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Abstract
Nutritional interventions often rely on subjective assessments of energy intake (EI), but these are susceptible tomeasurement error. To introduce
an accelerometer-based intake-balance method for assessing EI using data from a time-restricted eating (TRE) trial. Nineteen participants with
overweight/obesity (25–63 years old; 16 females) completed a 12-week intervention (NCT03129581) in a control group (unrestricted feeding; n
8) or TRE group (n 11). At the start and end of the intervention, body composition was assessed by dual-energy X-ray absorptiometry (DXA) and
daily energy expenditure (EE) was assessed for 2 weeks via wrist-worn accelerometer. EI was back-calculated as the sum of net energy storage
(fromDXA) and EE (from accelerometer). Accelerometer-derived EI estimateswere compared against estimates from the bodyweight planner of
the National Institute of Diabetes andDigestive and Kidney Diseases (NIDDK). Mean EI for the control group declined by 138 and 435 kJ/day for
the accelerometer andNIDDKmethods, respectively (both P≥ 0·38), v. 1255 and 1469 kJ/day, respectively, for the TRE group (both P< 0·01). At
follow-up, the accelerometer and NIDDK methods showed excellent group-level agreement (mean bias of −297 kJ/day across arms; standard
error of estimate 1054 kJ/day) but high variability at the individual level (limits of agreement from −2414 toþ1824 kJ/day). The accelerometer-
based intake-balance method showed plausible sensitivity to change, and EI estimates were biologically and behaviourally plausible. The
method may be a viable alternative to self-report EI measures. Future studies should assess criterion validity using doubly labelled water.
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Caloric restriction is essential for weight loss in humans, but
many barriers prevent individuals from adhering to a low-energy
diet (e.g. cost, frustration and lack of support(1)). Interventions
focussed on intentional caloric restriction only produce desired
weight loss in 30 %–50 % of participants(2,3). Thus, there is grow-
ing interest in alternative behavioural approaches that can
potentially yield better results. Time-restricted eating (TRE) is
a promising example that focuses on the restriction of meal tim-
ing rather than calories. Prior studies have shown that TRE (ad
libitum intake during an 8–10 h window each day, followed by
14–16 h of fasting) aids weight loss by reducing eating occasions
by 22 %(4) and daily energy intake (EI) by ∼8 %–20 %(5,6).

As with other areas of nutrition research, the assessment of EI
is a key component of TRE research. Prior studies have used a
range of techniques, from 7-d food diaries(5) to retrospective esti-
mations based on photo and text diaries(6). These methods can

be highly subjective, which is a common limitation when meas-
uring EI(7–9), sometimes entailing >30 % error(10–12). Therefore,
there is a need to investigate more accurate methods for assess-
ing EI in TRE research.

One such promising method is the ‘intake-balance’ or
‘expenditure/balance’ method(13–16). This method infers EI from
highly accurate measurements of net energy storage (ES) and
energy expenditure (EE). Specifically, since the net ES (i.e. change
in body composition over time) is defined as EIminus EE, it is pos-
sible to rearrange the equation and infer EI by summing the mea-
sured values of EE and net ES(16). Typically, EE is assessed via
doubly labelled water, and net ES is assessed via dual X-ray
absorptiometry (DXA). However, the use of doubly labelledwater
limits this approach due its cost-prohibitive, labor-intensive and
highly technical nature. Thus, the standard intake-balancemethod
has limited scalability for widespread use.
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To improve the scalability of the intake-balancemethod, dou-
bly labelled water could potentially be replaced with a surrogate
EE measure, particularly an accelerometry-based method(17,18).
Although some measurement errors would result from this
change, the degree of error would potentially be lower than
the errors observed with self-reported EI(19–21). Thus, it is impor-
tant to investigate the utility of accelerometer-based intake-bal-
ance methods, which has not been done in the setting of a TRE
intervention, nor with open-source and research-grade acceler-
ometry solutions that may also benefit other areas of nutrition
research. Therefore, the purpose of this paper is to provide
proof-of-concept for an accelerometer-based intake-balance
method.

Experimental methods

Participants and ethical approval

This is a secondary analysis of data from a prior study, for which
full methods have been presented elsewhere(4). Participants
were adults (aged 18–65 years) who were overweight or obese
at baseline. This study was conducted according to the guide-
lines laid down in the Declaration of Helsinki, and all procedures
involving human subjects/patients were approved by the
Institutional Review Board of the University of Minnesota on
March 21, 2017 (Project identification code number:
1701M06001). Use of the myCircadianClock app (Salk
Institute) was approved by the Institutional Review Board at
the Salk Institute for Biological Studies (Project identification
code number: 15-0003). Written informed consent was obtained
from all subjects/patients. The study is registered on
ClinicalTrials.gov (#NCT03129581).

