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Abstract

Selecting important variables and estimating coordinate covariation have received
considerable attention in the current big data deluge. Previous work shows that the
gradient of the regression function, the objective function in regression and classification
problems, can provide both types of information. In this paper, an algorithm to learn
this gradient function is proposed for nonidentical data. Under some mild assumptions
on data distribution and the model parameters, a result on its learning rate is established
which provides a theoretical guarantee for using this method in dynamical gene selection
and in network security for recognition of malicious online attacks.
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1. Introduction

With the increasing collection of vast quantities of data, it has become common
to encounter high-dimensional data sets in a variety of applications. In general, a
complicated model including many insignificant variables may result in less predictive
ability. Hence, it is desirable to select some important variables and estimate
coordinate covariance [7, 13].

Variable selection, also known as feature screening, aims at choosing a subset
of variables most relevant for predicting responses. Using a variety of criteria, for
example correlation or information theory, to rank features is a common way. The
variables with scores below a threshold are eliminated [4]. These ranking-based
methods focus on individual prediction power and are ineffective in selecting a subset
of variables that are marginally weak but in combination strong in prediction. Bayesian
learning [8] is another popular method based on some prior information, such as
sparsity. Lasso [12] and elastic net [14] are two widely used approaches of this type.
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However, they are based on the assumption of a linear model which is not suitable for
many practical applications.

Coordinate covariance is a measure of how much two random variables change
together. A sample covariance matrix is not a good estimator of population covariance
if the dimension of the input variable is high. Many methods have been proposed to
estimate the covariance in this case [2, 3]. However, almost all of them made some
assumptions on the distribution, such as a Gaussian distribution for simplicity or an
exponential distribution for sparsity. Moreover, these approaches made no connection
with variable selection.

Mukherjee and Zhou [7] introduced a gradient-learning algorithm which can
provide both variable selection and a covariance estimate at the same time. The
motivation of this algorithm is that the gradient of the prediction function provides
a natural interpretation of the geometric structure of the data. The larger the
norm of the partial derivative with respect to a variable, the more important the
corresponding variable is likely to be for prediction. Also the inner product between
partial derivatives indicates the coordinate covariance with respect to variation in the
prediction function. However, the data in that work needed to be sampled from an
unknown independent and identical distribution (i.i.d.). In many application domains,
this i.i.d. condition becomes inappropriate. For example, there are many Markov
models which are not identical [5, 11], and some discrete contracting dynamical
systems are not i.i.d. [9]. In this work, Under a Markov sampling condition [10], we
establish an online gradient-learning algorithm. The method is based on a nonlinear
model, and there are no special distribution assumptions for the samples.

The rest of the paper is organized as follows. In Section 2, the definition of the
proposed algorithm is given and some supporting results are introduced. Error analysis
of this algorithm is presented in Section 3, which ensures the feasibility of using this
algorithm theoretically.

2. Notation and definitions

We first introduce some notation that will be used in Section 3, and give the
definition of our proposed algorithm.

Let the input space X be a compact subset of Rn and the output space be Y =

[−M, M] for some M > 0. Each x ∈ X is assigned a conditional probability measure
ρ(·|x) on Y . The regression function is defined as

fρ(x) =

∫
Y

y dρ(y|x) x ∈ X.

Define x = (x1, . . . , xn) ∈ Rn and denote the gradient of the regression function by
∇ fρ = (∂ fρ/∂x1, ∂ fρ/∂x2, . . . , ∂ fρ/∂xn)T . Our goal is to obtain ∇ fρ from data {zt}t≥1

with each zt = (xt, yt) independently drawn from a probability distribution ρ(t) defined
on the product space Z = X × Y .

https://doi.org/10.1017/S1446181116000328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000328


222 X.-M. Dong [3]

Under the identical distribution assumption, namely, ρ(t) being fixed as ρ for each t,
Mukherjee and Zhou [7] proposed a least-squares type learning algorithm, defined by

fS ,λ = argmin
f∈Hn

K

[ 1
T 2

T∑
i, j=1

w(σ)
i, j {yi − y j + f(xi) · (x j − xi)}2 + λ‖f‖2

Hn
K

]
, (2.1)

where λ, σ are two positive constants called the regularization parameters. Let
S = {zi}

