Bull. Austral. Math. Soc. Vol. 45 (1992) [415-422]

SHARP ERROR BOUNDS FOR NEWTON-LIKE METHODS UNDER WEAK SMOOTHNESS ASSUMPTIONS

IOANNIS K. ARGYROS

We provide sufficient convergence conditions as well as sharp error bounds for Newton-like iterations which generalise a wide class of known methods for solving nonlinear equations in Banach space.

1. INTRODUCTION

Let F be a nonlinear operator defined on a convex subset E_3 of a Banach space E_1 with values in a Banach space E_2 . A lot of methods for solving the equation (1) F(x) = 0

can be written in the Newton-like form

(2)
$$x_{n+1} = x_n - A(x_n)^{-1}F(x_n), \quad n \ge 0$$

where for each $n \ge 0$, $A(x_n)^{-1}$ is a bounded linear operator from E_2 into E_1 (that is, $A(x_n)^{-1} \in L(E_2, E_1)$). Obviously the linear operator $A(x_n)$ must be a consistent approximation to the Fréchet-detivative F' of F. The best known method of type (2) are Newton's methods, where $A(x_n) = F'(x_n)$, and the secant method, where $A(x_n) = \delta F(x_n, x_{n-1})$, $n \ge 0$, δF being a consistent approximation of the Fréchetderivative of F. Other authors (see, for example [1, 2, 3, 6, 7, 8, 9] and the references therein) in order to find an approximate solution x^* of equation (1) have imposed various conditions such as

(3)
$$\left\|A(x_0)^{-1}(F'(x+t(y-x))-A(x))\right\| \leq w[(\|x-x_0\|+t\|y-x\|)^p],$$

(4)
$$\left\|A(x_0)^{-1}(A(x) - A(x_0))\right\| \leq w_0(\|x - x_0\|^p)$$

for all $x, y \in E_3$ and some $p, t \in [0, 1]$, where $x_0 \in E_3$. Here w, w_0 denote nondecreasing continuous functions from $|\mathbb{R}^+$ into $|\mathbb{R}^+$ with $w(0) = w_0(0) = 0$. Denote by N the class of all such functions. However these conditions do not provide sharp error estimates for Newton-like methods when 0 (see for example [1, 2, 3, 6,7, 8, 9]. In the elegant paper by Galperin and Waksman [4] sharp error bounds werefound for Newton's method using the notion of a w-regularly continuous operator. Herewe use a generalised notion of the above definition and provide sharp error bounds forNewton-like methods. Our results can be compared favourably with results already inthe literature for various choices of the linear operator <math>A(x).

Received 9 May 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

I.K. Argyros

2. CONVERGENCE RESULTS

Given an operator $G: E_3 \subset E_1 \to E_2$, and a linear operator $A(x): E_3 \to E_2$, we say that G is w, A-continuous at a point $x \in E_3$ if the function w belongs to the class

$$M(G, x, E_3) := \{ w \in N \mid \forall y \in E_3 \, \Big\| A(x_0)^{-1} (G(y) - A(x)) \Big\| \leq w(\|x - y\|) \}$$

and that G is w, A-continuous on E_3 if w belongs to

$$M(G, E_3) := \{w \in N \mid \forall x, y \in E_3 \left\| A(x_0)^{-1}(G(x) - A(y)) \right\| \leq w(\|x - y\|) \}.$$

All functions of $M(G, x, E_3)$ are called local continuity moduli of G(at x), whereas those of $M(G, E_3)$ are called (global) continuity moduli of G (on E_3) [3, 6].

Let N^* denote the subclass of N consisting of all $w \in N$ that are concave. Denote

$$H(x, y) = \min \left\{ \left\| A(x_0)^{-1} G(x) \right\|, \left\| A(x_0)^{-1} A(y) \right\| \right\}, x, y \in E_3$$

Given $w \in N^*$, we say that G is w, A-regularly continuous on E_3 , if

(5)
$$w^{-1}\Big(H(x, x+t(y-x))+\Big\|A(x_0)^{-1}(G(x+t(y-x))-A(x))\Big\|\Big)\\-w^{-1}(H(x, x+t(y-x)))\leqslant \|x_0-x\|+t\|y-x\|$$

for all $x, y \in E_3$ and $t \in [0, 1]$.