Study design/intervention

The intervention duration was 12 weeks with 2-week assess-
ments beforehand (Pre) and during the final two intervention
weeks (Post). All potential participants first underwent a screen-
ing procedure in which they were asked to document their food
intake (i.e. meal timing and food type) for≥ 1 week using a
smartphone application (myCircadianClock). Those who had
a daily eating window≥ 14 hwere enrolled and randomised into
one of two intervention arms, namely unrestricted eating (con-
trol) or TRE. The participants in the control group were
instructed to continue their usual eating habits while tracking
all meal timing and food types via the myCircadianClock appli-
cation. The participants in the TRE group self-selected a daily 8-h
eating window, which they were asked to keep consistent
throughout the 12-week intervention. During the window, ad
libitum food intake was permitted. Outside the window, partic-
ipants were instructed to limit their oral intake to medications
and water.

Procedures/measures

For the Pre- and Post-assessments, each participant had their
anthropometric variables and study endpoints measured, along
with wearing an accelerometer (ActiGraph GT9X Link,
ActiGraph LLC) for 2 weeks.

Anthropometric variables and study endpoints. Body com-
position was assessed using a GE Lunar iDXA system (GE
Healthcare) and analysed by the enCoreTM software (Version
16.2). The resulting variables were gross ES, fat mass, fat-free
mass and total mass (i.e. the sum of fat mass and fat-free mass).
Automated quality assurance checks were performed at the start
of each day the system was operated. Full body scans were per-
formed for all participants, and symmetrical estimations were
applied if a portion of the participant’s body fell outside the
198 × 66 cm scanning area. The radiation dose was 3–6 μGy/
scan. Participants fasted for at least 8 h before each DXA scan.

Accelerometer. Wrist accelerometry was used to quantify EE at
the Pre- and Post-assessments. Each participant wore the GT9X
on the non-dominant wrist. The devices were initialised to sam-
ple at 30 Hz with the Bluetooth and inertial measurement unit
features disabled and with idle sleep mode enabled. This con-
figuration allowed a single battery charge to last the full 14 d.
For the pre-assessment, GT9X data were collected for 2 weeks
ending just before randomisation (i.e. the start of Week 1). For
the Post-assessment, GT9X data were collected from the start
of Week 11 to the end of Week 12 (end of study). On both occa-
sions, participants were asked towear themonitors continuously
to the greatest extent possible.

Data processing

Accelerometer data were read into R using the AGread pack-
age(22). Two broad tasks were performed that each used a differ-
ent data format: First, EE was calculated from raw acceleration
data (in gravitational units, 30 Hz resolution); and second,
non-wear and sleep periods were determined from filtered
and aggregated data (activity counts, minute-by-minute resolu-
tion). Activity counts are a proprietary unit of cumulative accel-
eration calculated at regular intervals(23), in this case every
minute (i.e. counts/min).

Calculating energy expenditure. For each sample, the
Euclidian normminus one (ENMO)was calculated from the indi-
vidual axes (ENMO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 1), with negative val-

ues rounded to 0. The output was then averaged each second,
converted to milli-gravitational units (i.e. multiplied by 1000),
and used to calculate oxygen consumption (VO2). The Hilde-
brand non-linear method was used (Eq. 1), as described by
Ellingson et al.(24). The method includes a floor value of 3·0
ml/kg per min to account for the lack of intercept in the model.
It was selected instead of its linear counterpart(25) because it out-
performed the latter method in the validation study by Ellingson
et al.(24), yielding mean estimates within 0·05–0·23 metabolic
equivalents (0·2–0·8 ml/kg/min) of indirect calorimetry for sed-
entary and light intensity behaviours, and within 0·8–2·4 meta-
bolic equivalents (2·8–8·4 ml/kg per min) for moderate and
vigorous intensity behaviours. For the present analysis, VO2 val-
ueswere converted to kJ/kg permin assuming a respiratory quo-
tient of 0·85 (20.3426 kJ/L O2)(26). Finally, the data were reduced
to minute-by-minute resolution by averaging the values each
minute.
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VO2 ml=kg=minð Þ ¼ 0:901 � ENMO0:534 (1)

Non-wear and sleep classification. The minute-by-minute
activity count data were first analysed using the non-wear detec-
tion algorithm of Choi et al.(27,28) to verify compliance with the
wear protocol, as discussed later. After applying the non-wear
algorithm, the wear time periods were analysed to identify sleep
using the algorithm of Tracy et al.(29,30). The prior steps resulted
in each minute being labelled as either awake, asleep or non-
wear. These labels (derived from activity counts) were then
merged with the EE estimates (derived from raw acceleration
data) to obtain a complete set of minute-by-minute accelerom-
eter data. For non-wear and sleep periods, a basal EE value
was imputed based on the Schofield equations(31).