T
i=1 and let “·” denote the inner product in Rn. The weight wσ

i, j = wσ
xi,x j

=

exp{−‖xi − x j‖
2/2σ2} is used to govern the “nearness” of the samples xi and x j. The

function K : X × X → R is a Mercer kernel [1] and HK is the reproducing kernel
Hilbert space (RKHS) associated with K. The hypothesis space Hn

K in equation (2.1)
is the n-fold of HK , consisting of vectors of functions f = ( f 1, f 2, . . . , f n)T with the
norm ‖f‖Hn

K
= {

∑n
`=1 ‖ f

`‖2K}
1/2. Denote κ = supx,r∈X

√
K(x, r).

The purpose of this paper is to establish an algorithm for gradient learning with the
identical distribution assumption used in (2.1) weakened. As illustrated by Smale and
Zhou [10], we suppose that the marginal distribution sequence {ρ(t)

X } of {ρ(t)} converges
exponentially fast in the dual of the Hölder space Cs(X) for 0 < s ≤ 1 [6]. Here the
Hölder space Cs(X) is defined as the space of all continuous functions on X with
the norm ‖ f ‖Cs(X) = ‖ f ‖C(X) + | f |Cs(X) being finite, where | f |Cs(X) = supx,r∈X(| f (x) −
f (r)|/‖x − r‖s).

Definition 2.1. For 0 < s ≤ 1, we say that the sequence {ρ(t)
X } converges to a probability

measure ρX exponentially fast in (Cs(X))∗ if there exist C > 0, 0 < α < 1 and a
probability measure ρX defined on X such that, for any f ∈ Cs(X),∣∣∣∣∣ ∫

X
f (x) dρ(t)

X (x) −
∫

X
f (x) dρX(x)

∣∣∣∣∣ ≤ Cαt‖ f ‖Cs(X) for all t ∈ N. (2.2)

Now we define our gradient-learning algorithm as follows.

Definition 2.2. The online algorithm for learning the gradient of the regression
function with zt sampling from ρ(t) independently is defined by f1 = 0 and, for t ∈ N,

ft+1 = ft − ηt[wσ
2t−1,2t{y2t−1 − y2t + ft(x2t−1) · (x2t − x2t−1)}(x2t − x2t−1)Kx2t−1 + λtft].

(2.3)
Here ηt and λt denote the step sizes and regularization parameters, respectively.

For brevity, we define the sampling operator S x : Hn
K −→ R

n as S x(f) = f(x) =

( f 1(x), . . . , f n(x))T and its adjoint operator as S T
x : Rn −→ Hn

K , with S T
x (c) =

cKx, for all c ∈ Rn. Denote

Yx2t = wσ
2t−1,2t(y2t − y2t−1)(x2t − x2t−1) ∈ Rn,

Dx2t = wσ
2t−1,2t(x2t − x2t−1)(x2t − x2t−1)T ∈ Rn×n.

We can rewrite our online algorithm (2.3) as

ft+1 = (1 − ηtλt)ft − ηt{S T
x2t−1

Dx2t S x2t−1 (ft) − S T
x2t−1

Yx2t }.

https://doi.org/10.1017/S1446181116000328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000328


[4] Learning gradients from nonidentical data 223

To analyse the learning rate of ft+1 to ∇ fρ, we introduce the integral operators

LK,ρ(2t) (f) =

∫
X

∫
X

wσ
x,u(u − x)(u − x)T Kxf(x) dρ(2t−1)

X (x) dρ(2t)
X (u),

LK,ρ(f) =

∫
X

∫
X

wσ
x,u(u − x)(u − x)T Kxf(x) dρX(x) dρX(u).

Define the vector functions

fλ,ρ(2t) = (LK,ρ(2t) + λI)−1fρ(2t),σ, (2.4)

fλ,ρ = (LK,ρ + λI)−1fρ,σ, (2.5)

where

fρ(2t),σ =

∫
X

∫
X

wσ
x,u(u − x)( fρ(u) − fρ(x))Kx dρ(2t−1)

X (x) dρ(2t)
X (u),

fρ,σ =

∫
X

∫
X

wσ
x,u(u − x)( fρ(u) − fρ(x))Kx dρX(x) dρX(u).

