_{j} P_{j} \sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right|<\infty$,
(b) $\left|\sum_{j=0}^{\infty} t_{j} P_{j} a_{n j} \beta_{k}\right|<\infty$ for each fixed k, and
(c) $\lim _{\lambda \rightarrow \infty}\left[\sum_{j=0}^{\infty} t_{j} P_{j} \sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right]=0$.

Now, since N_{p} is $l-l, p \in l$ which implies $\sup _{j}\left|P_{j}\right|<\infty$. The sequence s being in $l\left(N_{p}\right)$ implies $\left\{t_{j}\right\} \in l$. By (i), $\left|\sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right|<M$ for all $j \geq 0$, and some M. Then

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left|t_{j} P_{j} \sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right| & <M \sum_{j=0}^{\infty}\left|t_{j}\right|\left|P_{j}\right| \\
& <M\left(\sup _{j}\left|P_{j}\right|\right) \sum_{j=0}^{\infty}\left|t_{j}\right| \\
& <\infty
\end{aligned}
$$

Now for each fixed k,

$$
\left|\sum_{j=0}^{\infty} t_{j} P_{j} a_{n j} \beta_{k}\right| \leq\left|\beta_{k}\right|\left(\sup _{i} \sum_{n=0}^{\infty}\left|a_{n j}\right|\right) \sum_{j=0}^{\infty}\left|t_{j}\right|\left|P_{j}\right| .
$$

Since A is an $l-l$ method it follows that (b) holds. Finally

$$
\begin{aligned}
\left|\sum_{j=0}^{\infty} t_{j} P_{j} \sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right| & \leq \sum_{j=0}^{\infty}\left|t_{j}\right|\left|P_{j}\right|\left|\sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right| \\
& <\left(\sup _{j}\left|t_{j}\right|\right)\left(\sup _{j}\left|P_{j}\right|\right) \sum_{j=0}^{\infty}\left|\sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right| .
\end{aligned}
$$

We see that the right hand member tends to zero by appealing to (ii). This completes the proof of the assertion.

We can now write

$$
\begin{aligned}
\sigma_{n} & =\sum_{j=0}^{\infty} t_{j}\left(P_{j} \sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right) \\
& =\sum_{j=0}^{\infty} t_{j} e_{n j},
\end{aligned}
$$

where $e_{n j}=P_{j} \sum_{k=\mathrm{j}}^{\infty} a_{n k} \beta_{k-j}$. Then in order to show $l\left(N_{p}\right) \subseteq l(A)$ it suffices to show that the matrix ($e_{n j}$) defines an $l-l$ method.

Combining (i) with the fact that $\left\{P_{n}\right\}$ is bounded, we have there exists some $M^{\prime}>0$ such that

$$
\sup _{i}\left\{\sum_{n=0}^{\infty}\left|P_{j} \sum_{k=j}^{\infty} a_{n k} \beta_{k-j}\right|\right\}<M^{\prime}
$$

which is

$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|e_{n j}\right|\right\}<M^{\prime}
$$

Thus by the Knopp-Lorentz Theorem, $\left(e_{n j}\right)$ is an l-l matrix. This completes the proof.

It is an open question as to whether (i) and/or (ii) are necessary conditions in Theorem 4. However if we now assume that A is row-finite and $l-l$, we have that $l\left(N_{p}\right) \subseteq l(A)$ if and only if A is absolutely left translative on the sequence β. That is,

Theorem 5. Suppose N_{p} is an l-l Nörlund method and A is an arbitrary row-finite l-l matrix. Let $1 / p(z)=\sum_{n} \beta_{n} z^{n}$. Then $l\left(N_{p}\right) \subseteq l(A)$ if and only if there exists some $M>0$ such that

$$
\sup _{i}\left\{\sum_{n=0}^{\infty}\left|\sum_{k=j}^{m_{n}} a_{n k} \beta_{k-j}\right|\right\}<M,
$$

where m_{n} is the column index of the last non-zero term in the nth row of A.
Proof. Since the summability methods N_{p} and A are both row-finite, following the proof of Theorem 4, we can write

$$
\begin{aligned}
\sigma_{n} & =\sum_{k=0}^{\infty} a_{n k} s_{k}=\sum_{k=0}^{m_{n}} a_{n k} s_{k} \\
& =\sum_{k=0}^{m_{n}} a_{n k}\left(\sum_{j=0}^{k} t_{j} P_{j} \beta_{k-j}\right) \\
& =\sum_{j=0}^{m_{n}} t_{j} P_{j}\left(\sum_{k=j}^{m_{n}} a_{n k} \beta_{k-j}\right) .
\end{aligned}
$$