Cleaning and aggregation of energy expenditure data.
Cleaning procedures involved discarding data from days with
< 22 h of wear time, then excluding participants if they had
< 4 d remaining at either time point. These steps ensured
the aggregation procedures would draw from sufficiently
compliant data. For each participant, aggregation involved cal-
culating mean daily EE (kJ/d) from each valid day during the
2 weeks before randomisation (EEpre) and during Weeks 11
and 12 (EEpost).

Calculating energy storage, energy balance and energy
intake. Based on theDXAmeasurements of fat mass and fat-free
mass (both in kg), gross ES was calculated using Eq. 2 for base-
line (ESpre) and Weeks 11 and 12 (ESpost)(17,18). Daily net ES was
calculated using Eq. 3 before determining EI. For the baseline
assessment, individuals were assumed weight stable, and thus
accelerometer data were used to determine EI (i.e.

EIpre= EEpre). For the follow-up assessment, EI was calculated
as the sum of EE and net ES (i.e. EIpost= EEpost þ net ES).

Gross ES kcalð Þ ¼ 1020 � FFMþ 9500 � FM (2)

Net ES kcal=dayð Þ ¼ ESpost � ESpre
days between cans

(3)

Comparison measure of energy intake. Alternative EI predic-
tions were obtained using the National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) Body Weight
Planner(32). This was done through the online interface
(https://www.niddk.nih.gov/bwp) in expert mode with
advanced controls activated. Specifically, the following variables
were inputted for each participant: sex, age, height, baseline
body mass, baseline resting EE (from Schofield’s equations;
see(31)), baseline physical activity level (total EE divided by rest-
ing EE), baseline body fat percentage (assessed by DXA), ‘goal
weight’ (i.e. bodymass at the end of the intervention), number of
days between assessments and percentage change in physical
activity level from baseline to the end of the intervention (based
on accelerometer data). The system produced a baseline caloric
intake (i.e. EIpre) commensurate with maintaining the original
weight, aswell as a daily caloric intake (i.e. EIpost) commensurate
with losing the observed amount of weight in the observed
amount of time. The purpose of including the NIDDK estimates
was to allow comparison of the accelerometer-based method
against an established method that uses similar information.
The key difference between the two methods is that the
NIDDK method is primarily for individualised and prospective
use, while the accelerometer-based intake-balance method will
allow scalable batch processing in retrospective analyses.

Table 1. Participant characteristics and sample descriptives. Accelerometer-derived variables are grand averages across participants

Control (n 8)* TRE (n 11)†

Pre Post Pre Post

Mean SD Mean SD Mean SD Mean SD

Body mass (kg) 103·6 26·8 102·7 25·8 94·0 21·6 90·9 21·3
Fat mass (kg) 48·8 19·7 48·1 19·4 41·1 16·8 39·4 16·4
Fat-free mass (kg) 54·9 9·3 54·6 8·4 52·9 10·3 51·5 10·3
BMI (kg/m2) 35·1 7·7 35·0 7·6 33·2 7·1 32·3 7·2
Weight status

n n n n
Healthy weight (BMI 18·5–24·9) 0 0 0 1
Overweight (BMI 25–29·9) 2 3 5 5
Class 1 obese (BMI 30–34·9) 3 2 2 2
Class 2 obese (BMI 35–39·9) 1 1 2 1
Class 3 obese (BMI≥ 40) 2 2 2 2

Mean SD Mean SD Mean SD Mean SD
Valid accelerometer days (n) 9·0 2·5 9·8 3·1 9·0 2·7 10·3 3·7
Non-wear time (min/d) 6·6 9·4 3·7 7·3 5·0 10·5 12·4 19·7
Sleep time (min/d) 495·6 61·9 477·4 29·1 500·0 89·1 518·2 77·1
Resting energy expenditure (MJ/d)‡ 7·5 1·3 7·5 1.3 7·1 1·2 6·9 1·1