The error between ft+1 and ∇ fρ can be decomposed into three parts as

ft+1 − ∇ fρ = {ft+1 − fλt ,ρ(2t)} + {fλt ,ρ(2t) − fλt ,ρ} + {fλt ,ρ − ∇ fρ}. (2.6)

The first part of right-hand side is referred to as sample error, and the third part as
approximation error. The second part is caused by different measures. These errors
will be estimated in the next section.

For convergence analysis, the conditional distribution {ρ(t)
X (y|x)} of {ρ(t)

X } is assumed
to be independent of t and is denoted by ρx. Furthermore, we need the kernel K to
satisfy the kernel condition, that is, K ∈ Cs(X × X) and there exists κs > 0 such that,
for all x,u ∈ X,

‖Kx − Ku‖K ≤ κs(‖x − u‖s),

where Kx = K(x, ·). The Mercer kernel K with the kernel condition yields that
‖ f ‖Cs(X) ≤ (κ + κs)‖ f ‖K for any f ∈ HK . Therefore f ∈ Cs(X).

3. Main results

The first contribution of this paper is to estimate the second part in right-hand side
of (2.6), as follows.

Theorem 3.1. Let fλ,ρ(2t) and fλ,ρ be given by (2.4) and (2.5), respectively. Assume that,
for the conditional distributions {ρx : x ∈ X}, there exists a constant Cρ ≥ 0 such that
‖ρx − ρu‖(Cs(Y))∗ ≤ Cρ‖x − u‖s for all x,u ∈ X. Then,

‖fλ,ρ − fλ,ρ(2t)‖Hn
K
≤ C̃0α

2t−1λ−3/2σ−1,

where the constant C̃0 is independent of α, σ and λ.
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Proof. Using (2.4) and (2.5),

fλ,ρ − fλ,ρ(2t) = (LK,ρ + λI)−1{fρ,σ − (LK,ρ + λI)fλ,ρ(2t)}

= (LK,ρ + λI)−1{(fρ,σ − fρ(2t),σ) + (LK,ρ(2t) − LK,ρ)fλ,ρ(2t)}.

First, we rewrite this as

fρ,σ − fρ(2t),σ =

∫
X

∫
X

wσ
x,u(u − x)( fρ(u) − fρ(x))Kx dρX(x) d(ρX − ρ

(2t)
X )(u)

+

∫
X

∫
X

wσ
x,u(u − x)( fρ(u) − fρ(x))Kx dρ(2t)

X (u) d(ρX − ρ
(2t−1)
X )(x)

= Ia + Ib.

Let h(x) =
∫

X wσ
x,u(u − x)( fρ(u) − fρ(x)) d(ρX − ρ

(2t)
X )(u) and let hi(x) be its ith

coordinate. By the reproducing property

‖Ia‖
2
Hn

K
=

n∑
i=1

∥∥∥∥∥ ∫
X

hi(x)Kx dρX(x)
∥∥∥∥∥2

K
=

n∑
i=1

∫
X

∫
X

hi(x)K(x, r)hi(r) dρX(x) dρX(r).

According to Fubini’s theorem,

‖Ia‖
2
Hn

K
=

n∑
i=1

∫
X

[∫
X

∫
X

hi(x)K(x, r)wr,τ(τi − ri)( fρ(τ)

− fρ(r)) dρX(x) dρX(r)
]

d(ρX − ρ
(2t)
X )(τ),

which, together with (2.2), gives

‖Ia‖
2
Hn

K
≤ nCα2t max

1≤i≤n

∥∥∥∥∥ ∫
X

∫
X

hi(x)K(x, r)wr,τ(τi − ri)( fρ(τ)

− fρ(r)) dρX(x) dρX(r)
∥∥∥∥∥
Cs(X)

.