Here $w^{-1}(s)$ stands for the least root of the equation w(t) = s. Clearly, w^{-1} is an increasing convex function defined on $[0, w(\infty))$. Because of w^{-1} convexity, the above inequality implies $w \in M(G, E_3)$. As in [4] we can show that the converse is not always true. For $x_0, x, y \in E_3$, assume $A(x_0)$ is invertible and define the numbers α , $r, \overline{a}, \overline{a}', \overline{b}, c, q$ by

$$\begin{split} \left\|A(x_0)^{-1}F(x_0)\right\| &\leq \alpha, \, r = \|x - y\|, \, \overline{a} = w^{-1}\Big(\Big\|A(x_0)^{-1}A(x)\Big\|\Big), \\ \overline{a}' &= w^{-1}\Big(\Big\|A(x_0)^{-1}F'(x)\Big\|\Big), \, \overline{b} = w^{-1}\Big(\Big\|A(x_0)^{-1}F'(y)\Big\|\Big) - r; \\ &\quad c = \|x - x_0\|, \, q = \overline{a}' - \overline{b}, \end{split}$$

the functions q(s, t), R^+ , B, C, D by

$$egin{aligned} q(s,t) &= \min\{t,s-t\}, \, R^+ = \max\{R,\,0\}, \ B(a,a'b,c,r) &= \int_0^r \left[w \left(\min\{a,(a'-q(s,t))^+\} + c + t
ight) - w \left(\min\{a,(a'-q(s,t))^+\}
ight)
ight] dt, \ C(r) &= B(a(r),\,a'(r),\,b(r),\,r,\,r), \end{aligned}$$

with (for each fixed $r \ge 0$)

$$a = a(r) = w^{-1}(1 - w_0(r)), b = b(r) = w^{-1}(1 - w_0(r) - w(r)) - r,$$

 $a' = a'(r) = w^{-1}(1 - w_0(r) - w(r))$
 $D(r) = \alpha + \frac{C(r)}{1 - w_0(r)}.$

 \mathbf{and}

Finally, define the iteration $\{t_n\}$, $n \ge 0$, by $t_0 = 0$, $t_1 = \alpha$ and

$$t_{n+2} = t_{n+1} + \frac{B(a(t_{n+1} - t_n), a'(t_{n+1} - t_n), b(t_{n+1} - t_n), t_n, t_{n+1} - t_n)}{1 - w_0(t_n)}, \ n \ge 0.$$

We can now state and prove the main result:

THEOREM. Let $F: E_3 \subset E_1 \rightarrow E_2$ and $w \in N^*$ Assume:

- (i) There exist $x_0 \in E_3$ and a positive number α such that $A(x_0)$ is invertible and $||A(x_0)^{-1}F(x_0)|| \leq \alpha$.
- (ii) There exists a minimum positive number $r^* \in (0, w_0^{-1}(1))$ such that

(6)
$$D(r) \leq r \text{ and } 1 - w_0(r) - w(r) \geq 0 \text{ for all } f \in (0, r^*].$$

- (iii) $U = U(x_0, r^*) = \{x \in E_1 \mid ||x x_0|| \leq r^*\} \subset E_3.$
- (iv) Given $A(x) \in L(U, E_2)$ satisfying (4) for p = 1 for all $x \in U$, let F be Fréchet differentiable on U and F' be w A regularly continuous on U.