Hence, if $\sigma_{n}=\sum_{j}^{m_{n}} t_{j} e_{n j}$, where $e_{n j}=P_{j} \sum_{k=\underline{n}_{j}}^{m_{n k}} a_{n k-j} \beta_{k-1}$ and $l\left(N_{p}\right) \subseteq l(A)$, then the matrix ($e_{n j}$) defines and $l-l$ summability method, and therefore there exists some $M>0$ such that

$$
\sup _{j}\left\{\sum_{n=0}^{\infty}\left|P_{j}\right| \sum_{k=j}^{m_{n}} a_{n k} \beta_{k-j} \mid\right\}<M
$$

Since N_{p} is $l-l$ the result follows.
Conversely, if there exists such an M, then the matrix $\left(e_{n j}\right)$ defines an $l-l$ summability method and hence, $l\left(N_{p}\right) \subseteq l(A)$.

Corollary 1. Suppose $N_{p}, N_{q} \in \mathcal{N}_{l}$, and let $1 / p(z)=\sum_{n} \beta_{n} z^{n}$. Then $l\left(N_{p}\right) \subseteq$ $l\left(N_{q}\right)$ if and only if $\beta \in l\left(N_{q}\right)$.

Proof. This follows immediately from Theorem 3 and Theorem 5.
We remark here that if $N_{p}, N_{q} \in \mathcal{N}_{l}, l\left(N_{q}\right) \subseteq l\left(N_{p}\right)$ if and only if $h \in l\left(N_{p}\right)$, where $h(z)=1 / q(z)=\sum_{n} h_{n} z^{n}$.
The next theorem follows from the proof of Theorem 5. In it we show that under certain rather broad conditions, N_{p} maps only bounded sequences into l.

Theorem 6. Suppose N_{p} is an l-l method. Let $1 / p(z)=\beta(z)=\sum_{n} \beta_{n} z^{n}$. If β is a bounded sequence, then $l\left(N_{p}\right)$ is contained in the space of bounded sequences.

Proof. Let $s \in l\left(N_{p}\right)$. From the proof of Theorem 5, we have that for each $n \geq 0$,

$$
s_{n}=\sum_{k=0}^{n} P_{k} t_{k} \beta_{n-k}
$$

Let $\sup _{k}\left|P_{k}\right|<T$ and $\sup _{k}\left|\beta_{k}\right|<B$. Then

$$
\begin{aligned}
\left|s_{n}\right| & \leq \sum_{k=0}^{n}\left|P_{k} t_{k} \beta_{n-k}\right| \\
& <\text { TB } \sum_{k=0}^{\infty}\left|t_{k}\right| \\
& <\text { TBM }
\end{aligned}
$$

say, where $\sum_{k}\left|t_{k}\right|<M$.
Example. Consider the Binary method of summability: that is the $l-l$ Nörlund method generated by the sequence p given by $p_{0}=p_{1}=1, p_{n}=0$ for all $n \geq 2$. Therefore $p(z)=1+z$ and

$$
\beta(z)=\sum_{n}(-1)^{n} z^{n} \quad \text { for } \quad|z|<1
$$

Thus β is bounded and hence by Theorem $6, l\left(N_{p}\right)$ is contained in the space of bounded sequences.
3. In [2, Theorem2], it was shown that for $N_{p}, N_{q} \in \mathcal{N}_{l}, l\left(N_{p}\right) \subseteq l\left(N_{q}\right)$ if and only if the sequence $b \in l, b(z)=q(z) / p(z)=\sum_{n} b_{n} z^{n}$. The next lemma says that Theorem 2 of [2] and Corollary 1 are equivalent.