Let ‖ · ‖u,Cs(X) and ‖ · ‖u,C(X) be the norms with respect to u, and D = diameter(X). Then

‖wσ
x,u(ui − xi)( fρ(u) − fρ(x))‖u,Cs(X) ≤ ‖wσ

x,u(ui − xi)( fρ(u) − fρ(x))‖u,C(X)

+ ‖wσ
x,u( fρ(u) − fρ(x))‖u,C(X)|ui − xi|u,Cs(X)

+ |wσ
x,u( fρ(u) − fρ(x))|u,Cs(X)‖ui − xi‖u,C(X)

≤ 2MD + 2MD1−s + D(2M|wσ
x,u|u,Cs(X)

+ | fρ(u) − fρ(x)|u,Cs(X))

≤ 2MD + 2MD1−s +
2MD2−s

σ2 + DMCρ,
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so that

‖Ia‖
2
Hn

K
≤ nCα2t max

i

{
2κ2MD sup

x
|hi(x)|

+

∣∣∣∣∣"
X

hi(x)K(x, r)|wσ
r,τ(τ

i − ri)( fρ(τ) − fρ(r))|τ,Cs(X)dρX(x) dρX(r)
∣∣∣∣∣}

≤ nCα2t
{
2κ2MD + κ2

(
2MD1−s +

2MD2−s

σ2 + DMCρ

)}
sup

x
|hi(x)|

≤ n(Cα2t)2κ2
{
2MD + 2MD1−s +

2MD2−s

σ2 + DMCρ

}2
.

Similarly, we can get the upper bound

‖Ib‖
2
Hn

K
≤ n(Cα2t−1)2(κ2 + 2κs + |K|Cs(X×X))

{
2MD + 2MD1−s +

2MD2−s

σ2 + DMCρ

}2
.

Then ‖fρ,σ − fρ(2t),σ‖Hn
K
≤

√
2(‖Ia‖

2
Hn

K
+ ‖Ib‖

2
Hn

K
) ≤ C1α

2t−1/σ, with C1 being indepen-

dent of α, σ.
Next, for (LK,ρ(2t) − LK,ρ)fλ,ρ(2t) , we give the analysis of its general case, that is,

LK,ρ(2t) f − LK,ρf with f ∈ Hn
K . It can be rewritten as

LK,ρ(2t) f − LK,ρf =

∫
X

∫
X

wσ
x,u(u − x)(u − x)T f(x)Kx dρ(2t)

X (u) d(ρ(2t−1)
X − ρX)(x)

+

∫
X

∫
X

wσ
x,u(u − x)(u − x)T f(x)Kx d(ρ(2t)

X − ρX)(u) dρX(x)

= IIa + IIb.

Using similar techniques to those in the proof of the first part,

‖IIa‖
2
Hn

K
≤ n(Cα2t−1)2[(D + D3−s/σ + 2D2−s/σ2)|f|Cs(X) + D2|f|∞]2

× (κ2 + 2κs + |K|Cs(X×X))2,

‖IIb‖
2
Hn

K
≤ n(Cα2tκ)2[(D + D3−s/σ + 2D2−s/σ2)|f|Cs(X) + D2|f|∞]2.

Therefore
√

2(‖IIa‖
2
Hn

K
+ ‖IIb‖

2
Hn

K
) ≤ C2α

2t−1‖f‖Cs(X)/σ, with C2 being independent of
α, σ.

From (2.4),

λ‖fλ,ρ(2t)‖2
Hn

K
≤

∫
Z

∫
Z

wσ
x,u(y − v)2 dρ(2t−1)(x, y) dρ(2t)(u, v) ≤ D2, (3.1)

which yields

‖fλ,ρ(2t)‖Cs(X) =

n∑
j=1

‖ f j
λ,ρ(2t)‖Cs(X) ≤ (κ + κs)

n∑
j=1

‖ f j
λ,ρ(2t)‖K ≤ (κ + κs)D

√
n
λ
.
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Combining the above results,

‖fλ,ρ − fλ,ρ(2t)‖Hn
K
≤

1
λ

{
C1
α2t−1

σ
+ C2

α2t−1

σ
(κ + κs)D

√
n
λ

}
≤ C′α2t−1λ−3/2σ−1.