Then,

- (1) the function B does not increase in each of its first three arguments and increases in the other two;
- (2) the iteration $\{t_n\}$, $n \ge 0$ is increasing and bounded above by r^* with $t^* = \lim_{n \to \infty} t_n \le r^*$;
- (3) the operator A(x) is invertible on U;
- (4) the Newton-like iterations (2) are well defined, remain in U(x₀, t^{*}) and converge to a solution x^{*} of equation (1);
- (5) x^* is the unique solution of equation (1) in $U(x_0, r^*)$;
- (6) the following estimates are true:

(7)
$$||x_{n+1} - x_n|| \leq t_{n+1} - t_n$$

(8)
$$||x_n - x^*|| \leq t^* - t_n \text{ for all } n \geq 0$$

418

$$\|x_{n} - x^{*}\| \\ \leq \frac{B(a(\|x_{n} - x_{n-1}\|), a'(\|x - n - x_{n-1}\|), b(\|x_{n} - x_{n-1}\|), \|x_{n-1} - x_{0}\|, \|x_{n} - x_{n-1}\|)}{1 - w_{0}(\|x^{*} - x_{0}\|)}$$

for all $n \ge 1$

(10)

$$\begin{aligned} &\|x_{n+1} - x_n\| \leqslant \|x_n - x^*\| \\ &+ \frac{B(a(\|x^* - x_n\|), a'(\|x^* - x_n\|), b(\|x^* - x_n\|), \|x_n - x_0\|, \|x^* - x_n\|)}{1 - w_0(\|x_n - x_0\|)} \end{aligned}$$

for all $n \ge 0$.

(7) the convergence condition (6) and the estimates (7)-(9) are sharp.

PROOF: (1) The proof of this part is similar to the corresponding one in [4, Lemma 2.1] and so is omitted.

(2) The first two members of the iteration $\{t_n\}, n \ge 0$ are such that $t_0 < t_1 \le r^*$. Therefore the denominator of the fraction appearing in the definition of the sequence is positive. That is, $t_1 \le t_2$ (since the numerator is obviously nonnegative). Let us assume that $t_k \le t_{k+1}, k = 0, 1, 2, ..., n$. Then by the definition of the sequence, $\{t_n\}, n \ge 0, t_{k+1} \le t_{k+2}$. That is, $t_{n+1} \le t_{n+2}$ for n = k + 1. So far we have shown that the scalar sequence $\{t_n\}$ is increasing for all $n \ge 0$. We will show that $t_n \le r^*$ for all $n \ge 0$. For n = 0, 1 this is true by hypothesis. For $n = 2, t_2 \le r^*$, since $t_2 \le D(r^*) \le r^*$. Let us assume that $t_k \le r^*, k = 0, 1, 2, ..., n$; then

$$C(t_1-t_0)+C(t_2-t_1)+\ldots+C(t_{k+1}-t_k) \leq C(t_{k+1}-t_0) \leq C(t_{t+1}) \leq C(r^*),$$

since the function w is increasing and $(t_1 - t_0) + (t_2 - t_1) + \ldots + (t_{k+1} - t_k) = t_{k+1} - t_0$. Hence $t_{k+1} \leq C(r^*) \leq r^*$, which completes the induction. Therefore the sequence $\{t_n\}$, $n \geq 0$ is increasing and bounded above by r^* and as such it converges to some t^* such that $0 < t^* \leq r^*$.

(3) Let us observe that the linear operator A(u) is invertible for all $u \in U(x_0, w_0^{-1}(1))$. Indeed we obtain

$$\left\|A(x_0)^{-1}(A(u) - A(x_0))\right\| \leq w_0(\|u - x_0\|) < 1,$$

so that according to Banach's lemma A(u) is invertible and

(11)
$$||A(u)^{-1}A(x_0)|| \leq (1 - w_0(||u - x_0||))^{-1}.$$

Note also that since $\left\|A(x_0)^{-1}A(u)\right\| \cdot \left\|A(u)^{-1}A(x_0)\right\| \ge 1$, then $\left\|A(x_0)^{-1}A(u)\right\| \ge 1 - w_0(\|u - x_0\|)$.

419

(4)-(6) It now follows that if (2) is well defined for n = 1, 2, 3, ..., k and if (7) holds for $n \leq k$ then

$$||x_0-x_n|| \leq t_n-t_0 \leq t^*-t_0 \text{ for } n \leq k.$$

This shows that (7) is satisfied for $u = x_i$ with $i \leq k$. Thus (2) is well defined for n = k + 1 too. Also from $||x_0 - x_k|| \leq t_k - t_0 \leq t^*$ we obtain $x_k \in U(x_0, t^*)$.