TRE, time-restricted eating.
* 44·0 ± 13·0 years old (87·5% females).
† 46·8 ± 12·4 years old (81·8% females).
‡ Estimated from Schofield method (age-stratified equations with height and body mass as predictors).
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Analysis

Statistical tests. Paired t-tests were used to compare Pre- and
Post-energy balance values (ES, EE and EI) within each group.
To assess agreement between the accelerometer-based intake-
balance method and the NIDDK method, we used tests of stat-
istical equivalence (± 418.4100 kJ/d tolerance) for each group
and timepoint(33). Additional analyses were conducted to test
agreement for the Post-assessment, where individuals were
not assumed to be weight stable. These included regression-
based and Bland–Altman analyses to examine individual-level
error and systematic bias(34,35). For the regression model, the
key performance metrics were intercept and slope with 95 %
CI, as well as SE of the estimate. Perfect agreement would be rep-
resented by an intercept of 0 and a slope of 1 (i.e. following the
line of identity). Regression coefficients were tested statistically
using the equivalence methods suggested by Dixon et al.(33),
namely by centering both variables on the mean of the acceler-
ometer-based intake-balance method, and by using specific
equivalence zones for the intercept (±10 % of the intake-balance
mean) and slope (0·9–1·1). To account for the number of statis-
tical tests, all P-values were adjusted using the false discovery
rate correction(36).

Data loss and statistical power. Twenty of twenty-two partic-
ipants were retained through the full intervention(4). One partici-
pant did not meet the valid data requirements for this analysis
(i.e. lacked≥ 4 d with≥ 22 h of wear time at both the Pre- and
Post-assessments), and thus the analytic sample included nine-
teen participants (n 8 control; n 11 TRE). The sample size in each
group allowed the detection of an effect size (d) of 1·4, with
α= 0·05 and β= 0·80(37).

Results

Participant characteristics are shown in Table 1. Hereafter, sum-
mary statistics are given as mean ± SD. The time between the Pre-
and Post-visits was 94 ± 7 d (control group) and 96 ± 6 d
(TRE group).

Changes in energy balance

Table 2 shows summary statistics for energy balance variables,
and individual values are plotted in Fig. 1. Mean ES decreased
from Pre to Post in both groups, by a small amount in the control
group (28.5 MJ; P= 0·39) and a more substantial amount in the
TRE group (70.3 MJ; P= 0·01). Mean relative EE changed by only
± 0.84 kJ/kg per d in either group (P= 0·85–0·93), but individual
trends were variable (Fig. 1(b)). Thus, the small mean changes
were attributable to cancellation, with some participants increas-
ing their relative EE and others decreasing it. For the accelerom-
eter-based intake balance method, mean EI decreased slightly in
the control group (138 kJ/d; P= 0·85), while it decreased more
considerably for the TRE group (1255 kJ/d; P= 0·01). Similarly,
the NIDDK method showed a decrease of 435 kJ/d for the
control group (P= 0·38), v. 1469 kJ/d for the TRE group
(P< 0·001).

Agreement of accelerometer and National Institute of
Diabetes and Digestive and Kidney Diseases methods

The accelerometer and NIDDK methods showed strong agree-
ment for EIpre in both the control group (mean separation of
92 ± 201 kJ/d; equivalence P= 0·01) and the TRE group (mean
separation of 151 ± 226 kJ/d; equivalence P= 0·01). At the
post-assessment, the accelerometer and NIDDK methods
remained similar, but there was greater variability (separations
of 205 ± 1393 kJ/d in the control group and 360 ± 858 kJ/d in
the TRE group; equivalence P= 0·56 and 0·57, respectively).
The same was true for Pre-to-Post changes in EI (separations
of 297 ± 1230 kJ/d in the control group and 213 ± 741 kJ/d in
the TRE group; equivalence P= 0·57 and 0·38, respectively).

Fig. 2 shows individual-level data for EI predictions at the
Post-assessment. There, the accelerometer and NIDDKmethods
were related with a regression intercept of −297 kJ/d (95 % CI (-
193, 51); equivalence P= 0·01) and slope of close to one
(B= 0·88; 95 % CI (0·69, 1·06); equivalence P= 0·76). The model
had standard error of the estimate of 1054 kJ/d. Bland–Altman
analysis showed a small mean bias (-297 kJ/dkcal/d, consistent
with the regression model intercept) but wide limits of agree-
ment spanning a range of 4238 kJ/d (i.e. (-2414 to þ1824)).
There was negligible evidence of systematic error, with the
trendline having a slope of −0·05 and explaining< 2 % of the
variance.