This completes the proof. �

To prove the convergence rate of algorithm (2.3), we need to find an upper bound
for a difference caused by the change of the regularization parameter from λi to λi+1 in
(2.5).

Proposition 3.2. Let λi = λ1i−β with 0 < λ1, β < 1 and µ ∈ (Cs(X))∗. Then

‖fλi,µ − fλi+1,µ‖Hn
K
≤

4κMDβ
λ1

i β−1.

Proof. Using the notation in (2.5),

fλi,µ − fλi+1,µ = (LK,µ + λiI)−1(fµ,σ − (LK,µ + λi+1I)fλi+1,µ + (λi+1I − λiI)fλi+1,µ)

= (λi+1I − λiI)(LK,µ + λiI)−1(LK,µ + λi+1I)−1fµ,σ,

so that ‖fλi,µ − fλi+1,µ‖Hn
K
≤ ((λi − λi+1)/λiλi+1)‖fµ,σ‖Hn

K
. Since λi − λi+1 = λ1βξ

−β−1 for
some ξ ∈ (i, i + 1), this yields

‖fλi,µ − fλi+1,µ‖Hn
K
≤

λ1βi−β−1

λ1i−βλ1(i + 1)−β
‖fµ,σ‖Hn

K
≤

2β
λ1

i β−1‖fµ,σ‖Hn
K
≤

2β
λ1

i β−1(2κMD).

�

We also need the following revised McDiarmid–Bernstein-type probability
inequality that was originally proposed by Mukherjee and Zhou [7].

Lemma 3.3. Let S = {zi}
m
i=1 be independently drawn from probability distributions

{ρ(i)}mi=1, respectively, let (H, ‖ · ‖) be a Hilbert space and let F : Zm → H be
measurable. If there is M̃ ≥ 0 such that ‖F(S ) − Ezi (F(S ))‖ ≤ M̃ for each 1 ≤ i ≤ m
and almost every S ∈ Zm, then, for any ε > 0,

PS∈Zm{‖F(S ) − ES (F(S ))‖ ≥ ε} ≤ 2 exp
{
−

ε2

2(M̃ε + mM̃2)

}
.

The proof of this lemma is similar to a result of Mukherjee and Zhou [7, Proposition
13], and hence is omitted here. Now we present our second main result.

Theorem 3.4. Assume that the true gradient of the regression function fρ is ∇ fρ ∈ Hn
K .

Taking λt = λ1t−β, ηt = η1t−θ and σ = t−3/2β(t ∈ N) with 0 < 2β < θ < 1/2,

Ez1,...,z2t (‖ft+1 − ∇ fρ‖Hn
K
) ≤ C̃

(1
t

)min{β/2,(θ/2)−β}
.
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[8] Learning gradients from nonidentical data 227

Proof. From (2.6), first we need to estimate the sample error. Denote Wt+1 = ft+1 −

fλt ,ρ(2t) with fλ0,ρ(0) = 0. Then

Wt+1 = ft − fλt ,ρ(2t) − ηt{S T
x2t−1

Dx2t S x2t−1 (ft) − S T
x2t−1

Yx2t + λtft}

= ft − fλt ,ρ(2t) − ηt{S T
x2t−1

Dx2t S x2t−1 (ft − fλt ,ρ(2t) ) + S T
x2t−1

Dx2t S x2t−1 (fλt ,ρ(2t) )

− S T
x2t−1

Yx2t + λtft}.

Let At = (1 − ηtλt)I − ηtS T
x2t−1

Dx2t S x2t−1 , ξt = S T
x2t−1

Dx2t S x2t−1 (fλt ,ρ(2t) ) − S T
x2t−1

Yx2t +

fρ(2t),σ − LK,ρ(2t) (fλt ,ρ(2t) ) and denote Πt
j=t+1A j = I. Then, by iteration,

Wt+1 =

t∑
i=1

t∏
j=i

A j(fλi−1,ρ(2i−2) − fλi,ρ(2i) ) −
t∑

i=1

t∏
j=i+1

A jηiξi. (3.2)