Lemma 1. Suppose $N_{p}, N_{q} \in \mathcal{N}_{l}$. Then $\beta \in l\left(N_{q}\right)$ if and only if $b \in l$.
Proof. The proof is straight forward.
We remark here that if $N_{p}, N_{q} \in \mathcal{N}_{l}$ and $r=p * q$ (i.e., $r_{n}=p_{0} q_{n}+\cdots+p_{n} q_{0}$ for $n \geq 0$), then $N_{r} \in \mathcal{N}_{l}$ (see Lemma 3 of [2]). Moreover

$$
\begin{aligned}
\left(N_{r} \beta\right)_{n} & =\left(1 / \hat{R}_{n}\right) \sum_{k=0}^{n} r_{n-k} \beta_{k} \\
& =q_{n} / \hat{R}_{n}
\end{aligned}
$$

since $p(z) \beta(z) \equiv 1$. Thus $\beta \in l\left(N_{r}\right)$ and $l\left(N_{p}\right) \subseteq l\left(N_{r}\right)$ by Corollary 1. Similarly $l\left(N_{q}\right) \subseteq l\left(N_{r}\right)$.

Now suppose that $N_{p}, N_{q}, N_{s} \in \mathcal{N}_{l}$. Let $\nu=q * s$ and $\mu=p * s$. We need the following notation.
(i) $p(z)=\sum_{n} p_{n} z^{n}, q(z)=\sum_{n} q_{n} z^{n}, s(z)=\sum_{n} s_{n} z^{n}$,
(ii) $1 / p(z)=\beta(z), 1 / s(z)=\gamma(z), 1 / \mu(z)=\sum_{n} c_{n} z^{n}$, and
(iii) $\hat{V}_{n}=\sum_{k=0}^{n} \nu_{n}$ if $V_{n} \neq 0$ and $\hat{V}_{n}=V_{0}$ if $V_{n}=0$.

If $l\left(N_{p}\right) \subseteq l\left(N_{q}\right)$, then by Corollary $1, \beta \in l\left(N_{q}\right)$. We assert that $l\left(N_{\mu}\right) \subseteq l\left(N_{\nu}\right)$. It suffices to show $c \in l\left(N_{\nu}\right)$. Since $\left.1 / \mu(z)=\{1 / p(z)\} 1 / s(z)\right\}$ for small $|z|$, it implies $c=\beta * \gamma$. Also

$$
\hat{V}_{n}\left(N_{\nu} c\right)_{n}=\sum_{k=0}^{n} \nu_{n-k} c_{k}
$$

Therefore the sequence $\left\{\hat{V}_{n}\left(N_{\nu} c\right)_{n}\right\}$ is given by,

$$
(\beta * \gamma) *(q * s)=(\beta * q) *(\gamma * s)=\beta * q
$$

But $\beta \in l\left(N_{q}\right)$ and hence $c \in l\left(N_{\nu}\right)$. Thus $l\left(N_{\mu}\right) \subseteq l\left(N_{\nu}\right)$. By the remark immediately after Corollary 1 and a similar argument as above it follows that if $l\left(N_{p}\right) \subsetneq l\left(N_{q}\right)$ then $l\left(N_{\mu}\right) \subsetneq\left(N_{\nu}\right)$. We now have,

Theorem 7 [2, Theorem 6]. With "strictly l-weaker than" as order relation and " $*$ " as the binary operation, \mathcal{N}_{l} is an ordered abelian semigroup.
4. This section was suggested by J. Fridy. We give a class of matrix summability methods that include certain Nörlund methods. In [3] J. Fridy introduced the following class of methods.

Let t be a sequence such that $0<t_{n}<1$ for all $n \geq 0$. Define $A_{t}=\left(a_{n k}\right)$ by $a_{n k}=t_{n}\left(1-t_{n}\right)^{k}$. It is easy to see that A_{t} is an $l-l$ method if and only if $t \in l$.

We now have,
Theorem 8. Suppose p is a non-negative sequence in $l, p_{0}>0$, and let $1 / p(z)=\sum_{n} \beta_{n} z^{n}$. If $\lim \sup _{k}|\beta|^{1 / k} \leq 1$ and $t \in l$, then $l\left(N_{p}\right) \subseteq l\left(A_{t}\right)$.