Discussion

In this study, we provided proof-of-concept for an accelerome-
ter-based intake-balance method. This was done in the setting of
a TRE intervention, but the method may have utility in other set-
tings as well. Although we did not have criterion values against
which we could compare our estimates, the findings never-
theless suggest the accelerometer-based technique can detect
enough meaningful EI signal to warrant further study and appli-
cation. In particular, we observed comparable EI reductions for
the TRE group when using the accelerometer-based method
(9·9 % ± 6·4 %) and the NIDDK method (12·3 % ± 2·9 %).
Furthermore, the accelerometer-based estimates were compa-
rable with prior studies showing TRE produces EI reductions
of 8 %–20 %(5,6).

The accelerometer-based intake-balance method is a prom-
ising alternative to self-reported EI, which many have recom-
mended abandoning for estimation of true EI(9,38,39). A further
advantage is that it can be refined over time as innovation con-
tinues in the fields of body composition assessment and acceler-
ometry(40). Many current innovations in accelerometry use open-
source tools to streamline usage and increase accessibility for
end-users(41). In keeping with the latter trend, we have provided
sample code and commentary to facilitate using our method (see
paulhibbing.com/TREaccel).

To our knowledge, this is the first study to present an open-
source, accelerometer-based intake-balance method in the set-
ting of a TRE intervention. Shook et al.(17) were among the first
to use a general device-based approach, including a comparison
of their predictions against values derived from doubly labelled
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Fig. 1. Spaghetti plot of changes in energy storage (ES; a), relative energy expenditure (EE; b), absolute EE (c) and energy intake (EI; d). Grey lines are individual
participants, and heavy black lines are group means.

Fig. 2. Comparison of estimated energy intake (MJ/d) between the accelerometer-based intake-balance method and the NIDDK bodyweight planner. Values are from
thePost-assessmentwhere, unlike thePre-assessment, individualswere not assumed to beweight stable. (a) Scatterplot showing line of identity (solid) and line of best fit
(dashed, from least-squares regression), where both variables are centered on the mean of the accelerometer-based intake-balance method to ensure a non-extrapo-
lated intercept with a null-hypothesised value of 0; (b) Bland–Altman plot showing limits of agreement (horizontal dashed lines), mean bias (solid horizontal line) and
systematic bias (dot-dashed trendline from least squares regression). NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; TRE, time-restricted
eating.
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water. They showed outstanding utility of the SenseWear
Armband, but the latter device was closed-source and has
now been discontinued for several years(42). Today, ActiGraph
devices are among the most commonly used in research(43), with
an abundance of ongoingwork being devoted to improving their
utility for EE assessment(44). Thus, our use of an ActiGraph device
represents a logical starting place for developing an open-source
accelerometer-based method. Consumer devices may also have
utility in this space(45–47), although concerns still exist, many
relating to the proprietary nature of the underlying algorithms(48).
Overall, our method provides a starting point from which future
studies can begin refining the use of accelerometers for deter-
mining EI.

Strengths and weaknesses compared to the National
Institute of Diabetes and Digestive and Kidney Diseases
body weight planner

In addition to providing proof-of-concept for the accelerometer-
based method, our analysis compared the accelerometer-based
intake-balance method to the existing NIDDK Body Weight
Planner method. While the planner is primarily intended for pro-
spective use, data can also be entered retrospectively to infer
caloric intake over a particular period (e.g. the duration of an
intervention). As discussed below, the NIDDK method may be
advantageous to use in some settings while the accelerometer-
based method is advantageous to use in others.

Accessibility is a major strength of the NIDDKmethod. This is
true in both a literal sense (the method is freely available without
needing to purchase an accelerometer or related software) and
an abstract sense (the online interface is easy to navigate).
Furthermore, the NIDDK method is based on a model that
accounts for adaptations to weight loss over time, making it a
highly useful tool for both weight loss and weight maintenance.
These advantages make the NIDDK method especially useful in
clinical and consumer settings. A limitation of the method is that
the web interface currently requires manual data entry. This cre-
ates a logistical barrier for research at scale and also increases the
risk of data entry error. Furthermore, the method requires that
users provide information about their physical activity level,
which must either be measured independently or self-reported
through a two-item submodule. These characteristics may make
the NIDDK method less advantageous for use in research than
for clinical and commercial use.