In the following, we will analyse the two terms on the right-hand side of equation
(3.2). The operator η jλ jI + η jS T

x2 j−1
Dx2 j S x2 j−1 is positive and bounded by (η jλ j +

η jκD2)I. So, for j ≥ t0, where t0 is the smallest integer greater than (η1λ1 + η1κD2)1/θ,
the operator A j : Hn

K → H
n
K is positive and bounded by (1 − η jλ j)I, and hence

‖A j‖Hn
K→H

n
K
≤ exp{−η jλ j}. Since ‖A j‖Hn

K→H
n
K
≤ 1 + η jλ j + η jκD2 for j < t0,∥∥∥∥∥ t∏

j=i

A j

∥∥∥∥∥
Hn

K→H
n
K

≤ (1 + η1λ1 + η1κD2)(η1λ1+η1κD2)1/θ
exp

{
−η1λ1

t∑
j=i

j−β−θ
}

= C0 exp
{
−η1λ1

t∑
j=i

j−β−θ
}
. (3.3)

From Theorem 3.1 and Proposition 3.2,

‖fλi−1,ρ(2i−2) − fλi,ρ(2i)‖Hn
K
≤ ‖fλi−1,ρ(2i−2) − fλi−1,ρ‖Hn

K
+ ‖fλi,ρ − fλi,ρ(2i)‖Hn

K
+ ‖fλi−1,ρ − fλi,ρ‖Hn

K

≤ C′1α
2i−3(i − 1)(3/2)β + C′2α

2i−1i(3/2)β + C′3(i − 1) β−1. (3.4)

By Lemma 2(1) of Smale and Zhou [10], since α2i = exp{−2i ln(1/α)} ≤
(b/2e ln(1/α))bi−b, if we choose b = 3β/2, the term with α2ii3β/2 in (3.4) is dominated
by the polynomial term (i − 1)β−1. Equation (3.3) and [10, Lemma 2(2)], together with
ν = η1λ1, p1 = β + θ, p2 = 1 − β, give∥∥∥∥∥ t∑

i=1

t∏
j=i

A j(fλi−1,ρ(2i−2) − fλi,ρ(2i) )
∥∥∥∥∥
Hn

K

≤ C′′Cν,p1,p2 tθ+2β−1. (3.5)

Now we estimate the second term in the right-hand side of equation (3.2). Write∥∥∥∥∥ t∑
i=1

t∏
j=i+1

A jηiξi

∥∥∥∥∥2

Hn
K

=

t−1∑
i=1

t−1∑
l=1

〈 t∏
j=i+1

A jηiξi,

t∏
p=l+1

Apηlξl

〉
Hn

K

+

〈 t−1∑
i=1

t∏
j=i+1

A jηiξi, ηtξt

〉
Hn

K

+ ‖ηtξt‖
2
Hn

K
,
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and denote z̃i = {z2i−1, z2i}. Notice that ξi depends on z2i−1, z2i and Ez̃i (ξi) = 0, while,
for i < t,

∏t
j=i+1 A j depends on z2t, z2t−1, . . . , z2i+1, which yields

Ez̃i |z2t ,z2t−1,...,z2i+1

( t∏
j=i+1

A jηiξi

)
= 0.

It follows that, for l > i + 1, the expected value

Ez1,...,z2t

(〈 t∏
j=i+1

A jηiξi,

t∏
p=l+1

Apηlξl

〉
Hn

K

)

= Ez2t ,z2t−1,...,z2i+1

〈
Ez̃i |z2t ,z2t−1,...,z2i+1

t∏
j=i+1

A jηiξi,

t∏
p=l+1

Apηlξl

〉
Hn

K

= 0.

Therefore

Ez1,...,z2t

(∥∥∥∥∥ t∑
i=1

t∏
j=i+1

A jηiξi

∥∥∥∥∥2

Hn
K

)
=

t−1∑
i=1

Ez1,...,z2t

(∥∥∥∥∥ t∏
j=i+1

A jηiξi

∥∥∥∥∥2

Hn
K

)
+ Ez̃t‖ηtξt‖

2
Hn

K
. (3.6)

Let H =Hn
K . Considering the function F : Z2 → H given by

F (̃zt) = S T
x2t−1

Dx2t S x2t−1 (fλt ,ρ(2t) ) − S T
x2t−1

Yx2t , ξt = F (̃zt) − Ez̃t [F (̃zt)].