Proof. We need to verify that the two conditions of Theorem 4 hold. First consider

$$
\begin{aligned}
\sum_{k=j}^{\infty} a_{n k} \beta_{k-j} & =\sum_{k=j}^{\infty} t_{n}\left(1-t_{n}\right)^{k} \beta_{k-j} \\
& =t_{n}\left(1-t_{n}\right)^{j} \sum_{k=j}^{\infty}\left(1-t_{n}\right)^{k-j} \beta_{k-j} \\
& =t_{n}\left(1-t_{n}\right)^{j} \sum_{i=0}^{\infty}\left(1-t_{n}\right)^{i} \beta_{i} \\
& \left.=\left\{t_{n}\left(1-t_{n}\right)^{i}\right\} 1 / p\left(1-t_{n}\right)\right\}
\end{aligned}
$$

since $\beta(z)=1 / p(z)$ and $\lim \sup _{k}\left|\beta_{k}\right|^{1 / k} \leq 1$. Now

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left[t_{n}\left(1-t_{n}\right)\right] / p\left(1-t_{n}\right) & \leq \sum_{n=0}^{\infty}\left[t_{n} / p\left(1-t_{n}\right)\right] \\
& <\infty
\end{aligned}
$$

provided $p\left(1-t_{n}\right)$ is bounded away from zero. Since $p_{n} \geq 0, p_{0}>0$ we have $p(z)=\sum_{n=0}^{\infty} p_{n} z^{n} \geq p_{0}$ for every sequence z such that $z_{n} \geq 0$. Then $1 / p\left(1-t_{n}\right) \leq$ $1 / p_{0}$ for all n. Moreover

$$
\sum_{n=0}^{\infty}\left|t_{n}\left(1-t_{n}\right)^{j} / p\left(1-t_{n}\right)\right| \leq \sum_{n=0}^{\infty}\left|t_{n}\left(1-t_{n}\right) / p\left(1-t_{n}\right)\right|
$$

and thus condition (i) of Theorem 4 holds.
To verify the second condition consider

$$
\begin{aligned}
\sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j} & =\sum_{k=j+\lambda}^{\infty} t_{n}\left(1-t_{n}\right)^{k} \beta_{k-j} \\
& =t_{n}\left(1-t_{n}\right)^{j} \sum_{i=\lambda}^{\infty}\left(1-t_{n}\right)^{i} \beta_{i}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{i=0}^{\infty}\left|\sum_{k=j+\lambda}^{\infty} a_{n k} \beta_{k-j}\right| & =t_{n}\left|\sum_{i=\lambda}^{\infty}\left(1-t_{n}\right)^{i} \beta_{i}\right| \sum_{i=0}^{\infty}\left(1-t_{n}\right)^{i} \\
& =\left|\sum_{i=\lambda}^{\infty}\left(1-t_{n}\right)^{i} \beta_{i}\right| .
\end{aligned}
$$

But the series $\sum_{i}\left(1-t_{n}\right)^{i} \beta_{i}$ converges and hence $\sum_{i=\lambda}^{\infty}\left(1-t_{n}\right)^{i} \beta_{i} \rightarrow 0$ as $\lambda \rightarrow \infty$. Thus by Theorem 4 we have $l\left(N_{p}\right) \subseteq l\left(A_{t}\right)$.

The author is indebted to the referee whose suggestions improved the exposition of these results.

References

1. B. Choudhary and P. Vermes, Semi-Translative Summability Methods, Studia Scientiarum Mathematicarum Hungarica, 1 (1966), 403-410.
2. J. DeFranza, An Ordered Set of Nörlund Means, International Journal of Math. and Math. Sci., (To appear in Vol. 3 (1980)).
3. J. Fridy, Tauberian theorems via Block Dominated Matrices, Pacific Journal of Math., Vol. 81, 1 (1979), 81-91.
4. G. H. Hardy, Divergent Series, Oxford University Press, (1949).
5. K. Knopp, Infinite Sequences and Series, Dover Publications Inc., (1956).
6. K. Knopp and G. G. Lorentz, Beiträge Zur Absoluten Limitierung, Arch. Math. 2 (1949), 10-16.
7. R. E. Powell and S. M. Shah, Summability Theory and Applications, Van Nostrand Reinhold Co., (1972).

Department of Mathematical and
Computer Sciences
Youngstown State University
Youngstown, Ohio 44555

[^0]: Received by the editors September 23, 1980 and, in revised form, December 21, 1980 and May 21, 1981.

 AMS classification numbers. Primary-40D25, 40G05
 Key Words and Phrases. Inclusion Theorem, l-l method, Nörlund method.