The accelerometer-based method’s strengths and weak-
nesses broadly complement the NIDDK method. As noted pre-
viously, a major strength of the accelerometer-based method is
its open-source setup and potential for ongoing refinement.
Furthermore, the ability to automate the accelerometer-based
method for batch processing enhances its scalability and conse-
quent utility for research. That is, the accelerometer-based
method can reduce the burden on participants and researchers
alike by eliminating the need to complete and score self-report
instruments or similar tools such as the NIDDK method.
Automation would also enhance quality control by reducing
the risk of data entry errors. While these are certainly strengths
of the accelerometer-based method in research settings, they
may not be as applicable in commercial and clinical settings.T
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This is due to both the cost barrier of obtaining an ActiGraph
device and the procedural barrier of processing the data in R
(even with the sample code mentioned earlier). Furthermore,
the accelerometer-based method is designed primarily for retro-
spective use and does not account for adaptations to weight loss
like the NIDDKmethod. Thus, the accelerometer-based method
should be considered primarily as a tool for research, with a need
for ongoing investigation in terms of its long-term utility for stud-
ies on weight maintenance and adaptations to weight loss.

Assumptions and implications

While the intake-balance method finds its theoretical basis in the
First Law of Thermodynamics(49), some additional assumptions
were necessary to implement the method in the form described
above. The key assumptions were that (1) participants were
weight stable at baseline; and (2) there was linear change in
ES from Pre to Post (see Eq. 3). These assumptions made it pos-
sible to infer daily net ES for each 2-week measurement period,
despite having only one DXA scan at each time point. For the
Post-assessment, a third, minor assumption accompanied the
previous two, namely that the daily net ES values (derived from
change throughout the intervention) and the mean daily EE val-
ues (derived from valid days in the final 2 weeks) were compa-
rable enough to support calculating EI.

The prior assumptions have implications for interpreting the
present results and designing future studies. For the present
results, the assumed linear change in ES implies that a constant
energy balance was maintained throughout the intervention (i.e.
that EI and EE maintained a consistent subtractive relationship).
While this does not require that EI and EE were constant from
day to day, it does require that they were offset by a consistent
amount to keep net ES stable. In practice, the latter assumption
was able to withstand minor day-to-day deviations, provided
they cancelled out over the course of the intervention.
Nevertheless, it is important to consider this characteristic of
the method when interpreting the results.

In terms of study design, it should be noted that future study
protocols could incorporate mid-trial assessments of ES and EE
to facilitate different (e.g. non-linear) approaches to predicting
EI. This would be an especially promising use for accelerometry,
since a similar approach with doubly labelled water would face
many feasibility barriers. Future studies could also perform two
DXA scans at each time point, which would ensure the exact
concurrence of EE and net ES measurements. This would side-
step the assumption of linear change in ES, but it could also be
too short of a measurement window for DXA to detect meaning-
ful changes(50,51).

Further implications for interpretation and design may arise
when considering the duration of the intervention. A longer
intervention would result in greater separation between the
Pre- and Post-assessments, potentially amplifying the impact
of an assumed linear change in ES. A longer intervention could
also elicit metabolic adaptations that are modelled in the NIDDK
method, but not the current version of the accelerometer-based
method. Refined versions of the accelerometer-based method
could be developed to address this, but more research and
development are needed to attain this. In the meantime, results

must be interpreted with careful attention to the unique design
features of each study.

Strengths and limitations of this study

The present study had strengths and limitations. Its main strength
was the presentation of an innovative accelerometer-based
intake-balance method applicable to a widely used wrist-worn
activity monitor (GT9X). Participants were also exceptionally
compliant with wearing the device, which was another strength.
The main limitations were the small sample size and lack of data
from criterion measures or self-report methods. Additionally,
estimates of agreement may have been inflatedwhen comparing
the accelerometer-based and NIDDK methods, as there was a
partial overlap of the information used in each approach. This
issue is discussed in more detail in the supplementary material.
Overall, there is a clear need for more research to test the cri-
terion validity of this accelerometer-based intake-balance
approach. However, our study provides proof-of-concept and
preliminary evidence to suggest the method is a feasible and
scalable option with great potential to enhance ongoing work.
Future studies should directly compare the method against val-
ues obtained from self-reported EI as well as objective measures
such as doubly labelled water.

Conclusions

The accelerometer-based intake-balancemethod showed prom-
ising utility when applied to data from a TRE intervention. This
strong proof-of-concept calls for ongoing refinement and valida-
tion of themethod. Such efforts have the potential to increase the
quality and consistency of EI measurements, while also reducing
their burden on participants and researchers.
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