Since

Ez2t−1 [F (̃zt)] =

∫
X

wσ
x,x2t

( fρ(x) − y2t + fλt ,ρ(2t) (x) · (x2t − x))(x2t − x)Kx dρ(2t−1)
X (x),

by the reproducing property of the RKHS and inequality (3.1),

‖F (̃zt) − Ez2t−1 [F (̃zt)]‖Hn
K
≤ 2Dκ(2M + Dκ‖fλt ,ρ(2t)‖Hn

K
) = Mt.

A similar result can be obtained for ‖F (̃zt) − Ez2t [F (̃zt)]‖Hn
K
≤ Mt.

Then, by applying Lemma 3.3 with M̃ = Mt,

P{‖ξt‖Hn
K
≥ ε} ≤ 2 exp

{
−

ε2

2(Mtε + 2M2
t )

}
for any 0 < ε < 1. Combining this with

Ez̃t [‖ξt‖
2
Hn

K
] =

∫ ∞

0
P{‖ξt‖

2
Hn

K
≥ ε}dε =

∫ ∞

0
P{‖ξt‖Hn

K
≥
√
ε}dε,

we see that, for any u > 0, Ez̃t [‖ξt‖
2
Hn

K
] ≤ u + 2

∫ ∞
u exp{−ε/2Mt(

√
ε + 2Mt)}dε. If

u ≥ (2Mt)2,∫ ∞

u
exp

{
−

ε

2Mt(
√
ε + 2Mt)

}
dε≤

∫ ∞

u
exp

{
−

√
ε

4Mt

}
dε

= 8Mt(
√

u + 4Mt) exp
{
−

√
u

4Mt

}
.
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Let f (u) = u + 16Mt(
√

u + 4Mt) exp{−
√

u/4Mt}. It is easy to prove that the
minimizer of f (u) is u0 = (4Mt ln 2)2 and that f (u0) = (4Mt ln 2)2 + 32M2

t (ln 2 + 1).
Thus Ez̃t [‖ξt‖

2
Hn

K
] ≤ (4Mt ln 2)2 + 32M2

t (ln 2 + 1) ≤ 48M2
t . Substituting (3.1) into (3.6),

Ez1,...,z2t

(∥∥∥∥∥ t∑
i=1

t∏
j=i+1

A jηiξi

∥∥∥∥∥2

Hn
K

)
≤

t−1∑
i=1

c′′′i−2θ+β exp
{
−2η1λ1

t∑
j=i+1

j−β−θ
}
.

Using [10, Lemma 2(2)], together with equations (3.1), (3.5) and (3.3), we can find
an upper bound for the sample error as

Ez1,...,z2t (‖Wt+1‖Hn
K
) ≤ C̃1tθ+2β−1 + C̃2tβ−(θ/2). (3.7)

For the approximation error in (2.6), we use [7, Proposition 9], namely,

‖fλt ,ρ − ∇ fρ‖Hn
K
≤ C̃3

{
σ

λt
+

√
λt

}
.

Combining this with (3.7) and Theorem 3.1,

Ez1,...,z2t (‖ft+1 − ∇ fρ‖Hn
K
) ≤ C̃1tθ+2β−1 + C̃2t β−(θ/2) + C̃0

α2t−1t3β/2

λ3/2
1 σ

+ C̃3

{
σ

λ1
tβ +

√
λ1t−β/2

}
.

Using [10, Lemma 2(2)], we derive that (α2t−1t3β/2)/λ3/2
1 σ can be dominated by 1/σt2β,

and thus, under the condition of the theorem, we have proved the desired result. �

4. Conclusions

In this work, an online gradient-learning algorithm is described that can provide
information of variable selection and coordinate covariance estimation for nonidentical
data. Under certain conditions, we show that the gradient derived by the algorithm is
an approximation of the true gradient of the regression function. Interesting areas
for future directions include using the proposed algorithm in network security for
recognition of malicious online attacks or for other related research areas, and to
improve the learning rate through choosing parameters adaptively.
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