We now observe that (7) is true for n = 0. Assume that it is true for k = 0, 1, 2, ..., n. Then by (2) (12)

$$\begin{aligned} \|x_{k+2} - x_{k+1}\| &= \left\| A(x_{k+1})^{-1} F(x_{k+1}) \right\| \\ &= \left\| A(x_{k+1})^{-1} (F(x_{k+1}) - F(x_k) - A(x_k)(x_{k+1} - x_k)) \right\| \\ &= \left\| A(x_{k+1})^{-1} A(x_0) \right\| \cdot \left\| A(x_0)^{-1} (F(x_{k+1}) - F(x_k) - A(x_k)(x_{k+1} - x_k)) \right\| \\ &= \left\| A(x_{k+1})^{-1} A(x_0) \right\| \cdot \left\| A(x_0)^{-1} \left[\int_0^1 F'(x_h + F(x_{k+1} - x_k)) - A(x_k) \right] (x_{k+1} - x_k) dt \right\|. \end{aligned}$$

We now apply (11) for $u = x_{k+1}$, (5) for $x = x_k$, $y = x_{k+1}$, G = F' to obtain (13)

$$\begin{aligned} \|x_{K+2} - x_{K+1}\| \\ &\leqslant \frac{1}{1 - w_0(t_k)} \int_0^1 [w(w^{-1}(H(x_k, x_k + t(x_{k+1} - x_k)) + \|x_k - x_0\| + \|x_{k+1} - x_k\| t)) \\ &- w(w^{-1}(H(x_k, x_k + t(x_{k+1} - x_k))))] \|x_{k+1} - x_k\| dt \\ &\leqslant \frac{B(a(t_{k+1} - t_k), a'(t_{k+1} - t_k), b(t_{k+1} - t_k), t_k, t_{k+1} - t_k)}{1 - w_0(t_k)} = t_{k+2} - t_{k+1}. \end{aligned}$$

This shows (7) for n = k + 1. Hence, $\{x_n\}, n \ge 0$ is a Cauchy sequence in a Banach space and as such it converges to a point $x^* \in U$. By (12) and (13) we observe that the numerator of (13) is an upper bound for $||A(x_0)^{-1}F(x_{k+1})||$ which tends to 0 as $k \to \infty$. Hence, by continuity, $F(x^*) = 0$. The estimate (8) now follows easily from (7).

To show uniqueness, let us assume that there exist two solutions x^* and y^* in $U(x_0, r^*)$ and consider the estimate $F(x^*) - F(y^*) = L^*(x^* - y^*)$ with $L^* = \int_0^1 F'(y^* + t(x^* - y^*)) dt$.

Then as before (see (11)) we can show $||I - A(x_0)^{-1}L^*|| < 1$. That is, L^* is invertible, which shows $x^* = y^*$.

Set $L = \int_0^1 F'(x^* + t(x_n - x^*))dt$ and use (11), and the estimates

$$\|x_n - x^*\| \leq \left\| \left(A(x_0)^{-1}L \right)^{-1} \right\| \cdot \left\| A(x_0)^{-1}F(x_n) \right\|,$$

$$\|x_{n+1} - x_n\| = (x^* - x_n) + \left(A(x_0)^{-1}A(x_n) \right)^{-1}$$

$$[A(x_0)^{-1} \left(F(x^*) - F(x_n) - A(x_n)^{-1}(x^* - x_n) \right)]$$

to obtain (9) and (10) respectively.

(7) This follows exactly as in part (5) Theorem 2.1 in [4], which completes the proof of the theorem.

It can easily be seen that if $w(t) = \gamma t$, $w_0(t) = \beta t$ for some $\beta, \gamma > 0$ and the sequence $||x^* - x_n||$ is monotone then (9) and (10) can provide an upper and a lower bound on $||x^* - x_n||$ respectively expressed in terms of the rest of the norms. Moreover define the numbers r_1, r_2, r_3, Δ and the intervals I_1, I_2, I by

$$r_1=rac{1}{eta+\gamma}, \quad r_2=rac{1+lphaeta-\sqrt{\Delta}}{3\gamma+2eta}, \quad r_3=rac{1+lphaeta+\sqrt{\Delta}}{3\gamma+2eta},$$

with $\Delta = (1 + \alpha \beta)^2 - 2\alpha(3\gamma + 2\beta)$, $I_1 = (0, r_1)$, $I_2 = [r_2, r_3]$, and $I = I_1 \cap I_2$.

Assume:

$$\Delta > 0$$
 and $I \neq \emptyset$ and set $I_3 = [r_2, \min(r_1, r_3)]$

It can easily be seen then that condition (6) is satisfied for all $r \in I_3$.

Similar conditions can be obtained when $w_0(t) = \beta t^p$, $w(t) = \gamma t^p$ for $p \in [0, 1)$. In the latter case the results in [3, 5, 7, 8, 9] cannot apply (since p = 1 there). Moreover it can easily be seen that our results compare favourably with the ones in [1, 2, 3, 6] in this case.

Finally, consider the equation

$$(14) F(x) + Q(x) = 0$$

where F is as before and Q is a nonlinear operator defined on E_3 with values on E_2 such that

(15)
$$||A(x_0)^{-1}(Q(x) - Q(y))|| \le w_1(||x - y||) \text{ for all } x, y \in E_3$$

for some nondecreasing real function w_1 defined on R^+ with $w_1(0) = 0$. Note that the differentiability of Q is not assumed. Define the function $D_1(r)$ by

$$D_1(r) = lpha + rac{C_1(r)}{1 - w_0(r)}, \quad C_1(r) = C(r) + w_1(r)$$

and the iteration $\{s_n\}$, $n \ge 0$, by $s_0 = 0$, $s_1 = \alpha$ and

$$s_{n+2} = s_{n+1} + \frac{B(a(s_{n+1} - s_n), a'(s_{n+1} - s_n), b(s_{n+1} - s_n), s_n, s_{n+1} - s_n) + w_1(s_{n+1} - s_n)}{1 - w_0(s_n)},$$

$$n \ge 0.$$

Then with the rest of the notation as before we can immediately state and prove a theorem for approximating a solution x^* of equation (14) similar to the one above. Just replace D(r) by $D_1(r)$ and $\{t_n\}$ by $\{s_n\}$, $n \ge 0$, in the above theorem and take into account hypothesis (15).

Note that the iteration (2) will become

$$z_{n+1} = z_n - A(z_n)^{-1}(F(z_n) + Q(z_n)), \, z_0 \in E_3, \, n \ge 0.$$

The new theorem will cover the case when the operator appearing in equation (1) is not Fréchet-differentiable but it can be decomposed into one that is and one that is not (see also [2] and the references therein).

References

- I.K. Argyros, 'Newton-like methods under mild differentiability conditions with error analysis', Bull. Austral. Math. Soc. 37 (1988), 131-147.
- [2] X. Chen and T. Yamamoto, 'Convergence domains of certain iterative methods for solving nonlinear equations', Numer. Funct. Anal. Optim. 10 (1989), 37-48.
- [3] J.E. Dennis, 'Toward a unified convergence theory for Newton-like methods', in Nonlinear functional analysis and applications, Editor L.B. Rall, pp. 425-472 (Academic Press, New York, 1971).
- [4] A. Galperin and Z. Waksman, 'Newton's method under a weak smoothness assumption', J. Comput. Appl. Math. (to appear).
- [5] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces (Pergamon Press, Oxford, 1964).
- [6] G.J. Miel, 'Unified error analysis for Newton-type methods', Numer. Math. 33 (1979), 391-396.
- [7] F.A. Potra, 'On the convergence of a class of Newton-like methods', in Iterative solution of nonlinear systems of equations: Lecture notes in Math. 953, Editors R. Ansorge, T. Meis and W. Torning, pp. 125-137 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
- [8] W.C. Rheinboldt, 'A unified convergence theory for a class of iterative process', SIAM J. Numer. Anal. 5 (1968), 42-63.
- T. Yamamoto, 'A convergence theorem for Newton-like methods in Banach spaces', Numer. Math. 51 (1987), 545-557.

Department of Mathematics Cameron University Lawton OK 73505 United States of America